Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (71)

Search Parameters:
Keywords = Middle–Late Permian

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 4551 KB  
Article
Provenance Tracing of Uranium-Bearing Sandstone of Saihan Formation in Naomugeng Sag, Erlian Basin, China
by Caili Zhang, Zhao Li, Hu Peng, Yue Wu, Ning Luo, Kang Pang, Zhiwei Qiu, Xiaolin Yu, Haiqi Quan, Miao Wang, Qi Li, Yongjiu Liu, Yinan Zhuang and Chengyuan Jin
Minerals 2026, 16(1), 76; https://doi.org/10.3390/min16010076 - 13 Jan 2026
Viewed by 220
Abstract
The northern part of the Naomugeng Sag in the Erlian Basin shows favorable sandstone-type uranium mineralization in the lower member of the Saihan Formation. The sandstone thickness ranges from 39.67 to 140.36 m, with an average sand content ratio of 76.33%, indicating broad [...] Read more.
The northern part of the Naomugeng Sag in the Erlian Basin shows favorable sandstone-type uranium mineralization in the lower member of the Saihan Formation. The sandstone thickness ranges from 39.67 to 140.36 m, with an average sand content ratio of 76.33%, indicating broad prospecting potential. This study focuses on samples from uranium ore holes and uranium-mineralized holes in the area, conducting grain-size analysis of uranium-bearing sandstones, heavy mineral assemblage analysis, and detrital zircon U-Pb dating to systematically investigate provenance characteristics. The results indicate that the uranium-bearing sandstones in the lower member of the Saihan Formation were primarily transported by rolling and suspension, characteristic of braided river channel deposits. The heavy mineral assemblage is dominated by zircon + limonite + garnet + ilmenite, suggesting that the sedimentary provenance is mainly composed of intermediate-acid magmatic rocks with minor metamorphic components. Detrital zircon U-Pb ages are mainly concentrated in the ranges of 294–217 Ma (Early Permian to Late Triassic), 146–112 Ma (Middle Jurassic to Early Cretaceous), 434–304 Ma (Late Carboniferous to Early Permian), and 495–445 Ma (Middle–Late Ordovician to Early Silurian). Combined with comparisons of the ages of surrounding rock masses, the provenance of the uranium-bearing sandstones is mainly derived from intermediate-acid granites of the Early Permian–Late Triassic and Middle Jurassic–Early Cretaceous periods in the southern part of the Sonid Uplift, with minor contributions from metamorphic and volcanic rock fragments. The average zircon uranium content is 520.53 ppm, with a Th/U ratio of 0.73, indicating that the provenance not only supplied detrital materials but also provided uranium-rich rock bodies that contributed essential metallogenic materials for uranium mineralization. This study offers critical insights for regional prospecting and exploration deployment. Full article
(This article belongs to the Special Issue Selected Papers from the 7th National Youth Geological Congress)
Show Figures

Figure 1

20 pages, 7474 KB  
Article
Sedimentary–Tectonic Evolution and Paleogeographic Characteristics of the Paleozoic in the Ordos Basin
by Yuxia Wang, Junfeng Ren, Heng Wang, Jing Luo, Lifa Zhou and Jiayi Wei
J. Mar. Sci. Eng. 2026, 14(2), 112; https://doi.org/10.3390/jmse14020112 - 6 Jan 2026
Viewed by 199
Abstract
As a tectonically stable and extensively superimposed basin situated in the North China Craton, the Ordos Basin hosts abundant reserves of oil, natural gas, and coal within its Paleozoic strata, rendering it a focal area in energy-related geological research. The basin’s evolutionary history [...] Read more.
As a tectonically stable and extensively superimposed basin situated in the North China Craton, the Ordos Basin hosts abundant reserves of oil, natural gas, and coal within its Paleozoic strata, rendering it a focal area in energy-related geological research. The basin’s evolutionary history provides a comprehensive record of key geological transitions—from an Early Paleozoic carbonate platform to Late Paleozoic marine–continental transitional deposits and ultimately to continental clastic sedimentation—largely governed by the regional tectonic dynamics associated with the North China Plate. This study presents a systematic review of the sedimentary and tectonic evolution of the Paleozoic sequence in the basin. Findings indicate that during the Early Paleozoic, the basin developed under a passive continental margin setting, characterized by widespread epicontinental marine carbonate deposition. By the Late Ordovician, subduction of the Qinqi Ocean triggered the Caledonian orogeny, resulting in regional uplift across the basin, widespread erosion, and a significant hiatus in Middle to Late Ordovician sedimentation, which facilitated the formation of paleo-weathered crust karst reservoirs. In the Late Paleozoic, the basin evolved into an intracratonic depression. From the Late Carboniferous to the Early Permian, the Hercynian tectonic event influenced the transformation from isolated rift basins to a broad epicontinental sea, leading to the deposition of critical coal-bearing strata within marine–continental transitional facies. Starting in the Middle Permian, the closure of surrounding oceanic domains induced widespread tectonic uplift, shifting the depositional environment to a terrestrial fluvial-lacustrine system and marking the termination of marine sedimentation in the region. Based on the comprehensive research findings, this study underscores that the superposition, inheritance, and interaction of multiple tectonic events are the primary controls on the paleogeographic architecture and sedimentary. Full article
Show Figures

Figure 1

20 pages, 17604 KB  
Article
Controls of Fault System on Hydrocarbon Accumulation: A Case Study from the Carboniferous Reservoir of the Hongche Fault Zone in the Junggar Basin
by Cheng Huang, Yonghe Sun, Huafeng Zhou, Xiaofan Yang, Junwei Han, Jian Fu, Mengyuan Hao and Yulin Song
Processes 2025, 13(12), 4054; https://doi.org/10.3390/pr13124054 - 15 Dec 2025
Viewed by 249
Abstract
The Hongche Fault Zone in the Junggar Basin exhibits significant spatiotemporal variations in the relationship between fault systems and hydrocarbon accumulation across different structural belts. Two key factors contribute to this phenomenon: frequent tectonic activities and well-developed Paleozoic fault systems. To date, no [...] Read more.
The Hongche Fault Zone in the Junggar Basin exhibits significant spatiotemporal variations in the relationship between fault systems and hydrocarbon accumulation across different structural belts. Two key factors contribute to this phenomenon: frequent tectonic activities and well-developed Paleozoic fault systems. To date, no detailed studies have been conducted on the fault systems in the Paleozoic strata of the Hongche Fault Zone. In this study, the fault systems in the Paleozoic strata of the Hongche Fault Zone were systematically sorted out for the first time. Furthermore, the controlling effects of active faults in different geological periods on hydrocarbon charging were clarified. Firstly, basing on the 3D seismic and well-log data, the structural framework and fault activity, fault systems, source-contacting faults were characterized. Vertically, the Hongche Fault Zone experienced three major thrusting episodes followed by one weak extensional subsidence Stage, forming four principal tectonic layers: Permian (Thrusting Episode I), Triassic (Thrusting Episode II), Jurassic (Thrusting Episode III), and Cretaceous–Quaternary (Post-Thrusting Subsidence). Laterally, six fault systems are identified: Middle Permian (Stage I), Late Triassic (Stage II), Jurassic (Stage III), post-Cretaceous (Stage IV), as well as composite systems from Middle Permian–Jurassic (Stages I–III) and Late Triassic–Jurassic (Stages II–III). These reveal multi-stage, multi-directional composite structural characteristics in the study area. According to the oil–source correlation, the Carboniferous reservoir is primarily sourced by Permian Fengcheng Formation source rocks in the Shawan Sag. Hydrocarbon migration tracing shows that oil migrates along faults, progressively charging from depression zones to thrust belts and uplifted areas. In this process, fault systems exert hierarchical controls on accumulation: Stage I faults dominate trap formation, Stages II and III faults regulate hydrocarbon migration, accumulation, and adjustment, while Stage IV faults influence hydrocarbon conduction in Mesozoic–Cenozoic reservoirs. By clarifying the fault-controlled hydrocarbon accumulation mechanisms in the Hongche Fault Zone, this study provides theoretical guidance for two key aspects of the Carboniferous reservoirs in the study area: the optimization of favorable exploration zones and the development of reserves. Full article
Show Figures

Figure 1

16 pages, 18264 KB  
Article
The Strike–Slip Fault Effect on a Reef–Shoal Reservoir in the Northern Sichuan Basin
by Yinyu Wen, Guanghui Wu, Jiawei Liu, Xiaoxu Liu, Bing He, Chen Su and Youliang Yu
Minerals 2025, 15(12), 1284; https://doi.org/10.3390/min15121284 - 7 Dec 2025
Viewed by 261
Abstract
Understanding the influence of strike–slip faulting on deep carbonate reservoirs remains challenging. This study integrates core observations, well logging, and seismic interpretation to investigate fracture diagenesis and evaluate the impact of strike–slip faulting on Upper Permian reef–shoal reservoirs in the northern Sichuan Basin. [...] Read more.
Understanding the influence of strike–slip faulting on deep carbonate reservoirs remains challenging. This study integrates core observations, well logging, and seismic interpretation to investigate fracture diagenesis and evaluate the impact of strike–slip faulting on Upper Permian reef–shoal reservoirs in the northern Sichuan Basin. Within the platform margin reef–shoal microfacies, transtensional faulting during the Late Permian was later overprinted by transpressional deformation in the Early–Middle Triassic. Although individual fault displacements are generally less than 200 m, the associated damage zones may extend over 1000 m in width. Strong compaction and cementation eliminated most primary porosity in the reef–shoal carbonates, whereas dissolution enhanced porosity preferentially developed along fault damage zones. The most productive of fracture–vug reservoirs (“sweet spots”) are mainly distributed adjacent to strike–slip fault zones within the reef–shoal bodies. Reservoir quality is controlled by syn-sedimentary faults, moldic vugs, karstic argillaceous fills, and U-Pb ages of fracture cements that indicate multi-stage diagenesis. Contemporaneous fracturing and dissolution during the Late Permian played a dominant role in enhancing reservoir porosity, while burial-stage cementation had a detrimental effect. This case study demonstrates that even small-scale strike–slip faulting can significantly improve reservoir quality in deep tight reef–shoal carbonates. Full article
(This article belongs to the Special Issue Deformation, Diagenesis, and Reservoir in Fault Damage Zone)
Show Figures

Figure 1

29 pages, 30657 KB  
Article
Provenance of Middle-Upper Permian Sandstones in Lintan and Jiangligou Areas, West Qinling, China: Insights from Geochemistry, Detrital Zircon Chronology, and Hf Isotopes
by Ziwen Jiang, Lamao Meiduo, Zhichao Li, Zhengtao Zhang, Xiangjun Li, Xiwei Qin, Shangwei Ma, Jinhai Ma, Jie Li, Wenzhi Ma, Weiran Zhao, Wenqi Pan and Ziqiang Tian
Minerals 2025, 15(10), 1024; https://doi.org/10.3390/min15101024 - 27 Sep 2025
Viewed by 489
Abstract
The provenance of the Middle-Upper Permian in the Lintan and Jiangligou areas, remnants of rift basin sedimentation within the West Qinling, remains controversial, hindering understanding of the basin-range coupling evolution of the Qinling Orogenic Belt and its periphery. Heavy minerals, major and trace [...] Read more.
The provenance of the Middle-Upper Permian in the Lintan and Jiangligou areas, remnants of rift basin sedimentation within the West Qinling, remains controversial, hindering understanding of the basin-range coupling evolution of the Qinling Orogenic Belt and its periphery. Heavy minerals, major and trace elements, rare earth elements, detrital zircon U-Pb dating, and in situ Lu-Hf isotopes were analyzed to determine the provenance of the Middle-Upper Permian sandstones. Results were integrated with previous studies to investigate basin-range coupling processes. The results reveal the following: (1) The Upper Member of the Shilidun Formation in the Lintan area was deposited during the Late Permian. Heavy minerals are dominated by moderately to highly stable species. Source rocks were derived from intermediate-acidic magmatic rocks and low- to medium-grade metamorphic terrains. The provenance was primarily situated in a continental island arc tectonic setting. Diverse source rock types were identified, including materials from felsic igneous, quartzose recycled, and mafic igneous provenances. Detrital zircon U–Pb age spectra display two major peak ages at 285 Ma and 442 Ma, along with five subordinate peaks at 818 Ma, 970 Ma, 1734 Ma, 1956 Ma, and 2500 Ma. The εHf(t) values range from –44.95 to 42.67, and TDM2 ages vary from 367 Ma to 4106 Ma. It is concluded that the sedimentary materials were mainly derived from the North Qinling Orogenic Belt, with minor contributions from the basement of the North China Craton. (2) In the Jiangligou area, the Shiguan Formation is characterized by highly and stable heavy minerals. The provenance is dominated by intermediate-acidic magmatic rocks, within an oceanic island arc tectonic setting. Detrital zircon U–Pb age spectrum displays a prominent peak at 442 Ma. The εHf(t) values range from –0.5 to 10.55, with TDM2 ages ranging from 744 Ma to 897 Ma. These results indicate that the sedimentary materials were derived from the North Qilian Orogenic Belt. (3) The Permian in the Western Qinling exhibit multi-provenance supply, dominated by the North Qinling Orogenic Belt and the North China Craton basement, with local contributions from the North Qilian Orogenic Belt. Significant regional variations in provenance contributions were identified. This study further constrains the closure of the Shangdan Ocean to pre-Late Permian. It reveals that the Western Qinling was situated in a back-arc rift basin setting during the Late Paleozoic. Key sedimentary evidence is provided for understanding the tectonic evolution of the Paleo-Tethys Ocean and the collision between the North China and Yangtze cratons. Full article
(This article belongs to the Special Issue Tectonic Setting and Provenance of Sedimentary Rocks)
Show Figures

Figure 1

21 pages, 5880 KB  
Article
Petrographic and Geochemical Insights from Fibrous Calcite Veins: Unraveling Overpressure and Fracture Evolution in the Upper Permian Dalong Formation, South China
by An Liu, Lin Chen, Shu Jiang, Hai Li, Baomin Zhang, Yingxiong Cai, Jingyu Zhang, Wei Wei and Feiyong Xia
Minerals 2025, 15(9), 896; https://doi.org/10.3390/min15090896 - 24 Aug 2025
Viewed by 886
Abstract
The characteristics and evolution of fibrous calcite veins in organic-rich shales have gained significant attention due to the recent advancements in shale oil and gas exploration. However, the fibrous calcite veins in the Upper Permian Dalong Formation remain lacking in awareness. To investigate [...] Read more.
The characteristics and evolution of fibrous calcite veins in organic-rich shales have gained significant attention due to the recent advancements in shale oil and gas exploration. However, the fibrous calcite veins in the Upper Permian Dalong Formation remain lacking in awareness. To investigate the formation and significance of bedding-parallel fibrous calcite veins in the Dalong Formation, we conducted an extensive study utilizing petrography, geochemistry, isotopic analysis, and fluid inclusion studies on outcrops of the Dalong Formation in South China. Our findings reveal that fibrous calcite veins predominantly develop in the middle section of the Dalong Formation, specifically within the transitional interval between siliceous and calcareous shales, characterized by symmetric, antitaxial fibrous calcite veins. The δ13C values of these veins exhibit a broad range (−4.53‰ to +3.39‰) and display a decreasing trend in the directions of fiber growth from the central part, indicating an increased contribution of organic carbon to the calcite veins. Additionally, a consistent increase in trace element concentrations from the central part toward the fiber growth directions suggests a singular fluid source in a relatively closed environment, while other samples exhibit no distinct pattern, possibly due to the mixing of fluids from multiple layers resulting from repeated opening and closing of bedding-parallel fractures in the shales. The notable difference in δEu between the fibers on either side of the median zone indicates that previously formed veins acted as barriers, impeding the mixing of fluids, with the variation in δEu reflecting the differing sedimentary properties of the surrounding rocks. The in situ U-Pb dating of fibrous calcite veins yields an absolute age of 211 ± 23 Ma, signifying formation during the Late Triassic, which correlates with a shale maturity of 1.0‰ to 1.25‰. This integrated study suggests that the geochemical records of fibrous calcite veins document the processes related to overpressure generation and the opening and healing of bedding-parallel fractures within the Dalong Formation. Full article
(This article belongs to the Special Issue Organic Petrology and Geochemistry: Exploring the Organic-Rich Facies)
Show Figures

Figure 1

29 pages, 14630 KB  
Article
Tectonic Evolution of the Eastern Central Asian Orogenic Belt: Evidence from Magmatic Activity in the Faku Area, Northern Liaoning, China
by Shaoshan Shi, Yi Shi, Xiaofan Zhou, Nan Ju, Yanfei Zhang and Shan Jiang
Minerals 2025, 15(7), 736; https://doi.org/10.3390/min15070736 - 15 Jul 2025
Viewed by 1199
Abstract
The Permian–Triassic magmatic record in the eastern Central Asian Orogenic Belt (CAOB) provides critical insights into the terminal stages of the Paleo-Asian Ocean (PAO) evolution, including collisional and post-collisional processes following its Late Permian closure. The northeastern China region, tectonically situated within the [...] Read more.
The Permian–Triassic magmatic record in the eastern Central Asian Orogenic Belt (CAOB) provides critical insights into the terminal stages of the Paleo-Asian Ocean (PAO) evolution, including collisional and post-collisional processes following its Late Permian closure. The northeastern China region, tectonically situated within the eastern segment of the CAOB, is traditionally known as the Xingmeng Orogenic Belt (XOR). This study integrates zircon U-Pb geochronology, whole-rock geochemistry, and zircon Hf isotopic analyses of intermediate-acid volcanic rocks and intrusive rocks from the former “Tongjiatun Formation” in the Faku area of northern Liaoning. The main objective is to explore the petrogenesis of these igneous rocks and their implications for the regional tectonic setting. Zircon U-Pb ages of these rocks range from 260.5 to 230.1 Ma, indicating Permian–Triassic magmatism. Specifically, the Gongzhuling rhyolite (260.5 ± 2.2 Ma) and Gongzhuling dacite (260.3 ± 2.4 Ma) formed during the Middle-Late Permian (270–256 Ma); the Wangjiadian dacite (243 ± 3.0 Ma) and Wafangxi rhyolite (243.9 ± 3.0 Ma) were formed in the late Permian-early Middle Triassic (256–242 Ma); the Haoguantun rhyolite (240.9 ± 2.2 Ma) and Sheshangou pluton (230.1 ± 1.7 Ma) were formed during the Late Middle-Late Triassic (241–215 Ma). Geochemical studies, integrated with the geochronological results, reveal distinct tectonic settings during successive stages: (1) Middle-Late Permian (270–256 Ma): Magmatism included peraluminous A-type rhyolite with in calc-alkaline series (e.g., Gongzhuling) formed in an extensional environment linked to a mantle plume, alongside metaluminous, calc-alkaline I-type dacite (e.g., Gongzhuling) associated with the subduction of the PAO plate. (2) Late Permian-Early Middle Triassic (256–242 Ma): Calc-alkaline I-type magmatism dominated, represented by dacite (e.g., Wangjiadian) and rhyolite (e.g., Wafangxi), indicative of a collisional uplift environment. (3) Late Middle-Late Triassic (241–215 Ma): Magmatism transitioned to high-K calc-alkaline with A-type rocks affinities, including rhyolite (e.g., Haoguantun) and plutons (e.g., Sheshangou), formed in a post-collisional extensional environment. This study suggests that the closure of the PAO along the northern margin of the North China Craton (NCC) occurred before the Late Triassic. Late Triassic magmatic rocks in this region record a post-orogenic extensional setting, reflecting tectonic processes following NCC-XOR collision rather than PAO subduction. Combined with previously reported age data, the tectonic evolution of the eastern segment of the CAOB during the Permian-Triassic can be divided into four stages: active continental margin (293–274 Ma), plate disintegration (270–256 Ma), final collision and closure (256–241 Ma), and post-orogenic extension (241–215 Ma). Full article
(This article belongs to the Special Issue Selected Papers from the 7th National Youth Geological Congress)
Show Figures

Figure 1

22 pages, 20312 KB  
Review
On the Incompleteness of the Coelacanth Fossil Record
by Zhiwei Yuan, Lionel Cavin and Haijun Song
Foss. Stud. 2025, 3(3), 10; https://doi.org/10.3390/fossils3030010 - 8 Jul 2025
Cited by 2 | Viewed by 4489
Abstract
This study conducted a spatiotemporal review of the coelacanth fossil record and explored its distribution and diversity patterns. Coelacanth research can be divided into two distinct periods: the first period, which is based solely on the fossil record, and the second period following [...] Read more.
This study conducted a spatiotemporal review of the coelacanth fossil record and explored its distribution and diversity patterns. Coelacanth research can be divided into two distinct periods: the first period, which is based solely on the fossil record, and the second period following the discovery of extant taxa, significantly stimulating research interest. The distribution and research intensity of coelacanth fossils exhibit marked spatial heterogeneity, with Europe and North America being the most extensively studied regions. In contrast, Asia, South America, and Oceania offer substantial potential for future research. Temporally, the coelacanth fossil record also demonstrates significant variation across geological periods, revealing three diversity peaks in the Middle Devonian, Early Triassic, and Late Jurassic, with the Early Triassic peak exhibiting the highest diversity. With the exception of the Late Devonian, Carboniferous, and Late Cretaceous, most periods remain understudied, particularly the Permian, Early Jurassic, and Middle Jurassic, where the record is notably scarce. Integrating the fossil record with phylogenetic analyses enables more robust estimations of coelacanth diversity patterns through deep time. The diversity peak observed in the Middle Devonian is consistent with early burst models of diversification, whereas the Early and Middle Triassic peaks are considered robust, and the Late Jurassic peak may be influenced by taphonomic biases. The low population abundance and limited diversity of coelacanths reduce the number of specimens available for fossilization. The absence of a Cenozoic coelacanth fossil record may be linked to their moderately deep-sea habitat. Future research should prioritize addressing gaps in the fossil record, particularly in Africa, Asia, and Latin America; employing multiple metrics to mitigate sampling biases; and integrating a broader range of taxa into phylogenetic analyses. In contrast to the widespread distribution of the fossil record, extant coelacanths exhibit a restricted distribution, underscoring the urgent need to increase conservation efforts. Full article
(This article belongs to the Special Issue Continuities and Discontinuities of the Fossil Record)
Show Figures

Figure 1

29 pages, 4559 KB  
Article
Revisiting the Permian Stratigraphy of the Kuznetsk Coal Basin (Siberia, Russia) Using Radioisotopic Data: Sedimentology, Biotic Events, and Palaeoclimate
by Vladimir V. Silantiev, Yaroslav M. Gutak, Marion Tichomirowa, Alexandra Käßner, Anna V. Kulikova, Sergey I. Arbuzov, Nouria G. Nourgalieva, Eugeny V. Karasev, Anastasia S. Felker, Maria A. Naumcheva, Aleksandr S. Bakaev, Lyubov G. Porokhovnichenko, Nikolai A. Eliseev, Veronika V. Zharinova, Dinara N. Miftakhutdinova and Milyausha N. Urazaeva
Minerals 2025, 15(6), 643; https://doi.org/10.3390/min15060643 - 13 Jun 2025
Viewed by 1817
Abstract
The radioisotopic dating of five stratigraphic levels within the Permian succession of the Kuznetsk Coal Basin refined the ages of the corresponding stratigraphic units and, for the first time, enabled their direct correlation with the International Chronostratigraphic Chart, 2024. The analysis revealed significant [...] Read more.
The radioisotopic dating of five stratigraphic levels within the Permian succession of the Kuznetsk Coal Basin refined the ages of the corresponding stratigraphic units and, for the first time, enabled their direct correlation with the International Chronostratigraphic Chart, 2024. The analysis revealed significant discrepancies between the updated ages and the previously accepted regional scheme (1982–1996). A comparison of regional stratigraphic units’ durations with estimated coal and siliciclastic sediment accumulation rates indicated that the early Permian contains the most prolonged stratigraphic hiatuses. The updated stratigraphic framework enabled re-evaluating the temporal sequence of regional sedimentological, volcano–tectonic and biotic events, allowing for more accurate comparison with the global record. Palaeoclimate reconstructions indicated that during the early Permian, the Kuznetsk Basin was characterised by a relatively warm, humid, and aseasonal climate, consistent with its mid-latitude position during the Late Palaeozoic Ice Age. In contrast, the middle-to-late Permian shows a transition to a temperate, moderately humid climate with pronounced seasonality, differing from the warmhouse conditions of low-latitude palaeoequatorial regions. The latest Lopingian reveals a distinct trend toward increasing dryness, consistent with global palaeoclimate signals associated with the end-Permian crisis. Full article
(This article belongs to the Special Issue Sedimentary Basins and Minerals)
Show Figures

Graphical abstract

28 pages, 59439 KB  
Article
The Middle–Late Permian to Late Cretaceous Mediterranean-Type Karst Bauxites of Western Iran: Authigenic Mineral Forming Conditions and Critical Raw Materials Potential
by Farhad Ahmadnejad, Giovanni Mongelli, Ghazal Rafat and Mohammad Sharifi
Minerals 2025, 15(6), 584; https://doi.org/10.3390/min15060584 - 29 May 2025
Cited by 2 | Viewed by 1418
Abstract
The Sanandaj–Sirjan Zone and Zagros Fold–Thrust Belt in Iran host numerous Mediterranean-type karst bauxite deposits; however, their formation mechanisms and critical raw material potential remain ambiguous. This study combines mineralogical and geochemical analyses to explore (1) the formation of authigenic minerals, (2) the [...] Read more.
The Sanandaj–Sirjan Zone and Zagros Fold–Thrust Belt in Iran host numerous Mediterranean-type karst bauxite deposits; however, their formation mechanisms and critical raw material potential remain ambiguous. This study combines mineralogical and geochemical analyses to explore (1) the formation of authigenic minerals, (2) the role of microbial organic processes in Fe cycling, and (3) the assessment of their critical raw materials potential. Mineralogical analyses of the Late Cretaceous Daresard and Middle–Late Permian Yakshawa bauxites reveal distinct horizons reflecting their genetic conditions: Yakshawa exhibits a vertical weathering sequence (clay-rich base → ferruginous oolites → nodular massive bauxite → bleached cap), while Daresard shows karst-controlled profiles (breccia → oolitic-pisolitic ore → deferrified boehmite). Authigenic illite forms via isochemical reactions involving kaolinite and K-feldspar dissolution. Scanning electron microscopy evidence demonstrates illite replacing kaolinite with burial depth enhancing crystallinity. Diaspore forms through both gibbsite transformation and direct precipitation from aluminum-rich solutions under surface conditions in reducing microbial karst environments, typically associated with pyrite, anatase, and fluorocarbonates under neutral–weakly alkaline conditions. Redox-controlled Fe-Al fractionation governs bauxite horizon development: (1) microbial sulfate reduction facilitates Fe3⁺ → Fe2⁺ reduction under anoxic conditions, forming Fe-rich horizons, while (2) oxidative weathering (↑Eh, ↓moisture) promotes Al-hydroxide/clay enrichment in upper profiles, evidenced by progressive total organic carbon depletion (0.57 → 0.08%). This biotic–abiotic coupling ultimately generates stratified, high-grade bauxite. Finally, both the Yakshawa and Daresard karst bauxite ores are enriched in critical raw materials. It is worth noting that the overall enrichment appears to be mostly driven by the processes that led to the formation of the ores and not by the chemical features of the parent rocks. Divergent bauxitization pathways and early diagenetic processes—controlled by paleoclimatic fluctuations, redox shifts, and organic matter decay—govern critical raw material distributions, unlike typical Mediterranean-type deposits where parent rock composition dominates critical raw material partitioning. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

22 pages, 18204 KB  
Article
Late Paleozoic–Mesozoic Tectonic Evolution of the Mudanjiang Ocean: Constraints from the Zircon U-Pb and Ar-Ar Chronology of the Heilongjiang Complex, NE China
by Jianxin Xu, Peiyuan Hu, Wendong Wang, Hongyu Guo and Xin Zhang
Minerals 2025, 15(5), 517; https://doi.org/10.3390/min15050517 - 14 May 2025
Viewed by 876
Abstract
The Heilongjiang Complex provides a crucial geological record of the evolutionary history of the Mudanjiang Ocean, making it significant for understanding the accretion process between the Jiamusi Block and the Songliao Block. In this study, we analyzed samples from the Heilongjiang Complex in [...] Read more.
The Heilongjiang Complex provides a crucial geological record of the evolutionary history of the Mudanjiang Ocean, making it significant for understanding the accretion process between the Jiamusi Block and the Songliao Block. In this study, we analyzed samples from the Heilongjiang Complex in the Huanan region using zircon U-Pb and 40Ar/39Ar isotopic dating. The LA-ICP-MS U-Pb dating results show that the deposition time of the mica quartz schist is Late Triassic (237–207 Ma), while the protolith age of the amphibolite is Middle Triassic (245.5 ± 1.2 Ma). Detrital zircon ages from the mica quartz schist reveal four groups: 155–229 Ma, 237–296 Ma, 485–556 Ma, and 585–2238 Ma. The provenances are related to the magmatic and metamorphic activities at the junction of the Jiamusi Block and Songliao Block. 40Ar/39Ar isotopic dating yielded a plateau age of 183.40 ± 1.83 Ma for phengite in the mica quartz schist, with the metamorphic ages obtained from zircon U-Pb dating. We identify three major metamorphic events in the Heilongjiang Complex: (1) ~229 Ma, marking the earliest tectonic thermal disturbance in the complex; (2) 207–202 Ma, corresponding to the metamorphic event related to the collision between the Jiamusi Block and Songliao Block; and (3) ~183 Ma, indicating the closure of the Mudanjiang Ocean. Integrating these new findings with the results of previous research on magmatism and metamorphism, we reconstruct the tectonic evolution of the Mudanjiang Ocean from the Late Paleozoic to the Mesozoic. During the Early Permian, the Mudanjiang Ocean had already opened. Between the Middle Permian and Middle Triassic, bidirectional subduction occurred. In the Late Triassic, the Mudanjiang Ocean entered a subduction dormancy period. By the Early to Middle Jurassic, the Mudanjiang Ocean closed due to continental collision, leading to the final positioning of the Heilongjiang Complex. Full article
Show Figures

Figure 1

19 pages, 4764 KB  
Article
Tectonic Evolution of the Hainan Island, South China: Geochronological and Geochemical Constraints from Late Permian to Early Triassic Basalts
by Jieting Ouyang, Guoyu Chen, Liya Yang, Wenqian Lu and Yun Zhou
Minerals 2025, 15(3), 293; https://doi.org/10.3390/min15030293 - 13 Mar 2025
Cited by 1 | Viewed by 1184
Abstract
The tectonic evolution of Hainan Island during the Late Permian–Early Triassic period is still unclear. This study identified two types of basalts on the island and presented detailed geochronology, whole-rock geochemistry, and Hf isotope data of the Late Permian–Early Triassic basalts. U-Pb dating [...] Read more.
The tectonic evolution of Hainan Island during the Late Permian–Early Triassic period is still unclear. This study identified two types of basalts on the island and presented detailed geochronology, whole-rock geochemistry, and Hf isotope data of the Late Permian–Early Triassic basalts. U-Pb dating results indicated that baddeleyites and zircons of one sample from Group 1 basalts had formation ages of 256 ± 3 Ma and 255 ± 3 Ma, respectively, and two samples from Group 2 gave formation ages of 241 ± 2 Ma and 240 ± 3 Ma, respectively. Both groups are characterized by negative anomalies of Nb, Ta, and Ti, and enrichment in Ba, Th, U, and K. Group 1 belongs to sub-alkaline basalt and exhibited SiO2 contents ranging from 50.50% to 51.05%, with ΣREE concentration of 136–148 ppm. Hf isotope analysis showed that the εHf(t) values of baddeleyites and zircons were −10.56 to −4.70 and −14.94 to −6.95, respectively. Group 2 belongs to alkaline basalt and had a higher SiO2 content of 52.48%–55.49% and ΣREE concentration of 168–298 ppm. They showed more depleted Hf isotopic composition with εHf(t) values ranging from −2.82 to +4.74. These data indicate that the source area of Group 1 was an enriched mantle, likely derived from partial melting of spinel lherzolite mantle, and was modified by subduction-derived fluids. Group 2 was derived from depleted mantle, most likely originating from partial melting of garnet + spinel lherzolite mantle. They were contaminated by crustal materials and metasomatized by subduction-derived fluids with a certain degree of fractional crystallization. Comprehensive analysis suggests that Group 1 samples likely formed in an island arc tectonic setting, while Group 2 formed in a continental intraplate extensional (or initial rift) tectonic setting. Their formation was mainly controlled by the Paleo-Tethys tectonic domain. Group 1 basalts implied that subduction of the Paleo-Tethys oceanic crust lasted at least in the late Permian (ca. 255 Ma). Group 2 basalts revealed that the intra-plate extensional (or initial rift) stage occurred in the middle Triassic (ca. 240 Ma). Full article
Show Figures

Figure 1

22 pages, 10150 KB  
Review
A Review of Carboniferous-Triassic Tectonic-Magmatic Evolution of Luang Prabang–Loei Metallogenic Belt in Laos and Thailand and Implications for Gold–Copper Mineralization
by Linnan Guo, Khin Zaw, Shusheng Liu, Yongfei Yang, Fei Nie, Songyang Wu, Meifeng Shi, Chunmei Huang, Xiangfei Zhang, Huimin Liang, Xiangting Zeng and Siwei Xu
Geosciences 2025, 15(2), 68; https://doi.org/10.3390/geosciences15020068 - 16 Feb 2025
Cited by 1 | Viewed by 2422
Abstract
The Luang Prabang (Laos)–Loei (Thailand) metallogenic belt is located on the northwestern margin of the Indochina Block. It is one of the most important gold–copper metallogenic belts in Southeast Asia. This region underwent tectonic and magmatic evolution in the late Paleozoic-Mesozoic period within [...] Read more.
The Luang Prabang (Laos)–Loei (Thailand) metallogenic belt is located on the northwestern margin of the Indochina Block. It is one of the most important gold–copper metallogenic belts in Southeast Asia. This region underwent tectonic and magmatic evolution in the late Paleozoic-Mesozoic period within the Paleo-Tethys realm, resulting in complex metallogenic processes. Consequently, epithermal Au-Ag, porphyry-skarn Au-Cu, and hydrothermal vein-type gold deposits were formed. However, the genetic type of the vein-type gold deposits is still not fully understood. The relationship between the three types of gold deposits and the regional tectonic evolution has not been summarized up until today. We summarize the previous mineralization characteristics and exploration data of commonly known deposits and combine them with new evidence and ore deposit insights from our recent studies on the source and evolution of ore-forming fluids in the region. We confirm that the hydrothermal vein-type gold deposits in the belt are typical orogenic gold deposits. Based on previous regional tectonic-magmatic-metallogenic studies, metallogenic characteristics, and temporal and spatial distribution of three types of typical gold–copper deposits in the belt, we synthesize and establish a regional metallogenic model related to the subduction-closure of the Paleo-Tethys Ocean and subsequent continental–continental collision process, resulting in the formation of epithermal Au-Ag during the late Permian-early Triassic subduction, porphyry-skarn Au-Cu in the early–middle Triassic period during the closure of the ocean, and orogenic Au during the late Triassic collision. Since there are few reports on the geochemical characteristics of gold–copper deposits and their related magmatic rocks, the potential for gold–copper mineralization and their links to the magmatic rocks in the belt still needs further study. Full article
(This article belongs to the Special Issue Zircon U-Pb Geochronology Applied to Tectonics and Ore Deposits)
Show Figures

Figure 1

21 pages, 8843 KB  
Article
Organic Geochemical Characteristics and Hydrocarbon Significance of the Permian System Around the Bogda Mountain, Junggar Basin, Northwest China
by Jiaquan Zhou, Chao Li, Ziyi Song and Xinlei Zhang
Sustainability 2025, 17(1), 347; https://doi.org/10.3390/su17010347 - 5 Jan 2025
Cited by 3 | Viewed by 1854
Abstract
Shale oil and gas resources have become an alternative energy source and are crucial in the field of sustainable oil and gas exploration. In the Junggar Basin, the Permian is not only the most significant source rock, but also an important field in [...] Read more.
Shale oil and gas resources have become an alternative energy source and are crucial in the field of sustainable oil and gas exploration. In the Junggar Basin, the Permian is not only the most significant source rock, but also an important field in shale oil and gas exploration. However, there are significant differences in the effectiveness of source rocks in different layers. During the Permian, the Bogda region effectively recorded the transition from marine environments in the Early Permian to terrestrial environments in the Late Permian, providing a viable opportunity for studying the Permian source rock of the Junggar Basin. We conducted an analysis of the total organic carbon (TOC), Rock-Eval pyrolysis, vitrinite reflectance (Ro), and biomarker compounds of Permian source rocks around the Bogda Mountain. The results indicate that the Lower Permian strata were primarily deposited in a moderately reducing marine environment, with the main organic matter sourced from planktonic organisms. These strata are currently in a high to over-mature stage, evaluated as medium-quality source rocks, and may have already generated and expelled substantial quantities of oil and gas, making the Lower Permian hydrocarbon resources within the basin a noteworthy target for deep condensate oil and gas exploration in adjacent depressions. The Middle Permian Wulabo and Jingjingzigou formations were deposited in a moderately oxidizing marine–continental transitional environment with significant terrestrial organic input. The kerogen type is predominantly Type III, and these formations are presently in the mature to over-mature stage with low organic abundance and poor hydrocarbon generation potential. The Middle Permian Lucaogou Formation was deposited in a moderately reducing saline lacustrine environment, with algae and planktonic organisms as the primary sources of organic matter. The kerogen types are mainly Type I and II1, and it is currently within the oil-generation window. It is characterized by high organic abundance and evaluated as good to excellent source rocks, possessing substantial potential for shale oil exploration. The Upper Permian Wutonggou Formation was primarily deposited in a highly oxidizing continental environment with significant terrestrial input. The primary organic source comprises higher plants, resulting in Type III kerogen. These strata exhibit low organic abundance, are currently in the immature to mature stage, and are evaluated as poor source rocks with limited exploration potential. The information presented in this paper has important theoretical significance and practical value for oil and gas exploration and development in the Junggar Basin. Full article
(This article belongs to the Topic Recent Advances in Diagenesis and Reservoir 3D Modeling)
(This article belongs to the Section Sustainability in Geographic Science)
Show Figures

Figure 1

14 pages, 7391 KB  
Article
The Role of the Emeishan Large Igneous Province in Hydrocarbon Formation in the Anyue Gas Field, Sichuan Basin, China
by Zhiyong Ni, Chuanqing Zhu, Huichun Liu, Chengyu Yang, Ganggang Shao, Wen Zhang and Bing Luo
Minerals 2024, 14(12), 1266; https://doi.org/10.3390/min14121266 (registering DOI) - 12 Dec 2024
Cited by 1 | Viewed by 1629
Abstract
This study investigates the impact of the Emeishan Large Igneous Province (ELIP) on hydrocarbon formation within the Anyue gas field in the Sichuan Basin. As a major Middle to Late Permian large igneous province, the ELIP hosted intense mantle plume activity that reshaped [...] Read more.
This study investigates the impact of the Emeishan Large Igneous Province (ELIP) on hydrocarbon formation within the Anyue gas field in the Sichuan Basin. As a major Middle to Late Permian large igneous province, the ELIP hosted intense mantle plume activity that reshaped regional tectonics and thermal structures, indirectly influencing hydrocarbon accumulation. This paper examines three primary factors in hydrocarbon evolution linked to the ELIP: its thermal influence, induced fluid activity, and role in hydrocarbon cracking. Data reveal that the thermal effects of the ELIP extend to the central Sichuan Basin, where an elevated paleogeothermal gradient has driven hydrocarbon evolution in the Anyue gas field. Petrographic characteristics, chronological data, fluid inclusion features, and C–O, S, and Pb isotopic signatures collectively indicate that around 260 Ma, a hydrothermal event occurred in the Sichuan Basin, closely aligned with a natural gas charging event. The combined effects of a heightened geothermal gradient and hydrothermal fluids (with temperatures up to 320 °C) suggest that paleo-oil reservoirs had already cracked into natural gas during the peak ELIP activity. Full article
(This article belongs to the Special Issue Volcanism and Oil–Gas Reservoirs—Geology and Geochemistry)
Show Figures

Figure 1

Back to TopTop