Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,391)

Search Parameters:
Keywords = Methane oxidation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 1087 KiB  
Review
After-Treatment Technologies for Emissions of Low-Carbon Fuel Internal Combustion Engines: Current Status and Prospects
by Najunzhe Jin, Wuqiang Long, Chunyang Xie and Hua Tian
Energies 2025, 18(15), 4063; https://doi.org/10.3390/en18154063 (registering DOI) - 31 Jul 2025
Viewed by 43
Abstract
In response to increasingly stringent emission regulations, low-carbon fuels have received significant attention as sustainable energy sources for internal combustion engines. This study investigates four representative low-carbon fuels, methane, methanol, hydrogen, and ammonia, by systematically summarizing their combustion characteristics and emission profiles, along [...] Read more.
In response to increasingly stringent emission regulations, low-carbon fuels have received significant attention as sustainable energy sources for internal combustion engines. This study investigates four representative low-carbon fuels, methane, methanol, hydrogen, and ammonia, by systematically summarizing their combustion characteristics and emission profiles, along with a review of existing after-treatment technologies tailored to each fuel type. For methane engines, unburned hydrocarbon (UHC) produced during low-temperature combustion exhibits poor oxidation reactivity, necessitating integration of oxidation strategies such as diesel oxidation catalyst (DOC), particulate oxidation catalyst (POC), ozone-assisted oxidation, and zoned catalyst coatings to improve purification efficiency. Methanol combustion under low-temperature conditions tends to produce formaldehyde and other UHCs. Due to the lack of dedicated after-treatment systems, pollutant control currently relies on general-purpose catalysts such as three-way catalyst (TWC), DOC, and POC. Although hydrogen combustion is carbon-free, its high combustion temperature often leads to elevated nitrogen oxide (NOx) emissions, requiring a combination of optimized hydrogen supply strategies and selective catalytic reduction (SCR)-based denitrification systems. Similarly, while ammonia offers carbon-free combustion and benefits from easier storage and transportation, its practical application is hindered by several challenges, including low ignitability, high toxicity, and notable NOx emissions compared to conventional fuels. Current exhaust treatment for ammonia-fueled engines primarily depends on SCR, selective catalytic reduction-coated diesel particulate filter (SDPF). Emerging NOx purification technologies, such as integrated NOx reduction via hydrogen or ammonia fuel utilization, still face challenges of stability and narrow effective temperatures. Full article
(This article belongs to the Special Issue Engine Combustion Characteristics, Performance, and Emission)
Show Figures

Figure 1

17 pages, 4077 KiB  
Article
The Impact of Sm Promoter on the Catalytic Performance of Ni/Al2O3-SiO2 in Methane Partial Oxidation for Enhanced H2 Production
by Salwa B. Alreshaidan, Rasha S. A. Alanazi, Omalsad H. Odhah, Ahmed A. Ibrahim, Fekri Abdulraqeb Ahmed Ali, Naif Alarifi, Khaled M. Banabdwin, Sivalingam Ramesh and Ahmed S. Al-Fatesh
Catalysts 2025, 15(8), 721; https://doi.org/10.3390/catal15080721 (registering DOI) - 29 Jul 2025
Viewed by 241
Abstract
This study investigates the effects of samarium (Sm) promotion on the catalytic activity of 5 weight percent Ni catalysts for partial oxidation of methane (POM)-based hydrogen production supported on a Si-Al mixed oxide (10SiO2+90Al2O3) system. Several 5% [...] Read more.
This study investigates the effects of samarium (Sm) promotion on the catalytic activity of 5 weight percent Ni catalysts for partial oxidation of methane (POM)-based hydrogen production supported on a Si-Al mixed oxide (10SiO2+90Al2O3) system. Several 5% Ni-based catalysts supported on silica–alumina was used to test the POM at 600 °C. Sm additions ranged from 0 to 2 wt.%. Impregnation was used to create these catalysts, which were then calcined at 500 °C and examined using BET, H2-TPR, XRD, FTIR, TEM, Raman spectroscopy, and TGA methods. Methane conversion (57.85%) and hydrogen yield (56.89%) were greatly increased with an ideal Sm loading of 1 wt.%, indicating increased catalytic activity and stability. According to catalytic tests, 1 wt.% Sm produced high CH4 conversion and H2 production, as well as enhanced stability and resistance to carbon deposition. Nitrogen physisorption demonstrated a progressive decrease in pore volume and surface area with the addition of Sm, while maintaining mesoporosity. At moderate Sm loadings, H2-TPR and XRD analyses showed changes in crystallinity and increased NiO reducibility. Sm incorporation into the support and its impact on the ordering of carbon species were indicated by FTIR and Raman spectra. The optimal conditions to maximize H2 yield were successfully identified through optimization of the best catalyst, and there was good agreement between the theoretical predictions (87.563%) and actual results (88.39%). This displays how successfully the optimization approach achieves the intended outcome. Overall, this study demonstrates that the performance and durability of Ni-based catalysts for generating syngas through POM are greatly enhanced by the addition of a moderate amount of Sm, particularly 1 wt.%. Full article
(This article belongs to the Section Industrial Catalysis)
Show Figures

Figure 1

24 pages, 5059 KiB  
Article
Effects of Graphene-Based Nanomaterials on Anaerobic Digestion of Thermally Hydrolyzed Municipal Sewage Sludge
by Luiza Usevičiūtė, Tomas Januševičius, Vaidotas Danila and Mantas Pranskevičius
Materials 2025, 18(15), 3561; https://doi.org/10.3390/ma18153561 - 29 Jul 2025
Viewed by 172
Abstract
In this study, the effects of graphene-based nanomaterials—specifically graphene nanoplatelets (GNPs) and graphene oxide (GO) nanosheets—on methane (CH4) production during anaerobic digestion (AD) of thermally hydrolyzed sewage sludge were investigated. Anaerobic digestion was carried out over a 40-day period under mesophilic [...] Read more.
In this study, the effects of graphene-based nanomaterials—specifically graphene nanoplatelets (GNPs) and graphene oxide (GO) nanosheets—on methane (CH4) production during anaerobic digestion (AD) of thermally hydrolyzed sewage sludge were investigated. Anaerobic digestion was carried out over a 40-day period under mesophilic conditions in batch digesters with a volume of 2.65 L. The influence of various dosages of GNPs and GO nanosheets on methane yields was assessed, including a comparison between GNPs with different specific surface areas (320 m2/g and 530 m2/g). The highest CH4 yield (194 mL/g-VSadded) was observed with a GNP dosage of 5 mg/g-TS and a surface area of 530 m2/g, showing an increase of 3.08% compared to the control. This treatment group had the greatest positive effect also on the degradation of organic matter, with total solids (TS) and volatile solids (VS) removal reaching 34.35% and 44.18%, respectively. However, the GO dosages that significantly decreased cumulative CH4 production were determined to be 10–15 mg/g-TS. Graphene oxide at dosages of 10 and 15 mg/g-TS reduced specific cumulative CH4 yields by 4.03% and 5.85%, respectively, compared to the control, indicating CH4 yield inhibition. This lab-scale study highlights the potential for integrating GNPs into full-scale, continuously operated wastewater treatment anaerobic digesters for long-term use in future applications. Full article
Show Figures

Figure 1

19 pages, 11455 KiB  
Article
Characterizing Tracer Flux Ratio Methods for Methane Emission Quantification Using Small Unmanned Aerial System
by Ezekiel Alaba, Bryan Rainwater, Ethan Emerson, Ezra Levin, Michael Moy, Ryan Brouwer and Daniel Zimmerle
Methane 2025, 4(3), 18; https://doi.org/10.3390/methane4030018 - 29 Jul 2025
Viewed by 116
Abstract
Accurate methane emission estimates are essential for climate policy, yet current field methods often struggle with spatial constraints and source complexity. Ground-based mobile approaches frequently miss key plume features, introducing bias and uncertainty in emission rate estimates. This study addresses these limitations by [...] Read more.
Accurate methane emission estimates are essential for climate policy, yet current field methods often struggle with spatial constraints and source complexity. Ground-based mobile approaches frequently miss key plume features, introducing bias and uncertainty in emission rate estimates. This study addresses these limitations by using small unmanned aerial systems equipped with precision gas sensors to measure methane alongside co-released tracers. We tested whether arc-shaped flight paths and alternative ratio estimation methods could improve the accuracy of tracer-based emission quantification under real-world constraints. Controlled releases using ethane and nitrous oxide tracers showed that (1) arc flights provided stronger plume capture and higher correlation between methane and tracer concentrations than traditional flight paths; (2) the cumulative sum method yielded the lowest relative error (as low as 3.3%) under ideal mixing conditions; and (3) the arc flight pattern yielded the lowest relative error and uncertainty across all experimental configurations, demonstrating its robustness for quantifying methane emissions from downwind plume measurements. These findings demonstrate a practical and scalable approach to reducing uncertainty in methane quantification. The method is well-suited for challenging environments and lays the groundwork for future applications at the facility scale. Full article
Show Figures

Figure 1

24 pages, 3204 KiB  
Article
Host Shaping Associated Microbiota in Hydrothermal Vent Snails from the Indian Ocean Ridge
by Xiang Zeng, Jianwei Chen, Guilin Liu, Yadong Zhou, Liping Wang, Yaolei Zhang, Shanshan Liu and Zongze Shao
Biology 2025, 14(8), 954; https://doi.org/10.3390/biology14080954 - 29 Jul 2025
Viewed by 158
Abstract
Snails at hydrothermal vents rely on symbiotic bacteria for nutrition; however, the specifics of these associations in adapting to such extreme environments remain underexplored. This study investigated the community structure and metabolic potential of bacteria associated with two Indian Ocean vent snails, Chrysomallon [...] Read more.
Snails at hydrothermal vents rely on symbiotic bacteria for nutrition; however, the specifics of these associations in adapting to such extreme environments remain underexplored. This study investigated the community structure and metabolic potential of bacteria associated with two Indian Ocean vent snails, Chrysomallon squamiferum and Gigantopelta aegis. Using microscopic, phylogenetic, and metagenomic analyses, this study examines bacterial communities inhabiting the foot and gland tissues of these snails. G. aegis exhibited exceptionally low bacterial diversity (Shannon index 0.14–0.18), primarily Gammaproteobacteria (99.9%), including chemosynthetic sulfur-oxidizing Chromatiales using Calvin–Benson–Bassham cycle and methane-oxidizing Methylococcales in the glands. C. squamiferum hosted significantly more diverse symbionts (Shannon indices 1.32–4.60). Its black variety scales were dominated by Campylobacterota (67.01–80.98%), such as Sulfurovum, which perform sulfur/hydrogen oxidation via the reductive tricarboxylic acid cycle, with both Campylobacterota and Gammaproteobacteria prevalent in the glands. The white-scaled variety of C. squamiferum had less Campylobacterota but a higher diversity of heterotrophic bacteria, including Delta-/Alpha-Proteobacteria, Bacteroidetes, and Firmicutes (classified as Desulfobacterota, Pseudomomonadota, Bacteroidota, and Bacillota in GTDB taxonomy). In C. squamiferum, Gammaproteobacteria, including Chromatiales, Thiotrichales, and a novel order “Endothiobacterales,” were chemosynthetic, capable of oxidizing sulfur, hydrogen, or iron, and utilizing the Calvin–Benson–Bassham cycle for carbon fixation. Heterotrophic Delta- and Alpha-Proteobacteria, Bacteroidetes, and Firmicutes potentially utilize organic matter from protein, starch, collagen, amino acids, thereby contributing to the holobiont community and host nutrition accessibility. The results indicate that host species and intra-species variation, rather than the immediate habitat, might shape the symbiotic microbial communities, crucial for the snails’ adaptation to vent ecosystems. Full article
Show Figures

Figure 1

11 pages, 270 KiB  
Article
Comparison of Contemporary Grazing Cattle and Bison Greenhouse Gas Emissions in the Southern Great Plains
by Maria De Bernardi, Carlee M. Salisbury, Haley E. Larson, Matthew R. Beck and Logan R. Thompson
Ruminants 2025, 5(3), 34; https://doi.org/10.3390/ruminants5030034 - 28 Jul 2025
Viewed by 242
Abstract
The objective of this analysis was to compare the greenhouse gas (GHG) emissions from contemporary grazing cattle production with bison grazing, both modern and historical. The data sets used in this analysis were derived from existing research and conservation properties located outside of [...] Read more.
The objective of this analysis was to compare the greenhouse gas (GHG) emissions from contemporary grazing cattle production with bison grazing, both modern and historical. The data sets used in this analysis were derived from existing research and conservation properties located outside of Manhattan, KS (USA), which are home to stocker cattle, cow–calf production (CCS), and grazing bison. For stocker cattle, 10 years of animal production data (2007–2016) from season-long stocking (SLS, grazing 156 d) and intensive early stocking systems (IES; 76 grazing d and 2× stocking density) were used for GHG calculations. Enteric CH4, manure CH4, and direct nitrous oxide emissions were estimated using the IPCC tier 2 methodology. Historic bison (HGB) enteric CH4 estimates were calculated using a stocking density of 0.15 ha/animal and assuming that only 13% of grassland was used by bison each year. Within contemporary systems, IES had the lowest emissions (463.3 kg CO2-eq./ha/yr), while SLS, CCS, and MGB had the highest estimates (494.7, 493.9, and 595.9 kg CO2-eq./ha/yr, respectively). HGB had the lowest estimated annual emissions at 295.7 kg CO2-eq./ha/yr. These results imply that the historic grazing baseline of this grassland system is lower but similar to that of contemporary grazing cattle in the Great Plains region. Full article
Show Figures

Figure 1

19 pages, 2642 KiB  
Article
Calculation of Greenhouse Gas Emissions from Tourist Vehicles Using Mathematical Methods: A Case Study in Altai Tavan Bogd National Park
by Yerbakhyt Badyelgajy, Yerlan Doszhanov, Bauyrzhan Kapsalyamov, Gulzhaina Onerkhan, Aitugan Sabitov, Arman Zhumazhanov and Ospan Doszhanov
Sustainability 2025, 17(15), 6702; https://doi.org/10.3390/su17156702 - 23 Jul 2025
Viewed by 322
Abstract
The transportation sector significantly contributes to greenhouse gas (GHG) emissions and remains a key research focus on emission quantification and mitigation. Although numerous models exist for estimating vehicle-based emissions, most lack accuracy at regional scales, particularly in remote or underdeveloped areas, including backcountry [...] Read more.
The transportation sector significantly contributes to greenhouse gas (GHG) emissions and remains a key research focus on emission quantification and mitigation. Although numerous models exist for estimating vehicle-based emissions, most lack accuracy at regional scales, particularly in remote or underdeveloped areas, including backcountry national parks and mountainous regions lacking basic infrastructure. This study addresses that gap by developing and applying a terrain-adjusted, segment-based methodology to estimate GHG emissions from tourist vehicles in Altai Tavan Bogd National Park, one of Mongolia’s most remote protected areas. The proposed method uses Tier 1 IPCC emission factors but incorporates field-segmented route analysis, vehicle categorization, and terrain-based fuel adjustments to achieve a spatially disaggregated Tier 1 approach. Results show that carbon dioxide (CO2) emissions increased from 118.7 tons in 2018 to 2239 tons in 2024. Tourist vehicle entries increased from 712 in 2018 to 13,192 in 2024, with 99.1% of entries occurring between May and October. Over the same period, cumulative methane (CH4) and nitrous oxide (N2O) emissions were estimated at 300.9 kg and 45.75 kg, respectively. This modular approach is especially suitable for high-altitude, infrastructure-limited regions where real-time emissions monitoring is not feasible. By integrating localized travel patterns with global frameworks such as the IPCC 2006 Guidelines, this model enables more precise and context-sensitive GHG estimates from vehicles in national parks and similar environments. Full article
Show Figures

Figure 1

9 pages, 798 KiB  
Article
Mechanistic Behavior of Basicity of Bimetallic Ni/ZrO2 Mixed Oxides for Stable Oxythermal Reforming of CH4 with CO2
by Hyuk Jong Bong, Nagireddy Gari Subba Reddy and A. Geetha Bhavani
Catalysts 2025, 15(8), 700; https://doi.org/10.3390/catal15080700 - 22 Jul 2025
Viewed by 324
Abstract
The mixed oxides of Ni/ZrO2, Ni-Ca/ZrO2, Ni-Ba/ZrO2, and Ni-Ba-Ca/ZrO2 were prepared using the co-precipitation method at a pH of precisely 8.3. The catalytic mixed oxides of Ni/ZrO2, Ni-Ca/ZrO2, Ni-Ba/ZrO2, and [...] Read more.
The mixed oxides of Ni/ZrO2, Ni-Ca/ZrO2, Ni-Ba/ZrO2, and Ni-Ba-Ca/ZrO2 were prepared using the co-precipitation method at a pH of precisely 8.3. The catalytic mixed oxides of Ni/ZrO2, Ni-Ca/ZrO2, Ni-Ba/ZrO2, and Ni-Ba-Ca/ZrO2 were characterized using x-ray diffraction XRD, Brunauer Emmett Teller (BET), scanning electron microscopy (SEM), and metal dispersion for the screening of phase purity, surface area, and morphology. The mixed oxides are subjected to CO2-TPD to quantify the basicity of every composition. The mixed oxide catalysts of Ni/ZrO2, Ni-Ca/ZrO2, Ni-Ba/ZrO2, and Ni-Ba-Ca/ZrO2 were screened for oxythermal reforming of CH4 with CO2 in a fixed bed tubular reactor at 800 °C. Among all catalysts, the Ba- and Ca- loaded Ni-Ba-Ca/ZrO2 showed high conversion by the decomposition of methane and CO2 disproportionation throughout the time on stream of 29 h. The high activity with stability led to less coke formation over Ni-Ba-Ca/ZrO2 over the surface. The stable syngas production with an active catalyst bed contributed to the improved bimetallic synergy. The high surface basicity of Ni-Ba-Ca/ZrO2 may keep actively gasifying the formed soot and allow for further stable reforming reactions. Full article
Show Figures

Figure 1

16 pages, 2549 KiB  
Article
An Engine Load Monitoring Approach for Quantifying Yearly Methane Slip Emissions from an LNG-Powered RoPax Vessel
by Benoit Sagot, Raphael Defossez, Ridha Mahi, Audrey Villot and Aurélie Joubert
J. Mar. Sci. Eng. 2025, 13(7), 1379; https://doi.org/10.3390/jmse13071379 - 21 Jul 2025
Viewed by 453
Abstract
Liquefied natural gas (LNG) is increasingly used as a marine fuel due to its capacity to significantly reduce emissions of particulate matter, sulfur oxides (SOx), and nitrogen oxides (NOx), compared to conventional fuels. In addition, LNG combustion produces less [...] Read more.
Liquefied natural gas (LNG) is increasingly used as a marine fuel due to its capacity to significantly reduce emissions of particulate matter, sulfur oxides (SOx), and nitrogen oxides (NOx), compared to conventional fuels. In addition, LNG combustion produces less carbon dioxide (CO2) than conventional marine fuels, and the use of non-fossil LNG offers further potential for reducing greenhouse gas emissions. However, this benefit can be partially offset by methane slip—the release of unburned methane in engine exhaust—which has a much higher global warming potential than CO2. This study presents an experimental evaluation of methane emissions from a RoPax vessel powered by low-pressure dual-fuel four-stroke engines with a direct mechanical propulsion system. Methane slip was measured directly during onboard testing and combined with a year-long analysis of engine operation using an Engine Load Monitoring (ELM) method. The yearly average methane slip coefficient (Cslip) obtained was 1.57%, slightly lower than values reported in previous studies on cruise ships (1.7%), and significantly lower than the default values specified by the FuelEU (3.1%) Maritime regulation and IMO (3.5%) LCA guidelines. This result reflects the ship’s operational profile, characterized by long crossings at high and stable engine loads. This study provides results that could support more representative emission assessments and can contribute to ongoing regulatory discussions. Full article
(This article belongs to the Special Issue Performance and Emission Characteristics of Marine Engines)
Show Figures

Figure 1

7 pages, 4461 KiB  
Data Descriptor
Dataset on Environmental Parameters and Greenhouse Gases in Port and Harbor Seawaters of Jeju Island, Korea
by Jae-Hyun Lim, Ju-Hyoung Kim, Hyo-Ryeon Kim, Seo-Young Kim and Il-Nam Kim
Data 2025, 10(7), 118; https://doi.org/10.3390/data10070118 - 19 Jul 2025
Viewed by 301
Abstract
This dataset presents environmental observations collected in August 2021 from 18 port and harbor sites located around Jeju Island, Korea. It includes physical, biogeochemical, and greenhouse gas (GHG) variables measured in surface seawater, such as temperature, salinity, dissolved oxygen, nutrients, chlorophyll-a, [...] Read more.
This dataset presents environmental observations collected in August 2021 from 18 port and harbor sites located around Jeju Island, Korea. It includes physical, biogeochemical, and greenhouse gas (GHG) variables measured in surface seawater, such as temperature, salinity, dissolved oxygen, nutrients, chlorophyll-a, pH, total alkalinity, and dissolved inorganic carbon. Concentrations and air–sea fluxes of nitrous oxide (N2O), methane (CH4), and carbon dioxide (CO2) were also quantified. All measurements were conducted following standardized analytical protocols, and certified reference materials and duplicate analyses were used to ensure data accuracy. Consequently, the dataset revealed that elevated nutrient accumulation in port and harbor waters and GHG concentrations tended to be higher at sites with stronger land-based influence. During August 2021, most sites functioned as sources of N2O, CH4, and CO2 to the atmosphere. This integrated dataset offers valuable insights into the influence of anthropogenic and hydrological factors on coastal GHG dynamics and provides a foundation for future studies across diverse semi-enclosed marine systems. Full article
Show Figures

Figure 1

24 pages, 4619 KiB  
Article
Modeling and Optimization of Natural Gas Non-Catalytic Partial Oxidation with Hierarchical-Integrated Mechanism
by Wanqiu Yu, Haotian Ye, Wei Liu, Qiyao Wang and Hongguang Dong
Processes 2025, 13(7), 2287; https://doi.org/10.3390/pr13072287 - 17 Jul 2025
Viewed by 395
Abstract
Non-catalytic partial oxidation (POX) of natural gas is gaining importance in low-carbon energy systems for methane conversion to acetylene, syngas, and olefins. However, uncontrolled polycyclic aromatic hydrocarbons (PAHs) and soot formation remain challenges. This work developed a Hierarchical-Integrated Mechanism (HI-Mechanism) by constructing detailed [...] Read more.
Non-catalytic partial oxidation (POX) of natural gas is gaining importance in low-carbon energy systems for methane conversion to acetylene, syngas, and olefins. However, uncontrolled polycyclic aromatic hydrocarbons (PAHs) and soot formation remain challenges. This work developed a Hierarchical-Integrated Mechanism (HI-Mechanism) by constructing detailed C0-C6, C5-C15 and C16 mechanisms, and then hierarchically simplifying C5-C15 subsystems, ultimately integrating them into a final mechanism with 397 species and 5135 reactions. The HI-Mechanism accurately predicted shock tube ignition delays and major species concentrations. Microkinetic analyses, including production rates and reaction sensitivity, revealed key pathways and enabled reliable product distribution prediction. The HI-Mechanism provides theoretical guidance for optimizing POX of natural gas processes and can be extended to complex systems like heavy oil cracking, supporting clean energy technology development. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Graphical abstract

23 pages, 2618 KiB  
Article
The Impact of Rice–Frog Co-Cultivation on Greenhouse Gas Emissions of Reclaimed Paddy Fields
by Haochen Huang, Zhigang Wang, Yunshuang Ma, Piao Zhu, Xinhao Zhang, Hao Chen, Han Li and Rongquan Zheng
Biology 2025, 14(7), 861; https://doi.org/10.3390/biology14070861 - 16 Jul 2025
Viewed by 299
Abstract
Reclaimed fields have a low soil fertility and low productivity compared to conventional arable land, necessitating research on productivity enhancement. The rice–frog co-culture model is an ecologically intensive practice that combines biodiversity objectives with agricultural production needs, offering high ecological and economic value. [...] Read more.
Reclaimed fields have a low soil fertility and low productivity compared to conventional arable land, necessitating research on productivity enhancement. The rice–frog co-culture model is an ecologically intensive practice that combines biodiversity objectives with agricultural production needs, offering high ecological and economic value. However, there is a lack of research on this model that has focused on factors other than soil nutrient levels. The present study evaluated the rice–frog co-culture model in a reclaimed paddy field across three experimental plots with varying frog stocking densities: a rice monoculture (CG), low-density co-culture (LRF), and high-density co-culture (HRF). We investigated the effects of the frog density on greenhouse gas emissions throughout the rice growth. The rice–frog co-culture model significantly reduced methane (CH4) emissions, with fluxes highest in the CG plot, followed by the LRF and then HRF plots. This reduction was achieved by altering the soil pH, the cation exchange capacity, the mcrA gene abundance, and the mcrA/pmoA gene abundance ratio. However, there was a contrasting nitrous oxide (N2O) emission pattern. The co-culture model actually increased N2O emissions, with fluxes being highest in the HRF plots, followed by the LRF and then CG plots. The correlation analysis identified the soil nosZ gene abundance, redox potential, urease activity, nirS gene abundance, and ratio of the combined nirK and nirS abundance to the nosZ abundance as key factors associated with N2O emissions. While the co-cultivation model increased N2O emissions, it also significantly reduced CH4 emissions. Overall, the rice–frog co-culture model, especially at a high density, offers a favorable sustainable agricultural production model. Full article
Show Figures

Figure 1

26 pages, 9003 KiB  
Article
A Pilot-Scale Gasifier Freeboard Equipped with Catalytic Filter Candles for Particulate Abatement and Tar Conversion: 3D-CFD Simulations and Experimental Tests
by Alessandra Tacconi, Pier Ugo Foscolo, Sergio Rapagnà, Andrea Di Carlo and Alessandro Antonio Papa
Processes 2025, 13(7), 2233; https://doi.org/10.3390/pr13072233 - 12 Jul 2025
Viewed by 428
Abstract
This work deals with the catalytic steam reforming of raw syngas to increase the efficiency of coupling gasification with downstream processes (such as fuel cells and catalytic chemical syntheses) by producing high-temperature, ready-to-use syngas without cooling it for cleaning and conditioning. Such a [...] Read more.
This work deals with the catalytic steam reforming of raw syngas to increase the efficiency of coupling gasification with downstream processes (such as fuel cells and catalytic chemical syntheses) by producing high-temperature, ready-to-use syngas without cooling it for cleaning and conditioning. Such a combination is considered a key point for the future exploitation of syngas produced by steam gasification of biogenic solid fuel. The design and construction of an integrated gasification and gas conditioning system were proposed approximately 20 years ago; however, they still require further in-depth study for practical applications. A 3D model of the freeboard of a pilot-scale, fluidized bed gasification plant equipped with catalytic ceramic candles was used to investigate the optimal operating conditions for in situ syngas upgrading. The global kinetic parameters for methane and tar reforming reactions were determined experimentally. A fluidized bed gasification reactor (~5 kWth) equipped with a 45 cm long segment of a fully commercial filter candle in its freeboard was used for a series of tests at different temperatures. Using a computational fluid dynamics (CFD) description, the relevant parameters for apparent kinetic equations were obtained in the frame of a first-order reaction model to describe the steam reforming of key tar species. As a further step, a CFD model of the freeboard of a 100 kWth gasification plant, equipped with six catalytic ceramic candles, was developed in ANSYS FLUENT®. The composition of the syngas input into the gasifier freeboard was obtained from experimental results based on the pilot-scale plant. Simulations showed tar catalytic conversions of 80% for toluene and 41% for naphthalene, still insufficient compared to the threshold limits required for operating solid oxide fuel cells (SOFCs). An overly low freeboard temperature level was identified as the bottleneck for enhancing gas catalytic conversions, so further simulations were performed by injecting an auxiliary stream of O2/steam (50/50 wt.%) through a series of nozzles at different heights. The best simulation results were obtained when the O2/steam stream was fed entirely at the bottom of the freeboard, achieving temperatures high enough to achieve a tar content below the safe operating conditions for SOFCs, with minimal loss of hydrogen content or LHV in the fuel gas. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

12 pages, 3006 KiB  
Article
A Comparative Study on Synthesizing SiC via Carbonization of Si (001) and Si (111) Substrates by Chemical Vapor Deposition
by Teodor Milenov, Ivalina Avramova, Vladimir Mehandziev, Ivan Zahariev, Georgi Avdeev, Daniela Karashanova, Biliana Georgieva, Blagoy Blagoev, Kiril Kirilov, Peter Rafailov, Stefan Kolev, Dimitar Dimov, Desislava Karaivanova, Dobromir Kalchevski, Dimitar Trifonov, Ivan Grozev and Valentin Popov
Materials 2025, 18(14), 3239; https://doi.org/10.3390/ma18143239 - 9 Jul 2025
Viewed by 255
Abstract
This work presents a comparative analysis of the results of silicon carbide synthesis through the carbonization of Si (001) and Si (111) substrates in the temperature range 1130–1140 °C. The synthesis involved chemical vapor deposition utilizing thermally stimulated methane reduction in a hydrogen [...] Read more.
This work presents a comparative analysis of the results of silicon carbide synthesis through the carbonization of Si (001) and Si (111) substrates in the temperature range 1130–1140 °C. The synthesis involved chemical vapor deposition utilizing thermally stimulated methane reduction in a hydrogen gas stream. The experiments employed an Oxford Nanofab Plasmalab System 100 apparatus on substrates from which the native oxide was removed according to established protocols. To minimize random experimental variations (e.g., deviations from set parameters), short synthesis durations of 3 and 5 min were analyzed. The resultant thin films underwent evaluations through several techniques, including X-ray photoelectron spectroscopy, X-ray diffractometry, optical emission spectroscopy with glow discharge, and transmission electron microscopy. A comparison and analysis were conducted between the results from both substrate orientations. Full article
Show Figures

Figure 1

32 pages, 1477 KiB  
Review
Photochemical Catalysts for Hydrocarbons and Biomass Derivates Reforming in Intensified Processes
by Mattia Boscherini and Francesco Miccio
Processes 2025, 13(7), 2150; https://doi.org/10.3390/pr13072150 - 6 Jul 2025
Viewed by 312
Abstract
Photocatalysts for applications in different sectors, e.g., civil and environmental, are already developed to a mature extent and allow, for example, the purification of gaseous and liquid streams or the self−cleaning surfaces. The application of photocatalysts in the industrial sector is, however, quite [...] Read more.
Photocatalysts for applications in different sectors, e.g., civil and environmental, are already developed to a mature extent and allow, for example, the purification of gaseous and liquid streams or the self−cleaning surfaces. The application of photocatalysts in the industrial sector is, however, quite limited. The review addresses the specific topic of the photocatalytic reforming of methane and biomass derivates. In this regard, recent advances in materials science are reported and discussed, in particular regarding doped and modified oxides (TiO2 and ZrO2) or non−oxidic ceramics. Concerning process integration, a comparison between traditional two−dimensional photoreactors and fluidized bed systems is proposed and design guidelines are drawn, with indications of the possible benefits. Photocatalytic fluidized beds appear more suitable for small− and medium−scale integrated processes of reforming, operating at lower temperatures than traditional ones for distributed hydrogen generation. Full article
(This article belongs to the Special Issue Mechanisms, Devices and Applications of Photocatalytic Processes)
Show Figures

Figure 1

Back to TopTop