Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (816)

Search Parameters:
Keywords = Mariner family

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1599 KiB  
Article
Differential Expression of Hsp100 Gene in Scrippsiella acuminata: Potential Involvement in Life Cycle Transition and Dormancy Maintenance
by Fengting Li, Lixia Shang, Hanying Zou, Chengxing Sun, Zhangxi Hu, Ying Zhong Tang and Yunyan Deng
Diversity 2025, 17(8), 519; https://doi.org/10.3390/d17080519 - 26 Jul 2025
Viewed by 193
Abstract
Protein degradation plays a fundamental role in maintaining protein homeostasis and ensures proper cellular function by regulating protein quality and quantity. Heat shock protein 100 (Hsp100), found in bacteria, plants, and fungi, is a unique chaperone family responsible for rescuing misfolded proteins from [...] Read more.
Protein degradation plays a fundamental role in maintaining protein homeostasis and ensures proper cellular function by regulating protein quality and quantity. Heat shock protein 100 (Hsp100), found in bacteria, plants, and fungi, is a unique chaperone family responsible for rescuing misfolded proteins from aggregated states in an ATP-dependent manner. To date, they are primarily known to mediate heat stress adaptation and enhance cellular survival under extreme conditions in higher plants and algae. Resting cyst formation in dinoflagellates is widely recognized as a response to adverse conditions, which offers an adaptive advantage to endure harsh environmental extremes that are unsuitable for vegetative cell growth and survival. In this study, based on a full-length cDNA sequence, we characterized an Hsp100 gene (SaHsp100) from the cosmopolitan bloom-forming dinoflagellate Scrippsiella acuminata, aiming to examine its life stage-specific expression patterns and preliminarily explore its potential functions. The qPCR results revealed that Hsp100 transcript levels were significantly elevated in newly formed resting cysts compared to vegetative cells and continued to increase during storage under simulated marine sediment conditions (darkness, low temperature, and anoxia). Parallel reaction monitoring (PRM)-based quantification further confirmed that Hsp100 protein levels were significantly higher in resting cysts than in vegetative cells and increased after three months of storage. These findings collectively highlighted the fundamental role of Hsp100 in the alteration of the life cycle and dormancy maintenance of S. acuminata, likely by enhancing stress adaptation and promoting cell survival through participation in proteostasis maintenance, particularly under natural sediment-like conditions that trigger severe abiotic stress. Our work deepens the current understanding of Hsp family members in dinoflagellates, paving the way for future investigations into their ecological relevance within this ecologically significant group. Full article
(This article belongs to the Section Marine Diversity)
Show Figures

Figure 1

30 pages, 2062 KiB  
Article
Building a DNA Reference for Madagascar’s Marine Fishes: Expanding the COI Barcode Library and Establishing the First 12S Dataset for eDNA Monitoring
by Jean Jubrice Anissa Volanandiana, Dominique Ponton, Eliot Ruiz, Andriamahazosoa Elisé Marcel Fiadanamiarinjato, Fabien Rieuvilleneuve, Daniel Raberinary, Adeline Collet, Faustinato Behivoke, Henitsoa Jaonalison, Sandra Ranaivomanana, Marc Leopold, Roddy Michel Randriatsara, Jovial Mbony, Jamal Mahafina, Aaron Hartmann, Gildas Todinanahary and Jean-Dominique Durand
Diversity 2025, 17(7), 495; https://doi.org/10.3390/d17070495 - 18 Jul 2025
Viewed by 476
Abstract
Madagascar harbors a rich marine biodiversity, yet detailed knowledge of its fish species remains limited. Of the 1689 species listed in 2018, only 22% had accessible cytochrome oxidase I (COI) sequences in public databases. In response to growing pressure on fishery resources, [...] Read more.
Madagascar harbors a rich marine biodiversity, yet detailed knowledge of its fish species remains limited. Of the 1689 species listed in 2018, only 22% had accessible cytochrome oxidase I (COI) sequences in public databases. In response to growing pressure on fishery resources, this study aims to strengthen biodiversity monitoring tools. Its objectives were to enrich the COI database for Malagasy marine fishes, create the first 12S reference library, and evaluate the taxonomic resolution of different 12S metabarcodes for eDNA analysis, namely MiFish, Teleo1, AcMDB, Ac12S, and 12SF1/R1. An integrated approach combining morphological, molecular, and phylogenetic analyses was applied for specimen identification of fish captured using various types of fishing gear in Toliara and Ranobe Bays from 2018 to 2023. The Malagasy COI database now includes 2146 sequences grouped into 502 Barcode Index Numbers (BINs) from 82 families, with 14 BINs newly added to BOLD (The Barcode of Life Data Systems), and 133 cryptic species. The 12S library comprises 524 sequences representing 446 species from 78 families. Together, the genetic datasets cover 514 species from 84 families, with the most diverse being Labridae, Apogonidae, Gobiidae, Pomacentridae, and Carangidae. However, the two markers show variable taxonomic resolution: 67 species belonging to 35 families were represented solely in the COI dataset, while 10 species from nine families were identified exclusively in the 12S dataset. For 319 species with complete 12S gene sequences associated with COI BINs (Barcode Index Numbers), 12S primer sets were used to evaluate the taxonomic resolution of five 12S metabarcodes. The MiFish marker proved to be the most effective, with an optimal similarity threshold of 98.5%. This study represents a major step forward in documenting and monitoring Madagascar’s marine biodiversity and provides a valuable genetic reference for future environmental DNA (eDNA) applications. Full article
(This article belongs to the Special Issue 2025 Feature Papers by Diversity’s Editorial Board Members)
Show Figures

Figure 1

17 pages, 3046 KiB  
Article
Therapeutic Use of Parerythrobacter sp. M20A3S10, a Marine Bacterium, Targeting Influenza Viruses and Flaviviruses
by Kyeong-Seo Moon, Ji-Young Chung, Hyeon Jeong Moon, Gun Lee, Chung-Do Lee, Su-Bin Jung, Hyo-Jin Kim, Jun-Gyu Park, Yeong-Bin Baek and Sang-Ik Park
Animals 2025, 15(14), 2125; https://doi.org/10.3390/ani15142125 - 18 Jul 2025
Viewed by 271
Abstract
Emerging RNA viruses such as influenza A virus (IAV), Zika virus (ZIKV), and dengue virus (DENV) continue to pose major challenges to animal and public health due to their high mutation rates, wide host ranges, and immune evasion strategies. In this study, we [...] Read more.
Emerging RNA viruses such as influenza A virus (IAV), Zika virus (ZIKV), and dengue virus (DENV) continue to pose major challenges to animal and public health due to their high mutation rates, wide host ranges, and immune evasion strategies. In this study, we evaluated the in vitro antiviral activity of a marine bacterial extract derived from Parerythrobacter sp. M20A3S10 against IAV (H1N1; H3N2), influenza B virus (IBV), ZIKV, and DENV2. The extract demonstrated broad-spectrum antiviral effects with favorable selectivity indices across multiple host-derived epithelial cell lines. Notably, post-infection treatment significantly suppressed viral replication, suggesting a host-modulating or replication-inhibiting mechanism. While the extract’s active components have yet to be identified, bacteria from the Erythrobacteraceae family are known producers of bioactive metabolites with potential antiviral properties. These findings provide preliminary insight into the potential of marine-derived bacterial compounds in veterinary antiviral development and highlight the need for further characterization and in vivo validation. This work contributes to the understanding of virus–host interactions and the exploration of novel therapeutic strategies targeting the pathogenesis and immune modulation of veterinary RNA viruses. Full article
(This article belongs to the Special Issue Pathogenesis, Immunology and Epidemiology of Veterinary Viruses)
Show Figures

Figure 1

11 pages, 1286 KiB  
Article
Evidence for Divergence of the Genus ‘Solwaraspora’ Within the Bacterial Family Micromonosporaceae
by Hailee I. Porter, Imraan Alas, Nyssa K. Krull, Doug R. Braun, Scott R. Rajski, Brian T. Murphy and Tim S. Bugni
Microorganisms 2025, 13(7), 1576; https://doi.org/10.3390/microorganisms13071576 - 4 Jul 2025
Viewed by 375
Abstract
The purpose of this study was to investigate the taxonomic and phylogenomic placement of the proposed genus ‘Solwaraspora’ within the context of other marine genera using a dual-omics approach. Initially, we isolated bacteria from marine tunicates, squirts, and sponges, which were [...] Read more.
The purpose of this study was to investigate the taxonomic and phylogenomic placement of the proposed genus ‘Solwaraspora’ within the context of other marine genera using a dual-omics approach. Initially, we isolated bacteria from marine tunicates, squirts, and sponges, which were morphologically similar to an emerging genus (identified as ‘Micromonospora_E’ by the GTDB-tk2 database using whole genome sequence data) by colony shape, size, and clustering pattern, but only found five strains in our dataset belonging to this distinction. Due to the minimally explored nature of this genus, we sought to identify more bacterial strains with similar morphology to MicromonosporaMicromonospora_E’ by whole genome sequencing (WGS). Within our collection, we noted 35 strains that met this criterion and extracted genomic information to perform WGS on these strains. With this information, we studied taxonomic and phylogenomic relationships among these organisms. Using the data gathered from WGS, we were able to identify an additional five strains labeled by the GTDB-tk2 database as MicromonosporaMicromonospora_E’, as well as construct phylogenomic trees to examine the evolutionary relationships between these strains. ANI values were calculated between strains from our dataset and type strains of Micromonospora and Plantactinospora as well as against an outgroup Streptomyces strain. No type strains are available for ‘Solwaraspora’. Using MALDI-TOF MS, we positively identified ‘Solwaraspora’, which was supported by the phylogenomic tree showing MicromonosporaMicromonospora_E’ (‘Solwaraspora’) in a distinct clade from Plantactinospora and Micromonospora. Additionally, we discovered gene cluster families (GCFs) in alignment with genera, as well as a large representation of biosynthetic gene clusters (BGCs) coming from the ‘Solwaraspora’ strains. These findings suggest significant potential to discover novel chemistry from ‘Solwaraspora’, adding to the importance of investigating this new genus of bacteria. Full article
(This article belongs to the Section Molecular Microbiology and Immunology)
Show Figures

Figure 1

15 pages, 1870 KiB  
Article
Transcriptome Analyses Reveal the Molecular Response of Juvenile Greater Amberjack (Seriola dumerili) to Marine Heatwaves
by Yali Tian, Liancheng Li, Hongzhao Long, Dongying Zhang, Chen Wang, Ruijuan Hao, Hang Li, Xiaoying Ru, Qiuxia Deng, Qin Hu, Yang Huang and Chunhua Zhu
Animals 2025, 15(13), 1871; https://doi.org/10.3390/ani15131871 - 24 Jun 2025
Viewed by 430
Abstract
Marine heatwaves (MHWs) have recently become more frequent, intense, and prolonged, posing significant threats to marine life and fisheries. In this study, transcriptomic analysis was employed to investigate the genes and pathways in Seriola dumerili that respond to MHW-induced stress at 28 °C [...] Read more.
Marine heatwaves (MHWs) have recently become more frequent, intense, and prolonged, posing significant threats to marine life and fisheries. In this study, transcriptomic analysis was employed to investigate the genes and pathways in Seriola dumerili that respond to MHW-induced stress at 28 °C (T28) and 32 °C (T32), using 24 °C (T24) as the control. Transcriptome sequencing revealed that 17 differentially expressed genes (DEGs) belonging to the heat shock protein (HSP) families—HSP30, HSP40, HSP70, and HSP90—were significantly upregulated under short-lasting MHW stress in the T24-4d vs. T32-4d comparison. Additionally, genes related to oxidative stress (e.g., protein disulfide isomerase family A member 6 [pdia6]), immune responses (e.g., interferon regulatory factor 5 [irf5]), and energy metabolism (e.g., hexokinase-1 [hk1]) were also identified. Enrichment analysis of DEGs in the T24-4d vs. T32-4d group revealed that S. dumerili exhibited adaptive responses to MHWs through the upregulation of HSPs and the activation of antioxidant, energy metabolism, and immune response pathways. However, in the T24-13d vs. T32-13d group, DEGs associated with these pathways were either not significantly expressed or were downregulated. These findings indicate that S. dumerili is unable to sustain its adaptive responses under repeated, intense MHW exposure, resulting in the disorder of its antioxidant defense system, immune suppression, and metabolic dysfunction. This study provides valuable insights into the molecular responses of S. dumerili to MHWs and supports the selection for thermal resistance in this species. Full article
(This article belongs to the Special Issue Omics in Economic Aquatic Animals)
Show Figures

Figure 1

27 pages, 3604 KiB  
Review
Bioactive Polyketides from Amphidinium spp.: An In-Depth Review of Biosynthesis, Applications, and Current Research Trends
by Noemi Russo, Giulia Quaini, Marcello Ziaco, Daniela Castiglia, Alessandra Ruggiero, Vincenzo D’Amelia, Concetta Di Napoli, Sergio Esposito, Angelo Fontana, Genoveffa Nuzzo and Simone Landi
Mar. Drugs 2025, 23(6), 255; https://doi.org/10.3390/md23060255 - 16 Jun 2025
Viewed by 824
Abstract
Polyketides (PKs) are a widespread class of secondary metabolites with recognised pharmacological properties. These molecules are abundantly produced in the marine environment, especially by dinoflagellate-photosynthetic organisms able to produce several PKs, including neurotoxins, cytotoxins, and immunomodulating agents. The biosynthesis of these compounds is [...] Read more.
Polyketides (PKs) are a widespread class of secondary metabolites with recognised pharmacological properties. These molecules are abundantly produced in the marine environment, especially by dinoflagellate-photosynthetic organisms able to produce several PKs, including neurotoxins, cytotoxins, and immunomodulating agents. The biosynthesis of these compounds is driven by a conserved enzymatic process involving polyketide synthase complexes. Different genera of dinoflagellates produce PKs. Among them, dinoflagellates of the genus Amphidinium are of particular interest due to its ability to produce the following two major families of PKs: amphidinolides and amphidinols. These compounds display remarkable biological activities, including anticancer, antimicrobial, and antifungal effects, making them attractive targets for pharmaceutical research and development. However, the natural yield of Amphidinium-derived polyketides (APKs) is generally low, limiting their potential for sustainable molecular farming. This challenge has prompted interest in developing biotechnological strategies to enhance their production. This review aims to define the current state of studies about APKs, starting from their initial discoveries to the recent understanding of their biosynthetic pathways. Additionally, it summarizes the structures of compounds discovered, highlights their biotechnological potential, and discusses novel trends in their production. Full article
Show Figures

Figure 1

16 pages, 1568 KiB  
Article
Exploring the Catalytic Mechanisms of a Newly Identified Salt-Activated Alginate Lyase from Pseudoalteromonas carrageenovora ASY5
by Xiaoyan Zhuang, Chao Jiao, Zewang Guo, Qiong Xiao, Jun Chen, Fuquan Chen, Qiuming Yang, Yi Ru, Huifen Weng, Siyuan Wang, Anfeng Xiao and Yonghui Zhang
Mar. Drugs 2025, 23(6), 254; https://doi.org/10.3390/md23060254 - 15 Jun 2025
Viewed by 546
Abstract
Alginate lyases are critical enzymes in hydrolyzing alginate into alginate oligosaccharides (AOS), which are bioactive compounds known for their antioxidant properties and ability to lower serum glucose and lipid concentrations. However, elucidating catalytic mechanisms and discovering enzymes with enhanced catalytic efficiency remain long-term [...] Read more.
Alginate lyases are critical enzymes in hydrolyzing alginate into alginate oligosaccharides (AOS), which are bioactive compounds known for their antioxidant properties and ability to lower serum glucose and lipid concentrations. However, elucidating catalytic mechanisms and discovering enzymes with enhanced catalytic efficiency remain long-term challenges. Here, we report AlgL2491, a novel bifunctional and cold-adapted alginate lyase from Pseudoalteromonas carrageenovora ASY5, belonging to the polysaccharide lyase family 18. This enzyme uniquely cleaves both polyguluronic (polyG) and polymannuronic (polyM), predominantly releasing disaccharides, trisaccharides, and tetrasaccharides after 12 h of hydrolysis. The enzyme achieves peak catalytic efficiency at 35 °C and pH 7.5, with activity increasing 5.5-fold in 0.5 M of NaCl. Molecular dynamics simulations demonstrate that salt ions enhance structural stability by minimizing conformational fluctuations and strengthening interdomain interactions, providing mechanistic insights into its salt-activated behavior. The alginate oligosaccharides (AOS) exhibit excellent free radical-scavenging activities of 86.79 ± 0.31%, 83.42 ± 0.18%, and 71.28 ± 2.27% toward hydroxyl, ABTS, and DPPH radicals, with IC50 values of 8.8, 6.74, and 9.71 mg/mL, respectively. These findings not only reveal the salt-activation mechanism of AlgL2491 and highlight the potential value of its hydrolysate in antioxidant activity but also provide a sustainable industrial solution in industrial-scale AOS production directly from marine biomass, eliminating the need for energy-intensive desalination of alginate, which may inform future biocatalyst design for marine polysaccharide valorization. Full article
(This article belongs to the Section Marine Biotechnology Related to Drug Discovery or Production)
Show Figures

Figure 1

16 pages, 2141 KiB  
Article
Implementation of Sustainable Methods for the Propagation and Cultivation of Chondracanthus chamissoi “Yuyo” in La Libertad, Peru: A Transition from the Laboratory to the Sea
by Nancy Soto-Deza, Luis Cabanillas-Chirinos and Nicole Terrones-Rodríguez
J. Mar. Sci. Eng. 2025, 13(6), 1164; https://doi.org/10.3390/jmse13061164 - 13 Jun 2025
Viewed by 463
Abstract
The alga Chondracanthus chamissoi, commonly known as “yuyo” or “mococho” is found along the coasts of Peru and Chile. Due to its multiple applications in industrial, health, pharmaceutical, and productive sectors, its demand has increased, leading to the uncontrolled exploitation of natural banks [...] Read more.
The alga Chondracanthus chamissoi, commonly known as “yuyo” or “mococho” is found along the coasts of Peru and Chile. Due to its multiple applications in industrial, health, pharmaceutical, and productive sectors, its demand has increased, leading to the uncontrolled exploitation of natural banks and negatively impacting marine ecosystems. This experimental study evaluated the viability of propagating C. chamissoi propagules using the foliar fertilizer Bayfolan® from Bayer, as well as its continuous, non-seasonal cultivation in La Ramada. This initiative aims to establish a productive area in La Libertad to meet the needs of national and international markets, reducing the indiscriminate exploitation of seaweed in natural banks. The results indicated that continuous cultivation is feasible, with growth rates of 0.0369 and 0.0388 g.day−1 (0% Bayfolan) and 0.0397 and 0.0399 g.day−1 (1% Bayfolan) during propagule propagation. Slight statistically significant differences were observed in final biomass between 0% and 1% Bayfolan treatments, and Bayfolan use reduced healing time by seven days. Nutritional and microbiological assays confirmed that fresh “yuyo” is suitable for human consumption; hence, La Ramada provides suitable physical–chemical and microbiological conditions for extracting and cultivating hydrobiological species, offering a viable alternative to the seasonal overexploitation of the algae and potential economic benefits for coastal families. Full article
(This article belongs to the Section Marine Biology)
Show Figures

Figure 1

14 pages, 7399 KiB  
Article
The Skin Photophores of Chauliodus sloani Bloch & Schneider, 1801 (Pisces: Stomiidae): A Morphological, Ultrastructural and Immunohistochemical Study
by Mauro Cavallaro, Lidia Pansera, Kamel Mhalhel, Francesco Abbate, Maria Levanti, Maria Cristina Guerrera, Giuseppe Montalbano, Marilena Briglia, Marialuisa Aragona and Rosaria Laurà
Animals 2025, 15(12), 1738; https://doi.org/10.3390/ani15121738 - 12 Jun 2025
Viewed by 906
Abstract
This work provides a contribution to the understanding of the structure of the photophores in the mesopelagic fish Chauliodus sloani (family Stomiidae), which occasionally are stranded along the coasts of the Strait of Messina (Central Mediterranean Sea). The analysis was carried out through [...] Read more.
This work provides a contribution to the understanding of the structure of the photophores in the mesopelagic fish Chauliodus sloani (family Stomiidae), which occasionally are stranded along the coasts of the Strait of Messina (Central Mediterranean Sea). The analysis was carried out through the study of the structure and ultrastructure of the ventral photophores, and it also includes an immunohistochemical investigation that offers valuable insights into the function of these organs. Studies on photophores help clarify many aspects of the ecology of this species, which represents an important functional link in the marine food web. Full article
Show Figures

Figure 1

22 pages, 2109 KiB  
Review
The Competitive Edge: T6SS-Mediated Interference Competition by Vibrionaceae Across Marine Ecological Niches
by Perla Jazmin Gonzalez Moreno and Michele K. Nishiguchi
Microorganisms 2025, 13(6), 1370; https://doi.org/10.3390/microorganisms13061370 - 12 Jun 2025
Viewed by 664
Abstract
Interference competition, wherein bacteria actively antagonize and damage their microbial neighbors, is a key ecological strategy governing microbial community structure and composition. To gain a competitive edge, bacteria can deploy a diverse array of antimicrobial weapons—ranging from diffusible toxins to contact-mediated systems in [...] Read more.
Interference competition, wherein bacteria actively antagonize and damage their microbial neighbors, is a key ecological strategy governing microbial community structure and composition. To gain a competitive edge, bacteria can deploy a diverse array of antimicrobial weapons—ranging from diffusible toxins to contact-mediated systems in order to eliminate their bacterial rivals. Among Gram-negative bacteria, the type VI secretion system (T6SS) has emerged as a potent and sophisticated contact-dependent mechanism that enables the delivery of toxic cargo into neighboring cells, thereby promoting the colonization and dominance of a bacterial taxon within an ecological niche. In this review, we examine the ecological significance of T6SS-mediated interference competition by members of the Vibrionaceae family across a range of marine habitats that include free-living microbial communities and host-associated niches such as coral and squid symbioses. Additionally, we explore the ecological impact of T6SS-mediated competition in modulating biofilm community structure and promoting horizontal gene transfer within those complex microbial populations. Together, these insights underscore the ecological versatility of the T6SS and emphasize its role in driving antagonistic bacterial interactions and shaping microbial community dynamics within marine ecosystems. Full article
(This article belongs to the Special Issue Marine Microorganisms and Ecology, 2nd Edition)
Show Figures

Figure 1

18 pages, 1844 KiB  
Article
Pseudopterosin A-D Modulates Dendritic Cell Activation in Skin Sensitization
by Johanna Maria Hölken, Katja Friedrich, Russel Kerr and Nicole Elisabeth Teusch
Mar. Drugs 2025, 23(6), 245; https://doi.org/10.3390/md23060245 - 10 Jun 2025
Viewed by 770
Abstract
This study investigates the anti-inflammatory effects of the marine diterpene glycosides pseudopterosin A-D (PsA-D) in mitigating nickel sulfate (NiSO4)-induced skin sensitization. In dermal dendritic cell (DDC) surrogates, PsA-D pre-treatment significantly reduced NiSO4-induced upregulation of key activation surface markers, cluster [...] Read more.
This study investigates the anti-inflammatory effects of the marine diterpene glycosides pseudopterosin A-D (PsA-D) in mitigating nickel sulfate (NiSO4)-induced skin sensitization. In dermal dendritic cell (DDC) surrogates, PsA-D pre-treatment significantly reduced NiSO4-induced upregulation of key activation surface markers, cluster of differentiation (CD)54 (~1.2-fold), and CD86 (~1.6-fold). Additionally, PsA-D inhibited the NiSO4-induced activation of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway by suppressing inhibitor of kappa B alpha (IκBα) degradation. Furthermore, PsA-D suppressed inflammatory responses by inhibiting the NiSO4-induced secretion of pro-inflammatory cytokines, including interleukin (IL)-8 (~6.8-fold), IL-6 (~2.2-fold), and IL-1β (~5.3-fold). In a full-thickness human skin model incorporating DDC surrogates, topical application of PsA-D effectively attenuated NiSO4-induced mRNA expression of IL-8 (~2.1-fold), IL-6 (~2.6-fold), and IL-1β (~2.2-fold), along with the key inflammatory mediators cyclooxygenase-2 (COX-2) (~3.5-fold) and NOD-like receptor family pyrin domain-containing 3 (NLRP3) (~2.1-fold). Overall, PsA-D demonstrated comparable efficacy to dexamethasone, a benchmark corticosteroid, providing a promising therapeutic alternative to corticosteroids for the treatment of skin sensitization and allergic contact dermatitis. However, to maximize PsA-D’s therapeutic potential, future studies on optimizing the bioavailability and formulation of PsA-D are required. Full article
(This article belongs to the Special Issue Marine Natural Products with Immunomodulatory Activity)
Show Figures

Graphical abstract

24 pages, 1667 KiB  
Article
Mitigating Class Imbalance Challenges in Fish Taxonomy: Quantifying Performance Gains Using Robust Asymmetric Loss Within an Optimized Mobile–Former Framework
by Yanhe Tao and Rui Zhong
Electronics 2025, 14(12), 2333; https://doi.org/10.3390/electronics14122333 - 7 Jun 2025
Viewed by 456
Abstract
Accurate fish species identification is crucial for marine biodiversity conservation, environmental monitoring, and sustainable fishery management, particularly as marine ecosystems face increasing pressures from human activities and climate change. Traditional morphological identification methods are inherently labor-intensive and resource-demanding, while contemporary automated approaches, particularly [...] Read more.
Accurate fish species identification is crucial for marine biodiversity conservation, environmental monitoring, and sustainable fishery management, particularly as marine ecosystems face increasing pressures from human activities and climate change. Traditional morphological identification methods are inherently labor-intensive and resource-demanding, while contemporary automated approaches, particularly deep learning models, often suffer from significant computational overhead and struggle with the pervasive issue of class imbalance inherent in ecological datasets. Addressing these limitations, this research introduces a novel computationally parsimonious fish classification framework leveraging the hybrid Mobile–Former neural network architecture. This architecture strategically combines the local feature extraction strengths of convolutional layers with the global context modeling capabilities of transformers, optimized for efficiency. To specifically mitigate the detrimental effects of the skewed data distributions frequently observed in real-world fish surveys, the framework incorporates a sophisticated robust asymmetric loss function designed to enhance model focus on under-represented categories and improve resilience against noisy labels. The proposed system was rigorously evaluated using the comprehensive FishNet dataset, comprising 74,935 images distributed across a detailed taxonomic hierarchy including eight classes, seventy-two orders, and three-hundred-forty-eight families, reflecting realistic ecological diversity. Our model demonstrates superior classification accuracy, achieving 93.97 percent at the class level, 88.28 percent at the order level, and 84.02 percent at the family level. Crucially, these high accuracies are attained with remarkable computational efficiency, requiring merely 508 million floating-point operations, significantly outperforming comparable state-of-the-art models in balancing performance and resource utilization. This advancement provides a streamlined, effective, and resource-conscious methodology for automated fish species identification, thereby strengthening ecological monitoring capabilities and contributing significantly to the informed conservation and management of vital marine ecosystems. Full article
(This article belongs to the Special Issue Advances in Machine Learning for Image Classification)
Show Figures

Figure 1

17 pages, 3438 KiB  
Article
Genome-Wide Identification and Expression Analysis of PP2C Gene Family in Eelgrass
by Chang Liu, Xu Dong, Dazuo Yang, Qingchao Ge, Jiaxin Dai, Zhi Ma, Rongna Wang and Huan Zhao
Genes 2025, 16(6), 657; https://doi.org/10.3390/genes16060657 - 29 May 2025
Viewed by 531
Abstract
Background: Protein Phosphatase 2C (PP2C), a conserved family in plants, plays a crucial role in ABA and MAPK signaling pathways. Its functional diversity provides key mechanisms for plants’ adaptation to environmental changes. However, research on PP2C family members remains significantly underexplored in seagrasses, [...] Read more.
Background: Protein Phosphatase 2C (PP2C), a conserved family in plants, plays a crucial role in ABA and MAPK signaling pathways. Its functional diversity provides key mechanisms for plants’ adaptation to environmental changes. However, research on PP2C family members remains significantly underexplored in seagrasses, which are model organisms adapted to complex marine environments. Methods: In this study, we systematically analyzed the PP2C gene family in eelgrass using bioinformatic methods and performed a qPCR experiment to verify the expression of a few members in their response to salt stress. Results: The eelgrass PP2C gene family comprises 52 members, categorized into 13 subfamilies. Most PP2C genes exhibit a differential expression across various organs, with some members showing significant organ specificity. For instance, 12 members are specifically highly expressed in male flowers, suggesting that PP2Cs may function in male flower development. Additionally, four members (ZosmaPP2C-04, ZosmaPP2C-07, ZosmaPP2C-15, and ZosmaPP2C-18) in eelgrass are up-regulated under salt stress, with a qPCR confirming their response. The syntenic genes of ZosmaPP2C-15 and ZosmaPP2C-18 were identified across multiple species, indicating their evolutionary conservation. Numerous response elements associated with plant hormones and stress were identified within the promoter sequences of eelgrass PP2C genes. Notably, the promoter regions of salt-responsive genes are rich in the ABRE, implying that ABA may participate in regulating the expression of these PP2Cs. Furthermore, the predictive analysis of protein interactions suggests the potential existence of the ABA core signaling module PYL-PP2C-SnRK2 in eelgrass. Conclusions: This study provides a new insight for understanding the biological functions of the PP2C family in eelgrass, which is important for elucidating the mechanisms of its growth, development, and environmental adaptability. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

12 pages, 958 KiB  
Article
Potential New Avian Species as Carriers of Diverse Circoviruses
by Yasmin Luisa Neves Lemes Garcia, Ana Júlia Chaves Gomes, Guilherme Guerra Neto, Natasha Fujii Ando, Camila Sanches Rodrigues, Richard Alegria Cesario, Camila Domit, Fábio Henrique Lima, Helena Lage Ferreira, João Pessoa Araújo, Bruna Lindolfo da Silva, Fernando Rosado Spilki, Luciano Matsumiya Thomazelli, Thais Helena Martins Gamon, Isabela Barbosa Assis, Edison Luiz Durigon, Danielle Bruna Leal Oliveira, Vivaldo Gomes da Costa, Marília de Freitas Calmon and Paula Rahal
Pathogens 2025, 14(6), 540; https://doi.org/10.3390/pathogens14060540 - 28 May 2025
Viewed by 777
Abstract
Avian species pose risks for transmitting viruses, including avian circoviruses, that could be a threat for conservation and introduction into commercial flocks. This study investigated the presence of circovirus in 81 avian species from different regions of Brazil, including the northwest region of [...] Read more.
Avian species pose risks for transmitting viruses, including avian circoviruses, that could be a threat for conservation and introduction into commercial flocks. This study investigated the presence of circovirus in 81 avian species from different regions of Brazil, including the northwest region of São Paulo and the coast of Paraná. Blood samples and oropharyngeal, cloacal, and other organ swabs were collected. The samples were extracted and screened using nested PCR for the replicase gene. In positive cases, the samples were sequenced. Regarding the results, a total of 1528 swab samples were collected from 601 birds, of which 24 (4%, 95% CI: 2.4–5.6) tested positive for various circovirus subtypes. Most positive birds (92%, 22/24) were from the northwest region of São Paulo, mainly from the city of São José do Rio Preto (54%, 12/22). The study also identified the presence of circovirus subtypes in avian families that were not previously described. Furthermore, the presence of raven circovirus in the blood sample of a Nyctibius griseus (potoo), suggests the possibility of a new carrier of the virus. Ultimately, the findings underscore the complexity of the viral ecology of avian circoviruses, highlight the necessity of enhancing future studies, and emphasize the need to support health assessment of wildlife, including marine birds. Full article
Show Figures

Figure 1

15 pages, 2522 KiB  
Article
Phycobacteria Biodiversity, Selected Isolation, and Bioactivity Elucidation of New Bacterial Species of Highly Toxic Marine Dinoflagellate Alexandrium minutum amtk4
by Xiaoling Zhang, Zekang Pan, Jinkai Zhang, Bingqian Liu and Qiao Yang
Microorganisms 2025, 13(6), 1198; https://doi.org/10.3390/microorganisms13061198 - 24 May 2025
Viewed by 565
Abstract
Phycosphere niches host rich, unique microbial consortia that harbor complex algae–bacteria interactions with fundamental significance in underpinning most functions of aquatic ecological processes. Therefore, harvesting the uncultured phycobacteria is crucial for understanding the intricate mechanisms governing these dynamic interactions. Here, we characterized and [...] Read more.
Phycosphere niches host rich, unique microbial consortia that harbor complex algae–bacteria interactions with fundamental significance in underpinning most functions of aquatic ecological processes. Therefore, harvesting the uncultured phycobacteria is crucial for understanding the intricate mechanisms governing these dynamic interactions. Here, we characterized and compared microbial community composition of the phycosphere microbiota from six harmful algal bloom-forming marine dinoflagellates, Alexandrium spp., and their bacterial associations. Furthermore, based on a combinational enhanced cultivation strategy (CECS) procedure for the selected isolation for cultivable phycobacteria, a new yellow-pigmented bioactive bacterium designated ABI-6-9 was successfully recovered from cultivable phycobacteria of the highly toxic A. minutum strain amtk4. An additional phylogenomic analysis fully identified this new isolate as a potential novel species of the genus Mameliella within the family Roseobacteraceae. The bioactivity evaluation observed that strain ABI-6-9 can significantly promote the cell growth of its algal host and altered the gonyautoxin accumulation profiles in the co-culture circumstance. Additionally, the bacterial production of active bioflocculanting exopolysaccharides (EPSs) by strain ABI-6-9 was also measured after culture optimization. Thus, these findings revealed the potential environmental and biotechnological implications of this new microalgae growth- promoting phycobacterium. Full article
Show Figures

Figure 1

Back to TopTop