Implementation of Sustainable Methods for the Propagation and Cultivation of Chondracanthus chamissoi “Yuyo” in La Libertad, Peru: A Transition from the Laboratory to the Sea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection
2.3. Propagule Propagation
2.4. Seaweed Cultivation in the Sea
2.5. Collection and Statistical Analysis of Data
3. Results
3.1. Propagule Propagation Stage
3.2. Physical–Chemical and Microbiological Quality of Seawater for Cultivation Purposes
3.3. Microbiological Quality and Proximal Composition of C. chamissoi
3.4. Growth Rate of C. chamissoi
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Iqbal, M.S. Seaweed farming-global scenario: Socio-economic aspects. In Sustainable Global Resources of Seaweeds; Springer International Publishing: Cham, Switzerland, 2022; Volume 1, pp. 313–327. ISBN 9783030919542. [Google Scholar]
- Pradhan, B.; Bhuyan, P.P.; Patra, S.; Nayak, R.; Behera, P.K.; Behera, C.; Behera, A.K.; Ki, J.-S.; Jena, M. Beneficial Effects of Seaweeds and Seaweed-Derived Bioactive Compounds: Current Evidence and Future Prospective. Biocatal. Agric. Biotechnol. 2022, 39, 102242. [Google Scholar] [CrossRef]
- Rocha, C.P.; Pacheco, D.; Cotas, J.; Marques, J.C.; Pereira, L.; Gonçalves, A.M.M. Seaweeds as Valuable Sources of Essential Fatty Acids for Human Nutrition. Int. J. Environ. Res. Public Health 2021, 18, 4968. [Google Scholar] [CrossRef] [PubMed]
- Jagtap, A.S.; Meena, S.N. Seaweed farming: A perspective of sustainable agriculture and socio-economic development. In Natural Resources Conservation and Advances for Sustainability; Elsevier: Amsterdam, The Netherlands, 2022; pp. 493–501. [Google Scholar]
- Torres, M.D.; Kraan, S.; Dominguez, H. Sustainable Seaweed Technologies: Cultivation, Biorefinery, and Applications; Elsevier: Amsterdam, The Netherlands, 2020; ISBN 9780128179444. [Google Scholar]
- Pati, M.P.; Sharma, S.D.; Nayak, L.; Panda, C.R. Uses of seaweed and its application to human welfare: A review. Int. J. Pharm. Pharm. Sci. 2016, 8, 12. [Google Scholar] [CrossRef]
- Prasad Behera, D.; Vadodariya, V.; Veeragurunathan, V.; Sigamani, S.; Moovendhan, M.; Srinivasan, R.; Kolandhasamy, P.; Ingle, K.N. Seaweeds Cultivation Methods and Their Role in Climate Mitigation and Environmental Cleanup. Total Environ. Res. Themes 2022, 3–4, 100016. [Google Scholar] [CrossRef]
- Froehlich, H.E.; Afflerbach, J.C.; Frazier, M.; Halpern, B.S. Blue Growth Potential to Mitigate Climate Change through Seaweed Offsetting. Curr. Biol. 2019, 29, 3087–3093.e3. [Google Scholar] [CrossRef]
- Cai, J. Global status of seaweed production, trade and utilization. In Proceedings of the Seaweed Innovation Forum Belize, Belize City, Belize, 28 May 2021. [Google Scholar]
- Sultana, F.; Wahab, M.A.; Nahiduzzaman, M.; Mohiuddin, M.; Iqbal, M.Z.; Shakil, A.; Mamun, A.-A.; Khan, M.S.R.; Wong, L.; Asaduzzaman, M. Seaweed Farming for Food and Nutritional Security, Climate Change Mitigation and Adaptation, and Women Empowerment: A Review. Aquac. Fish. 2023, 8, 463–480. [Google Scholar] [CrossRef]
- Brown, E.M.; Allsopp, P.J.; Magee, P.J.; Gill, C.I.R.; Nitecki, S.; Strain, C.R.; McSorley, E.M. Seaweed and Human Health. Nutr. Rev. 2014, 72, 205–216. [Google Scholar] [CrossRef]
- Choudhary, B.; Chauhan, O.P.; Mishra, A. Edible seaweeds: A potential novel source of bioactive metabolites and nutraceuticals with human health benefits. Front. Mar. Sci. 2021, 8, 740054. [Google Scholar] [CrossRef]
- Illera-Vives, M.; Seoane Labandeira, S.; Fernández-Labrada, M.; López-Mosquera, M.E. Agricultural uses of seaweed. In Sustainable Seaweed Technologies; Elsevier: Amsterdam, The Netherlands, 2020; pp. 591–612. [Google Scholar]
- Lomartire, S.; Gonçalves, A.M.M. An Overview of Potential Seaweed-Derived Bioactive Compounds for Pharmaceutical Applications. Mar. Drugs 2022, 20, 141. [Google Scholar] [CrossRef]
- Cassani, L.; Lourenço-Lopes, C.; Barral-Martinez, M.; Chamorro, F.; Garcia-Perez, P.; Simal-Gandara, J.; Prieto, M.A. Thermochemical Characterization of Eight Seaweed Species and Evaluation of Their Potential Use as an Alternative for Biofuel Production and Source of Bioactive Compounds. Int. J. Mol. Sci. 2022, 23, 2355. [Google Scholar] [CrossRef]
- García-Poza, S.; Leandro, A.; Cotas, C.; Cotas, J.; Marques, J.C.; Pereira, L.; Gonçalves, A.M.M. The Evolution Road of Seaweed Aquaculture: Cultivation Technologies and the Industry 4.0. Int. J. Environ. Res. Public Health 2020, 17, 6528. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, L.; Cantarino, S.J.; Critchley, A.T. Challenges to the future domestication of seaweeds as cultivated species: Understanding their physiological processes for large-scale production. In Advances in Botanical Research; Elsevier: Amsterdam, The Netherlands, 2020; pp. 57–83. ISBN 9780081027103. [Google Scholar]
- Obando, J.M.C.; dos Santos, T.C.; Martins, R.C.C.; Teixeira, V.L.; Barbarino, E.; Cavalcanti, D.N. Current and Promising Applications of Seaweed Culture in Laboratory Conditions. Aquaculture 2022, 560, 738596. [Google Scholar] [CrossRef]
- Arakaki, N.; Suárez-Alarcón, S.; Márquez-Corigliano, D.; Gil-Kodaka, P.; Tellier, F. The Widely Distributed, Edible Seaweeds in Peru, Chondracanthus chamissoi and Chondracanthus chamissoi f. Glomeratus (Gigartinaceae, Rhodophyta), Are Morphologically Diverse but Not Phylogenetically Distinct. J. World Aquac. Soc. 2021, 52, 1290–1311. [Google Scholar] [CrossRef]
- Arbaiza, S.; Avila-Peltroche, J.; Castañeda-Franco, M.; Mires-Reyes, A.; Advíncula, O.; Baltazar, P. Vegetative Propagation of the Commercial Red Seaweed Chondracanthus chamissoi in Peru by Secondary Attachment Disc during Indoor Cultivation. Plants 2023, 12, 1940. [Google Scholar] [CrossRef]
- Uribe Alzamora, R.; Atoche Suclupe, D.; Paredes Paredes, J. Aspectos ecológicos de la macroalga roja Chondracanthus chamissoi (C. Agardh) Kützing en la región La Libertad, Perú A1.3. ALICIA 2023, 1, 11–13. [Google Scholar] [CrossRef]
- Avila-Peltroche, J.; Padilla-Vallejos, J. The Seaweed Resources of Peru. Bot. Mar. 2020, 63, 381–394. [Google Scholar] [CrossRef]
- Berger, C. La acuicultura y sus oportunidades para lograr el desarrollo sostenible en el Perú. S. Sust. 2020, 1, e003. [Google Scholar] [CrossRef]
- Vivanco, C.; Álvarez, J.; Vodden, K. Extracción de algas en Pisco: Desafíos, oportunidades, adaptación y perspectivas futuras. Ind. Data 2014, 14, 19–27. [Google Scholar] [CrossRef]
- Zuniga-Jara, S.; Soria-Barreto, K. Prospects for the Commercial Cultivation of Macroalgae in Northern Chile: The Case of Chondracanthus chamissoi and Lessonia trabeculata. J. Appl. Phycol. 2018, 30, 1135–1147. [Google Scholar] [CrossRef]
- Avila-Peltroche, J.; Villena-Sarmiento, G. Analysis of Peruvian Seaweed Exports during the Period 1995–2020 Using Trade Data. Bot. Mar. 2022, 65, 209–220. [Google Scholar] [CrossRef]
- Bulboa, C.R.; Macchiavello, J.E.; Oliveira, E.C.; Fonck, E. First Attempt to Cultivate the Carrageenan-Producing Seaweed Chondracanthus chamissoi (C. Agardh) Kutzing (Rhodophyta; Gigartinales) in Northern Chile. Aquac. Res. 2005, 36, 1069–1074. [Google Scholar] [CrossRef]
- Bulboa, C.; Macchiavello, J.; Véliz, K.; Oliveira, E.C. Germination Rate and Sporeling Development of Chondracanthus chamissoi (Rhodophyta, Gigartinales) Varies along a Latitudinal Gradient on the Coast of Chile. Aquat. Bot. 2010, 92, 137–141. [Google Scholar] [CrossRef]
- Macchiavello, J.; Sepúlveda, C.; Basaure, H.; Sáez, F.; Yañez, D.; Marín, C.; Vega, L. Suspended Culture of Chondracanthus chamissoi (Rhodophyta: Gigartinales) in Caleta Hornos (Northern Chile) via Vegetative Propagation with Secondary Attachment Discs. J. Appl. Phycol. 2018, 30, 1149–1155. [Google Scholar] [CrossRef]
- Espinoza, I. Revista Ciencia y Technologia-Para el Desarrollo-UJCM; 2022; pp. 101–107. Available online: https://revistas.ujcm.edu.pe/index.php/rctd/article/view/189 (accessed on 10 May 2024).
- Zapata-Rojas, J.C.; Gonzales Vargas, A.M.; Zevallos-Feria, S.A. Estudio comparativo para propagación vegetativa de Chondracanthus chamissoi “Yuyo” sobre tres tipos de sustrato en ambiente controlado y su viabilidad en la región Moquegua. Enfoque UTE 2020, 11, 37–47. [Google Scholar] [CrossRef]
- Arbaiza, S.; Gil-Kodaka, P.; Arakaki, N.; Alveal, K. Primeros estadios de cultivo a partir de carpósporas de Chondracanthus chamissoi de tres localidades de la costa peruana. Rev. Biol. Mar. Oceanogr. 2019, 54, 204–213. [Google Scholar] [CrossRef]
- Diaz Ruíz, J.T.; Fretell Timoteo, W.J.; Baltazar Guerrero, P.M.; Castañeda Franco, M.; Meza Balvin, S.J.; Ordoñez Suñiga, C.A. Arnaldoa. 2021. Available online: http://www.scielo.org.pe/pdf/arnal/v28n1/2413-3299-arnal-28-01-163.pdf (accessed on 10 May 2024).
- Atoche-Suclupe, D.; Campos, L.; Uribe, R.A.; Buitrón, B.; Veneros, B.; Berríos, F. Describing Factors That Influence Chondracanthus chamissoi (Rhodophyta) Fishery in Northern Peru under the DPSIR Conceptual Framework: Implications for the Design of Integral Management Strategies. Ocean Coast. Manag. 2023, 244, 106814. [Google Scholar] [CrossRef]
- De Oliveira Bastos, E.; Horta, P.A.; Hayashi, L. Strain Selection in Chondracanthus Teedei (Gigartinaceae, Rhodophyta) Using Tetraspore and Carpospore Progeny: Growth Rates, Tolerance to Temperature and Carrageenan Yield. J. Appl. Phycol. 2021, 33, 2379–2390. [Google Scholar] [CrossRef]
- Colque Arce, L.M. Evaluación del Crecimiento de Cultivo Vegetativo de (Chondracanthus chamissoi), Utilizando Fertilizante Comercial Bayfolan y Medio Guillard F/2, en Condiciones de Laboratorio en el Centro de Acuicultura Morro Sama del FONDEPES; Universidad Nacional Jorge Basadre Grohmann: Tacna, Peru, 2017. [Google Scholar]
- Arbaiza, S.; Castañeda, M.; Gerónimo, G.; Munayco, P.; Reynaga, R.; Advíncula, O. Efecto del fotoperiodo y nutriente foliar comercial en el crecimiento (biomasa) de cochayuyo Porphyra spp. bajo condiciones semicontroladas de cultivo. In Proceedings of the Annual Meeting of the Latin American & Caribbean Aquaculture Societies, Bogotá, Colombia, 23–26 October 2018; p. 25. [Google Scholar]
- Ruiz-Ipanaque, W.; Baltazar Guerrero, P.; Casteñeda-Franco, M.S.; Mires-Reyes, A.J. Capacidad regenerativa post-cosecha de la macroalga roja Chondracanthus chamissoi en dos sistemas de cultivo en la costa centro-sur del Perú. Boletín Investig. Mar. Costeras 2024, 53, 67–82. [Google Scholar] [CrossRef]
- Huaman Fernandez, D.; Baltazar Guerrero, P.; Arbaiza-Quispe, S.; Advíncula Zeballos, O. Evaluación en la formación de discos de fijación secundaria de Chondracanthus chamissoi (yuyo) en condiciones de cultivo semi-controladas. Boletín Investig. Mar. Costeras 2024, 53, 31–44. [Google Scholar] [CrossRef]
- Oyarzo, S.; Ávila, M.; Alvear, P.; Remonsellez, J.P.; Contreras-Porcia, L.; Bulboa, C. Secondary Attachment Disc of Edible Seaweed Chondracanthus chamissoi (Rhodophyta, Gigartinales): Establishment of Permanent Thalli Stock. Aquaculture 2021, 530, 735954. [Google Scholar] [CrossRef]
- Arbaiza Quispe, S.J. Manual de Cultivo de Yuyo Para la Bahía de Sechura (Chondracanthus chamissoi); 2022. Available online: https://rnia.produce.gob.pe/wp-content/uploads/2022/05/Manual-de-Cultivo-de-yuyo-FINAL.pdf (accessed on 10 May 2024).
- Yong, Y.S.; Yong, W.T.L.; Anton, A. Analysis of Formulae for Determination of Seaweed Growth Rate. J. Appl. Phycol. 2013, 25, 1831–1834. [Google Scholar] [CrossRef]
- Ministerio del Ambiente Peru (MINAM). Aprueban Estándares de Calidad Ambiental (ECA) Para Agua y Establecen Disposiciones Complementarias; El Peruano, Alfonso Ugarte: Lima, Peru, 2017; Available online: https://sinia.minam.gob.pe/sites/default/files/sinia/archivos/public/docs/ds-004-2017-minam.pdf (accessed on 10 May 2024).
- Arakaki, N.; Carbajal Enzian, P.; Marquez-Corigliano, D.; Suárez Alarcón, S.; Gil-Kodaka, P.; Perez-Araneda, K.; Tellier, F. Genética de Macroalgas en el Perú: Diagnóstico, guía Metodológica y Casos de Estudio. 2021. Available online: https://hdl.handle.net/20.500.12958/3648 (accessed on 10 May 2024).
- Rodríguez, E.; Fernández, M.; Alvítez, E.; Pollack, L.; Luján, L.; Geldres, C.; Paredes, Y. Seaweeds of the coast of La Libertad region, Peru. Sci. Agropecu. 2018, 9, 71–81. [Google Scholar] [CrossRef]
- Instituto del Mar del Perú (IMARPE) (Ed.) Anuario Científico Tecnológico IMARPE 2019; Instituto del Mar del Perú: Callao, Peru, 2020; Volume 19. [Google Scholar]
- Instituto del Mar del Perú (IMARPE) (Ed.) Anuario Científico Tecnológico IMARPE 2020; Instituto del Mar del Perú: Callao, Peru, 2021; Volume 20. [Google Scholar]
- Instituto del Mar del Perú (IMARPE) (Ed.) Anuario Científico Tecnológico IMARPE 2021; Instituto del Mar del Perú: Callao, Peru, 2022; Volume 21. [Google Scholar]
- Instituto del Mar del Perú (IMARPE) (Ed.) Anuario Científico Tecnológico IMARPE 2022; Instituto del Mar del Perú: Callao, Peru, 2023; Volume 22. [Google Scholar]
- Bulboa, C.; Macchiavello, J.; Oliveira, E.; Véliz, K. Growth Rate Differences between Four Chilean Populations of Edible Seaweed Chondracanthus chamissoi (Rhodophyta, Gigartinales). Aquac. Res. 2008, 39, 1550–1555. [Google Scholar] [CrossRef]
- Dawange, P.; Jaiswar, S. Effects of Ascophyllum Marine Plant Extract Powder (AMPEP) on Tissue Growth, Proximate, Phenolic Contents, and Free Radical Scavenging Activities in Endemic Red Seaweed Gracilaria Corticata Var. Cylindrica from India. J. Appl. Phycol. 2020, 32, 4127–4135. [Google Scholar] [CrossRef]
- Hlaing, W.M.M.; Jarukamjorn, K. Plantlet Regeneration from Callus Cultures of Kappaphycus Alvarezii for Cultivation in Coastal Waters at Myeik Archipelago, Myanmar. Pak. J. Biol. Sci. 2024, 27, 479–486. [Google Scholar] [CrossRef]
- Balar, N.; Depani, P.; Baraiya, M.; Jaiswar, S.; Rathore, M.S.; Singh, V.; Mantri, V.A. Scaled-up Clonal Propagule Production in Gracilaria Dura (Rhodophyta) for Sustainable Feedstock Production and Implications for Circular Economy. Aquac. Int. 2025, 33, 20. [Google Scholar] [CrossRef]
- Arakaki, N.; Flores Ramos, L.; Oscanoa Huaynate, A.I.; Ruíz Soto, A.; Ramírez, M.E. Biochemical and Nutritional Characterization of Edible Seaweeds from the Peruvian Coast. Plants 2023, 12, 1795. [Google Scholar] [CrossRef]
- Centro Tecnológico del Mar—Fundación CETMAR Las Algas Como Recurso Industriales y Tendencias, Valorización Aplicaciones. Available online: https://cetmar.org/wp-content/uploads/2022/11/Las-algas-como-recurso.pdf (accessed on 10 May 2024).
- Gamero-Vega, G.; Vásquez-Corales, E.; Ormeño-Llanos, M.; Cordova-Ruiz, M.; Quitral, V. Characterization of Red Seaweed Chondracanthus chamissoi from the Coasts of Perú: Chemical Composition, Antioxidant Capacity and Functional Properties. Plant Foods Hum. Nutr. 2024, 79, 137–142. [Google Scholar] [CrossRef]
a Parameters | System 01 (0% Bayfolan) | System 02 (1% Bayfolan) |
---|---|---|
pH | 7.10 ± 0.10 | 6.00 ± 0.10 |
% DO | 59.5 ± 1.5 | 44.5 ± 1.5 |
ppt TDS | 26.3 ± 1.0 | 26.7 ± 1.0 |
Temperature °C | 22.5 ± 1.0 | 22.5 ± 1.0 |
a Parameters | Units | January 2022 | August 2022 | Octubre 2022 | December 2022 | February 2023 | April 2023 | b LMP |
---|---|---|---|---|---|---|---|---|
Temperature | °C | 21.9 ± 4.0 | 21.3 ± 3.5 | 17.8 ± 2.0 | 18.7 ± 1.0 | 17.9 ± 1.0 | 22.3 ± 3.0 | |
DO | mg/L | 9.4 ± 1.8 | 8.9 ± 1.5 | 9.1 ± 1.6 | 9.3 ± 2.0 | 9.1 ± 1.8 | 9.4 ± 1.8 | >4 |
pH | pH unit | 8.0 ± 0.1 | 7.8 ± 0.1 | 7.9 ± 0.2 | 8.1 ± 0.1 | 8.0 ± 0.1 | 7.9 ± 0.2 | 7.0–8.5 |
TDS | ppt | 52 ± 1.5 | 55 ± 2.0 | 53 ±1.5 | 54 ± 2.0 | 53 ± 2.0 | 52 ± 2.0 | 80 |
Nitrates (NO3-) | mg/L | 0.5 | 0.4 | 0.3 | 0.3 | 0.5 | 0.4 | 16 |
Biochemical oxygen Demand (BOD5) | mg/L | 2.7 | 1.8 | 1.51 | 2.1 | 2.0 | 1.9 | 10 |
Detergents | mg/L | 0.025 | 0.032 | 0.020 | 0.022 | 0.025 | 0.028 | NA |
Oils and fats | mg/L | 0.036 | 0.042 | 0.038 | 0.042 | 0.045 | 0.037 | 1 |
Cadmium | mg/L | 0.0080 | 0.0060 | 0.0080 | 0.0092 | 0.0095 | 0.0089 | 0.010 |
Thermotolerant Coliforms | NMP/100 mL | 7.8 | 2.0 | 4.0 | <1.8 | 4.5 | 2.0 | <30 |
a Parameters | Natural Bank | Semi-Suspended Cultivation | b LMP | ||||
---|---|---|---|---|---|---|---|
Octubre 2022 | December 2022 | Octubre 2022 | November 2022 | December 2022 | January 2023 | ||
Mesophilic aerobes | 25 × 104 | 40 × 104 | 68 × 103 | 45 × 103 | 50 × 103 | 62 × 103 | 106 CFU/g |
Escherichia coli | 25 | <10 | <10 | <10 | <10 | <10 | 100 |
Staphylococcus aureus | <10 | <10 | <10 | <10 | <10 | <10 | 1000 |
Salmonella sp. | Negativo | Negativo | Negativo | Negativo | Negativo | Negativo | Negativo/25 g |
Vibrio cholerae | Negativo | Negativo | Negativo | Negativo | Negativo | Negativo | Negativo/25 g |
Vibrio parahaemolyticus | Negativo | Negativo | Negativo | Negativo | Negativo | Negativo | Negativo/25 g |
a Parameters | Units | Natural Bank | Semi-Suspended Cultivation | ||||
---|---|---|---|---|---|---|---|
August 2022 | December 2022 | Octubre 2022 | November 2022 | January 2023 | February 2023 | ||
Moisture | % | 86.23 | 86.12 | 87.04 | 86.78 | 87.83 | 87.48 |
Proteins | % | 18.76 | 18.94 | 20.68 | 21.70 | 21.13 | 20.93 |
Lipids | % | 0.21 | 3.8 | 0.66 | 0.88 | 0.77 | 0.67 |
Ash | % | 37.35 | 26.10 | 25.10 | 23.68 | 24.93 | 24.93 |
Fiber | % | 2.54 | 2.05 | 3.62 | 3.81 | 2.87 | 2.87 |
Sodium | % | 4.48 | 4.02 | 4.26 | 5.74 | 4.53 | 5.23 |
Potassium | % | 2.92 | 3.83 | 3.62 | 3.44 | 5.15 | 4.75 |
Calcium | % | 2.15 | 1.70 | 1.78 | 1.26 | 1.50 | 1.65 |
Magnesium | % | 0.21 | 0.23 | 0.30 | 0.30 | 0.43 | 0.33 |
Period | Parameters | 0% de Bayfoland | 1% de Bayfoland | a p-Value |
---|---|---|---|---|
June to August 2022 | Initial weight (g) | 118.333 ± 0.202 | 122.207 ± 0.317 | 0.000 |
Weight at 30 days (g) | 118.747 ± 0.191 | 122.605 ± 0.315 | ||
Weight at 60 days (g) | 121.117 ± 0.232 | 125.170 ± 0.288 | ||
Weight gain after 60 days (g) | 2.784 | 2.963 | ||
Growth rate at 60 days (g/day) | 0.0388 | 0.0399 | ||
September to November 2022 | Initial weight (g) | 120.540 ± 0.379 | 126.249 ± 0.302 | 0.000 |
Weight at 30 days (g) | 120.881 ± 0.361 | 126.662 ± 0.431 | ||
Weight at 60 days (g) | 123.241 ± 0.361 | 129.295 ± 0.454 | ||
Weight gain after 60 days (g) | 2.701 | 3.046 | ||
Growth rate at 60 days (g/day) | 0.0369 | 0.0397 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soto-Deza, N.; Cabanillas-Chirinos, L.; Terrones-Rodríguez, N. Implementation of Sustainable Methods for the Propagation and Cultivation of Chondracanthus chamissoi “Yuyo” in La Libertad, Peru: A Transition from the Laboratory to the Sea. J. Mar. Sci. Eng. 2025, 13, 1164. https://doi.org/10.3390/jmse13061164
Soto-Deza N, Cabanillas-Chirinos L, Terrones-Rodríguez N. Implementation of Sustainable Methods for the Propagation and Cultivation of Chondracanthus chamissoi “Yuyo” in La Libertad, Peru: A Transition from the Laboratory to the Sea. Journal of Marine Science and Engineering. 2025; 13(6):1164. https://doi.org/10.3390/jmse13061164
Chicago/Turabian StyleSoto-Deza, Nancy, Luis Cabanillas-Chirinos, and Nicole Terrones-Rodríguez. 2025. "Implementation of Sustainable Methods for the Propagation and Cultivation of Chondracanthus chamissoi “Yuyo” in La Libertad, Peru: A Transition from the Laboratory to the Sea" Journal of Marine Science and Engineering 13, no. 6: 1164. https://doi.org/10.3390/jmse13061164
APA StyleSoto-Deza, N., Cabanillas-Chirinos, L., & Terrones-Rodríguez, N. (2025). Implementation of Sustainable Methods for the Propagation and Cultivation of Chondracanthus chamissoi “Yuyo” in La Libertad, Peru: A Transition from the Laboratory to the Sea. Journal of Marine Science and Engineering, 13(6), 1164. https://doi.org/10.3390/jmse13061164