Evidence for Divergence of the Genus ‘Solwaraspora’ Within the Bacterial Family Micromonosporaceae
Abstract
1. Introduction
2. Materials and Methods
2.1. Strain Isolation, Extraction, and Sequencing
2.2. BGC Identification
2.3. Product Class Classification and Analysis
2.4. MALDI-TOF MS Sample Preparation and IDBac Data Analysis
3. Results
3.1. Phylogenomic Analysis
3.2. BGC Network Analysis
3.3. MALDI-TOF MS/IDBac Analysis of ‘Solwaraspora’ spp.
4. Discussion
4.1. WGS-Based Phylogenomic Evaluation of ‘Solwaraspora’ and Plantactinospora
4.2. BGC Analysis of Genera-Level Evolutionary Divergence
4.3. IDBac Classification of Micromonospora, Plantactinospora, and ‘Solwaraspora’ by Protein MS Signatures
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; Supuran, C.T. Natural Products in Drug Discovery: Advances and Opportunities. Nat. Rev. Drug Discov. 2021, 20, 200–216. [Google Scholar] [CrossRef]
- Hemmerling, F.; Piel, J. Strategies to Access Biosynthetic Novelty in Bacterial Genomes for Drug Discovery. Nat. Rev. Drug Discov. 2022, 21, 359–378. [Google Scholar] [CrossRef] [PubMed]
- Lewis, K. Platforms for Antibiotic Discovery. Nat. Rev. Drug Discov. 2013, 12, 371–387. [Google Scholar] [CrossRef]
- Feng, Y.; Qaseem, A.; Moumbock, A.F.A.; Pan, S.; Kirchner, P.A.; Simoben, C.V.; Malange, Y.I.; Babiaka, S.B.; Gao, M.; Günther, S. StreptomeDB 4.0: A Comprehensive Database of Streptomycetes Natural Products Enriched with Protein Interactions and Interactive Spectral Visualization. Nucleic Acids Res. 2024, 53, D724–D729. [Google Scholar] [CrossRef]
- Gavriilidou, A.; Kautsar, S.A.; Zaburannyi, N.; Krug, D.; Müller, R.; Medema, M.H.; Ziemert, N. Compendium of Specialized Metabolite Biosynthetic Diversity Encoded in Bacterial Genomes. Nat. Microbiol. 2022, 7, 726–735. [Google Scholar] [CrossRef]
- Alas, I.; Braun, D.R.; Ericksen, S.S.; Salamzade, R.; Kalan, L.; Rajski, S.R.; Bugni, T.S. Micromonosporaceae Biosynthetic Gene Cluster Diversity Highlights the Need for Broad-Spectrum Investigations. Microb. Genom. 2024, 10, 001167. [Google Scholar] [CrossRef] [PubMed]
- Citarasu, T. 16—Natural Antimicrobial Compounds for Use in Aquaculture. In Infectious Disease in Aquaculture; Austin, B., Ed.; Woodhead Publishing Series in Food Science, Technology and Nutrition; Woodhead Publishing: London, UK, 2012; pp. 419–456. ISBN 978-0-85709-016-4. [Google Scholar]
- Magarvey, N.A.; Keller, J.M.; Bernan, V.; Dworkin, M.; Sherman, D.H. Isolation and Characterization of Novel Marine-Derived Actinomycete Taxa Rich in Bioactive Metabolites. Appl. Environ. Microbiol. 2004, 70, 7520–7529. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, A.; Krull, N.K.; Murphy, B.T. Use of MALDI-TOF Mass Spectrometry and IDBac to Mine for Understudied Bacterial Genera from the Environment. ISME Commun. 2025, 5, ycaf046. [Google Scholar] [CrossRef]
- Clark, C.M.; Costa, M.S.; Conley, E.; Li, E.; Sanchez, L.M.; Murphy, B.T. Using the Open-Source MALDI TOF-MS IDBac Pipeline for Analysis of Microbial Protein and Specialized Metabolite Data. J. Vis. Exp. 2019, 147, e59219. [Google Scholar] [CrossRef]
- Johnson, J.S.; Spakowicz, D.J.; Hong, B.-Y.; Petersen, L.M.; Demkowicz, P.; Chen, L.; Leopold, S.R.; Hanson, B.M.; Agresta, H.O.; Gerstein, M.; et al. Evaluation of 16S rRNA Gene Sequencing for Species and Strain-Level Microbiome Analysis. Nat. Commun. 2019, 10, 5029. [Google Scholar] [CrossRef]
- Carro, L.; Nouioui, I.; Sangal, V.; Meier-Kolthoff, J.P.; Trujillo, M.E.; Montero-Calasanz, M.D.C.; Sahin, N.; Smith, D.L.; Kim, K.E.; Peluso, P.; et al. Genome-Based Classification of Micromonosporae with a Focus on Their Biotechnological and Ecological Potential. Sci. Rep. 2018, 8, 525. [Google Scholar] [CrossRef] [PubMed]
- Ranjan, R.; Rani, A.; Metwally, A.; McGee, H.S.; Perkins, D.L. Analysis of the Microbiome: Advantages of Whole Genome Shotgun versus 16S Amplicon Sequencing. Biochem. Biophys. Res. Commun. 2016, 469, 967–977. [Google Scholar] [CrossRef] [PubMed]
- Jain, C.; Rodriguez, R.L.M.; Phillippy, A.M.; Konstantinidis, K.T.; Aluru, S. High Throughput ANI Analysis of 90K Prokaryotic Genomes Reveals Clear Species Boundaries. Nat. Commun. 2018, 9, 5114. [Google Scholar] [CrossRef]
- Barco, R.A.; Garrity, G.M.; Scott, J.J.; Amend, J.P.; Nealson, K.H.; Emerson, D. A Genus Definition for Bacteria and Archaea Based on a Standard Genome Relatedness Index. mBio 2020, 11, e02475-19. [Google Scholar] [CrossRef]
- Koren, S.; Walenz, B.P.; Berlin, K.; Miller, J.R.; Bergman, N.H.; Phillippy, A.M. Canu: Scalable and Accurate Long-Read Assembly via Adaptive k-Mer Weighting and Repeat Separation. Genome Res. 2017, 27, 722–736. [Google Scholar] [CrossRef] [PubMed]
- Manni, M.; Berkeley, M.R.; Seppey, M.; Simão, F.A.; Zdobnov, E.M. BUSCO Update: Novel and Streamlined Workflows along with Broader and Deeper Phylogenetic Coverage for Scoring of Eukaryotic, Prokaryotic, and Viral Genomes. Mol. Biol. Evol. 2021, 38, 4647–4654. Available online: https://academic.oup.com/mbe/article/38/10/4647/6329644 (accessed on 11 November 2024). [CrossRef]
- Mikheenko, A.; Prjibelski, A.; Saveliev, V.; Antipov, D.; Gurevich, A. Versatile Genome Assembly Evaluation with QUAST-LG. Bioinformatics 2018, 13, i142–i150. Available online: https://academic.oup.com/bioinformatics/article/34/13/i142/5045727?login=true (accessed on 11 November 2024). [CrossRef]
- Edgar, R.C. Muscle5: High-accuracy alignment ensembles enable unbiased assessments of sequence homology and phylogeny. Nat. Commun. 2022, 13, 6968. [Google Scholar] [CrossRef]
- Capella-Gutiérrez, S.; Silla-Martínez, J.M.; Gabaldón, T. trimAl: A Tool for Automated Alignment Trimming in Large-Scale Phylogenetic Analyses. Bioinforma. Oxf. Engl. 2009, 25, 1972–1973. [Google Scholar] [CrossRef]
- Release 0.1.2, Donovan-h-Parks/CompareM. GitHub. Available online: https://github.com/donovan-h-parks/CompareM/releases/tag/0.1.2 (accessed on 11 November 2024).
- Lee, M.D. GToTree: A User-Friendly Workflow for Phylogenomics. Bioinformatics 2019, 35, 4162–4164. [Google Scholar] [CrossRef]
- Letunic, I.; Bork, P. Interactive Tree of Life (iTOL) v6: Recent Updates to the Phylogenetic Tree Display and Annotation Tool. Nucleic Acids Res. 2024, 52, W78–W82. [Google Scholar] [CrossRef] [PubMed]
- Schober, I.; Koblitz, J.; Sardà Carbasse, J.; Ebeling, C.; Schmidt, M.L.; Podstawka, A.; Gupta, R.; Ilangovan, V.; Chamanara, J.; Overmann, J.; et al. Bac Dive in 2025: The Core Database for Prokaryotic Strain Data. Nucleic Acids Res. 2025, 53, D748–D756. [Google Scholar] [CrossRef]
- Blin, K.; Shaw, S.; Kloosterman, A.M.; Charlop-Powers, Z.; van Wezel, G.P.; Medema, M.H.; Weber, T. antiSMASH 6.0: Improving Cluster Detection and Comparison Capabilities. Nucleic Acids Res. 2021, 49, W29–W35. [Google Scholar] [CrossRef] [PubMed]
- BiG-SCAPE CORASON. Available online: https://bigscape-corason.secondarymetabolites.org/about/ (accessed on 28 May 2025).
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Res. 2003, 13, 2498–2504. Available online: https://pubmed-ncbi-nlm-nih-gov.ezproxy.library.wisc.edu/14597658/ (accessed on 7 February 2024). [CrossRef] [PubMed]
- Big Scape Classes—Medema-Group/BiG-SCAPE GitHub Wiki. Available online: https://github-wiki-see.page/m/medema-group/BiG-SCAPE/wiki/big-scape-classes (accessed on 28 January 2025).
- Medema, M.H.; Kottmann, R.; Yilmaz, P.; Cummings, M.; Biggins, J.B.; Blin, K.; de Bruijn, I.; Chooi, Y.H.; Claesen, J.; Coates, R.C.; et al. Minimum Information about a Biosynthetic Gene Cluster. Nat. Chem. Biol. 2015, 11, 625–631. [Google Scholar] [CrossRef]
- Xia, L.; Miao, Y.; Cao, A.; Liu, Y.; Liu, Z.; Sun, X.; Xue, Y.; Xu, Z.; Xun, W.; Shen, Q.; et al. Biosynthetic Gene Cluster Profiling Predicts the Positive Association between Antagonism and Phylogeny in Bacillus. Nat. Commun. 2022, 13, 1023. [Google Scholar] [CrossRef]
- Navarro-Muñoz, J.C.; Selem-Mojica, N.; Mullowney, M.W.; Kautsar, S.A.; Tryon, J.H.; Parkinson, E.I.; De Los Santos, E.L.C.; Yeong, M.; Cruz-Morales, P.; Abubucker, S.; et al. A Computational Framework to Explore Large-Scale Biosynthetic Diversity. Nat. Chem. Biol. 2020, 16, 60–68. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Porter, H.I.; Alas, I.; Krull, N.K.; Braun, D.R.; Rajski, S.R.; Murphy, B.T.; Bugni, T.S. Evidence for Divergence of the Genus ‘Solwaraspora’ Within the Bacterial Family Micromonosporaceae. Microorganisms 2025, 13, 1576. https://doi.org/10.3390/microorganisms13071576
Porter HI, Alas I, Krull NK, Braun DR, Rajski SR, Murphy BT, Bugni TS. Evidence for Divergence of the Genus ‘Solwaraspora’ Within the Bacterial Family Micromonosporaceae. Microorganisms. 2025; 13(7):1576. https://doi.org/10.3390/microorganisms13071576
Chicago/Turabian StylePorter, Hailee I., Imraan Alas, Nyssa K. Krull, Doug R. Braun, Scott R. Rajski, Brian T. Murphy, and Tim S. Bugni. 2025. "Evidence for Divergence of the Genus ‘Solwaraspora’ Within the Bacterial Family Micromonosporaceae" Microorganisms 13, no. 7: 1576. https://doi.org/10.3390/microorganisms13071576
APA StylePorter, H. I., Alas, I., Krull, N. K., Braun, D. R., Rajski, S. R., Murphy, B. T., & Bugni, T. S. (2025). Evidence for Divergence of the Genus ‘Solwaraspora’ Within the Bacterial Family Micromonosporaceae. Microorganisms, 13(7), 1576. https://doi.org/10.3390/microorganisms13071576