Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (555)

Search Parameters:
Keywords = Lipid emulsion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2318 KB  
Article
Orthorhombically Packed Cosmetic Oils or Formulations Could Ensure Skin Lipid Barrier Stability—An Ex Vivo Porcine Skin Study
by Yerin Yun and Seol-Hoon Lee
Dermato 2025, 5(4), 20; https://doi.org/10.3390/dermato5040020 - 3 Nov 2025
Viewed by 272
Abstract
Background: The lipid components of the skin barrier have the strongest structure when arranged in an orthorhombic packing. This structure can be influenced by the external supply of lipophilic ingredients. While the benefits of ceramide supplementation are well-documented, the effects of the [...] Read more.
Background: The lipid components of the skin barrier have the strongest structure when arranged in an orthorhombic packing. This structure can be influenced by the external supply of lipophilic ingredients. While the benefits of ceramide supplementation are well-documented, the effects of the cosmetic formulation’s oil-based ingredients have been less explored. Methods: The packing structures of commonly used oil and wax ingredients in cosmetics were analyzed using FT-IR. These components were then combined to formulate a cosmetic composition with an orthorhombic packing structure. The strength of the skin barrier was assessed by measuring transepidermal water loss (TEWL), and the lipid packing of the porcine skin was analyzed using FT-IR. Results: In cosmetic oil ingredients, structurally simple oils such as mineral oil and squalane exhibited orthorhombic lipid packing, while more complex oils like isopropyl myristate (IPM) and isononyl isononanoate (ININ) showed hexagonal packing. Based on these structural characteristics, cosmetic formulations were designed by selectively combining oils, waxes, and emulsifiers to achieve a desired packing structure. Formulations incorporating orthorhombically packed oils successfully resulted in orthorhombic overall structures, whereas those including hexagonally packed oils tended to form hexagonal packing. The orthorhombic oils and formulation effectively maintained the structure and function of the porcine skin lipid barrier without disruption. Conclusions: This study demonstrated that orthorhombic oils and emulsions with orthorhombic packing effectively maintained skin barrier integrity, unlike hexagonal structures. Full article
Show Figures

Figure 1

11 pages, 265 KB  
Article
Evaluating the Impact of Intralipid Infusion on Pregnancy Outcomes in Infertility Treatments: A Retrospective Study
by Shajna Kinarulla Kandi, Osama Oro Shareef, Abdelrahim Obeid, Mandy Abushama, Badreldeen Ahmed and Justin C. Konje
Reprod. Med. 2025, 6(4), 34; https://doi.org/10.3390/reprodmed6040034 - 1 Nov 2025
Viewed by 604
Abstract
Background: Infertility is a multifactorial condition that causes significant emotional distress and financial burden for couples. Despite advances in assisted reproductive technologies (ARTs), many patients experience recurrent implantation failure (RIF) or pregnancy loss. Intralipid, an intravenous lipid emulsion, has been proposed as [...] Read more.
Background: Infertility is a multifactorial condition that causes significant emotional distress and financial burden for couples. Despite advances in assisted reproductive technologies (ARTs), many patients experience recurrent implantation failure (RIF) or pregnancy loss. Intralipid, an intravenous lipid emulsion, has been proposed as an adjunctive therapy due to its immune-modulatory effects, particularly in reducing elevated natural killer (NK) cell activity, which may be associated with poor reproductive outcomes. This study evaluated the effect of intralipid infusion on pregnancy rates and miscarriage rates in women with recurrent implantation failure undergoing in vitro fertilization (IVF). Materials and Methods: This was a retrospective study of women who had suffered from recurrent implantation failure and underwent IVF between September 2023 and September 2024. A comparative group undergoing IVF but who did not have recurrent implantation failure matched for age was selected. Outcomes of clinical pregnancy, miscarriage and livebirth rates were compared in both groups. Results: A total of 113 women undergoing IVF were identified and 51 received intralipid. Intralipid was initiated at varying stages of the IVF process, a day before embryo transfer (ET) (18 or 35.3%), on the day of ET (20 or 39.2%) and after ET (13 or 25.5%). The clinical pregnancy rate was 44.2% in the treatment group compared to 29% in the comparator group (p < 0.05) while the miscarriage rates were 13.7% versus 11.3% (p > 0.05). Elevated NK cells were present in 65.4% of the patients who received intralipid, but the correlation between NK cell levels and pregnancy outcomes was weak (Spearman ρ = 0.032). No adverse effects were reported in any of the women. Conclusions: Intralipid infusion increased the successful pregnancy rates in women who had recurrent implantation failure during IVF. The successful pregnancy rate was significantly higher than that in those undergoing ART who had not suffered from RIF. These findings support several studies on the potential benefit and safety of intralipids in women undergoing ART, but the numbers remain small and more prospective studies are needed to confirm these findings Full article
20 pages, 2494 KB  
Article
Investigating Hybrid PLGA-Lipid Nanoparticles as an Innovative Delivery Tool for Palmitoylethanolamide to Muscle Cells
by Eleonora Maretti, Susanna Molinari, Sonia Partel, Beatrice Recchia, Cecilia Rustichelli and Eliana Leo
Pharmaceutics 2025, 17(11), 1412; https://doi.org/10.3390/pharmaceutics17111412 - 30 Oct 2025
Viewed by 461
Abstract
Background/Objectives: Palmitoylethanolamide (PEA) is an endogenous lipid mediator with endocannabinoid-like activity. Despite its therapeutic potential in muscle-related inflammatory disorders, including sarcopenia, its clinical use is limited by poor solubility and bioavailability. To overcome these issues, we developed hybrid nanoparticles combining poly(lactic-co-glycolic acid) (PLGA) [...] Read more.
Background/Objectives: Palmitoylethanolamide (PEA) is an endogenous lipid mediator with endocannabinoid-like activity. Despite its therapeutic potential in muscle-related inflammatory disorders, including sarcopenia, its clinical use is limited by poor solubility and bioavailability. To overcome these issues, we developed hybrid nanoparticles combining poly(lactic-co-glycolic acid) (PLGA) and lipids to enhance PEA encapsulation and ok delivery. Methods: PEA-loaded hybrid nanoparticles (PEA-Hyb-np) were produced via a modified single-emulsion solvent evaporation method using stearic acid and Gelucire® 50/13 as lipid components. Characterization included particle size, morphology, PDI, and zeta potential, as well as DSC, FT-IR, and XRD analyses. For the biological evaluation in a C2C12 myoblasts cell culture, coumarin-6-labeled nanoparticles were employed. Results: PEA-Hyb-np showed mean particle sizes of ~150 nm, with internal lipid–polymer phase separation. This structure enabled high encapsulation efficiency (79%) and drug loading (44.2 mg/g). Drug release in physiological and non-physiological media was enhanced due to drug amorphization, confirmed by DSC, FT-IR, and XRD analyses. Cytocompatibility studies showed no toxicity and improved cell viability compared to unloaded nanoparticles. Cellular uptake studies by confocal microscopy and flow cytometry demonstrated efficient and time-dependent internalization. Conclusions: PEA-Hyb-np represent a promising delivery platform to improve the solubility, bioavailability, and therapeutic efficacy of PEA for muscle-targeted applications. Full article
Show Figures

Graphical abstract

30 pages, 6021 KB  
Article
Encapsulation of Fish Oil in Pullulan/Sodium Caseinate Nanofibers: Fabrication, Characterization, and Oxidative Stability
by Suaad Dabora, Bo Jiang and Khin Su Su Hlaing
Foods 2025, 14(21), 3677; https://doi.org/10.3390/foods14213677 - 28 Oct 2025
Viewed by 296
Abstract
This study aims to enhance the oxidative stability of fish oil through encapsulation in pullulan/sodium caseinate (PUL/NaCAS) nanofibers. Electrospinning was employed to produce three formulations: control (0% fish oil) and samples with 5% and 10% fish oil. Characterization of the emulsions showed that [...] Read more.
This study aims to enhance the oxidative stability of fish oil through encapsulation in pullulan/sodium caseinate (PUL/NaCAS) nanofibers. Electrospinning was employed to produce three formulations: control (0% fish oil) and samples with 5% and 10% fish oil. Characterization of the emulsions showed that increasing oil content led to larger droplet size and reduced viscosity. Scanning electron microscopy (SEM) analysis revealed surface imperfections and a gradual increase in fiber diameter with higher oil loading. Fourier transform infrared (FTIR) spectroscopy confirmed molecular interactions, and fibers with 10% fish oil showed a shift toward a more amorphous structure. Fish oil incorporation also enhanced hydrophobicity and thermal stability, as indicated by thermal and wettability measurements. Antioxidant assays include 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and total phenolic content (TPC), which showed the highest bioactivity at 5% fish oil, with a slight decrease at 10%, likely due to structural saturation. Encapsulation at 5% fish oil significantly reduced lipid oxidation during storage (hydroperoxide values decreased from 8.6 to 4.8 mM at 60 °C/15 days), demonstrating the protective effect of the nanofiber matrix. Docking and density functional theory (DFT) analyses confirmed stable DHA/EPA–caseinate interactions and increased electronic stability, supporting the experimental results. Compared with conventional carriers such as spray-dried or maltodextrin-based systems, PUL/NaCAS nanofibers offered superior oxidative stability, bioactivity, and a biodegradable matrix. Overall, the 80PUL:20NaCAS:5% fish oil formulation represents a versatile platform for stabilizing omega-3 oils, with potential applications in food preservation, nutraceutical delivery, and functional packaging. Full article
Show Figures

Figure 1

25 pages, 4425 KB  
Review
Novel Ingredients: Hydroxytyrosol as a Neuroprotective Agent; What Is New on the Horizon?
by Lorena Martínez-Zamora
Foods 2025, 14(21), 3624; https://doi.org/10.3390/foods14213624 - 24 Oct 2025
Viewed by 1058
Abstract
Hydroxytyrosol (HXT), a phenolic compound from olive, shows great potential as a neuroprotective agent and a translational target for claim-ready nutrition and food products. Human studies increasingly report benefits for vascular function, inflammatory tone, and early cognitive/psychomotor outcomes, consistent with engagement of redox [...] Read more.
Hydroxytyrosol (HXT), a phenolic compound from olive, shows great potential as a neuroprotective agent and a translational target for claim-ready nutrition and food products. Human studies increasingly report benefits for vascular function, inflammatory tone, and early cognitive/psychomotor outcomes, consistent with engagement of redox and signalling pathways (Keap1–Nrf2–ARE, PI3K/Akt–ERK, and AMPK–SIRT1–PGC-1α). HXT is rapidly absorbed and likely reaches the brain, acting on endothelial and microglial targets. On the neurovascular axis, it reduces oxidative stress, preserves nitric-oxide bioavailability, lower inflammatory markers, and favourable intrinsic connectivity. For product development, bitterness from oleuropein-rich inputs can be mitigated by hydrolysis, followed by structure-guided delivery to balance sensory quality with exposure. Viable formats include cyclodextrin inclusion, microencapsulation, and (micro)emulsions in lipid matrices, plus stability engineering for aqueous systems (acidification, chelation, low-oxygen handling, or barrier packaging). Matrix effects are consequential; some proteins and fibers may decrease HXT bioaccessibility, whereas lipid phases and microstructured carriers often enhance it. Clinically, recommended doses are ~7–15 mg/day chronically and ~30–60 mg acutely. As conclusions of this review, future work should prioritize harmonized pharmacokinetics–pharmacodynamics readouts, cognition anchored to a compact neurovascular/blood–brain barrier biomarker core, and head-to-head comparisons of manufacturable delivery formats. Full article
(This article belongs to the Special Issue Advances on Functional Foods with Antioxidant Bioactivity)
Show Figures

Graphical abstract

21 pages, 3828 KB  
Article
Spray-Dried Multiple Emulsions as Co-Delivery Systems for Chlorogenic Acid and Curcumin
by Javier Paredes-Toledo, Javier Herrera, Estefanía González, Paz Robert and Begoña Giménez
Antioxidants 2025, 14(10), 1257; https://doi.org/10.3390/antiox14101257 - 20 Oct 2025
Viewed by 548
Abstract
The low stability and bioaccessibility of polyphenols limit their application in functional foods. To address this, chlorogenic acid (CGA) and curcumin (CU) were selected as model compounds and co-encapsulated in spray-dried linseed oil (LO) multiple emulsions (MEs), using octenyl succinic anhydride-modified waxy maize [...] Read more.
The low stability and bioaccessibility of polyphenols limit their application in functional foods. To address this, chlorogenic acid (CGA) and curcumin (CU) were selected as model compounds and co-encapsulated in spray-dried linseed oil (LO) multiple emulsions (MEs), using octenyl succinic anhydride-modified waxy maize starch as encapsulating agent. Water-in-oil-in-water MEs were prepared by two-step high-pressure homogenization and spray-dried under optimized conditions determined by response surface methodology to minimize surface oil. The resulting microparticles were characterized for encapsulation efficiency (EE), morphology, oxidative stability, and performance under simulated gastrointestinal digestion (INFOGEST protocol). Both CGA and CU exhibited high EE in microparticles (~88–90%), with spray drying significantly improving CGA retention compared to liquid emulsions. Microparticles also showed improved oxidative stability due to the presence of antioxidants. During digestion, CU bioaccessibility decreased (62.7%) relative to liquid MEs (83.6%), consistent with reduced lipid digestion. Conversely, CGA bioaccessibility was higher in microparticles (47.6%) than in MEs (29.2%), indicating a protective effect of the encapsulating agent under intestinal conditions. Overall, spray drying stabilized linseed oil-based MEs and enabled effective co-encapsulation of hydrophilic and lipophilic compounds, supporting their potential as multifunctional delivery systems for functional foods. Full article
Show Figures

Graphical abstract

32 pages, 3559 KB  
Article
Functional and Sensory Properties of Pâtés Formulated with Emulsions from Chicken By-Products
by Zhanibek Yessimbekov, Eleonora Okuskhanova, Anuarbek Suychinov, Guldana Kapasheva, Baktybala Kabdylzhar, Assel Dautova, Alibek Muratbayev and Madina Jumazhanova
Foods 2025, 14(20), 3488; https://doi.org/10.3390/foods14203488 - 13 Oct 2025
Viewed by 688
Abstract
This study evaluated the potential of chicken by-products (hearts, gizzards, and skin) as functional raw materials for protein–fat emulsions to partially replace animal fat in pâtés. Five variants of pâté (PV1–PV5) were prepared, including a control without emulsion and four samples with increasing [...] Read more.
This study evaluated the potential of chicken by-products (hearts, gizzards, and skin) as functional raw materials for protein–fat emulsions to partially replace animal fat in pâtés. Five variants of pâté (PV1–PV5) were prepared, including a control without emulsion and four samples with increasing emulsion levels. Emulsions were formulated from chicken by-product mixtures and vegetable oil with potato starch, sodium bicarbonate, and salt to improve solubility and viscosity. The chemical composition of by-product mixtures varied with organ ratio: heart-rich mixtures supplied higher protein, supporting emulsion stability, whereas skin-rich mixtures contributed more fat for texture. Emulsion composition ranged from 6.6–8.1% protein, 19.1–28.4% fat, and 56.7–66.9% moisture. Functional properties depended on formulation balance: water-holding (58–67%), fat retention (70–83%), emulsifying capacity (50–62%), and stability (47–55%). Variant 5 achieved the most favorable combination of composition, stability, and viscosity. In pâtés, emulsion addition reduced protein and fat but increased ash and carbohydrate contents (p < 0.05), improving hydration and stability. Fat retention rose up to 83% and emulsion stability up to 62%. Drip loss declined markedly from 9.2% in the control to 3.6% in Variant 5, while yield stress decreased by 25%, producing softer, more spreadable products. Sensory evaluation favored emulsion-containing samples, with PV-5 scoring highest in texture and appearance. TBARS values rose with the amount of emulsion due to higher PUFA, but acid numbers increased more slowly, indicating reduced hydrolytic rancidity. Overall, pâté with 25% of emulsion offered the best balance of technological performance, sensory quality, and lipid stability, highlighting chicken by-products as sustainable emulsifiers in pâté production. Full article
Show Figures

Figure 1

22 pages, 1041 KB  
Review
Cannabidiol Encapsulation in Polymeric Hydrogels and Its Controlled Release: A Review
by Víctor M. Ovando-Medina, Carlos A. García-Martínez, Lorena Farias-Cepeda, Iveth D. Antonio-Carmona, Andrés Dector, Juan M. Olivares-Ramírez, Alondra Anahí Ortiz-Verdin, Hugo Martínez-Gutiérrez and Erika Nohemi Rivas Martínez
Gels 2025, 11(10), 815; https://doi.org/10.3390/gels11100815 - 11 Oct 2025
Viewed by 840
Abstract
Cannabidiol (CBD) and its derivatives show interesting therapeutic potential, including antioxidant, anti-inflammatory, and anticancer properties; however, their clinical translation remains a complex task due to physicochemical restrictions such as low water solubility, high lipophilicity, and instability under light, oxygen, and high temperatures. Polymeric [...] Read more.
Cannabidiol (CBD) and its derivatives show interesting therapeutic potential, including antioxidant, anti-inflammatory, and anticancer properties; however, their clinical translation remains a complex task due to physicochemical restrictions such as low water solubility, high lipophilicity, and instability under light, oxygen, and high temperatures. Polymeric encapsulation has emerged as a promising strategy to overcome these challenges, offering protection against environmental degradation, improved bioavailability, and controlled release. Natural and synthetic polymers, both biocompatible and biodegradable, provide versatile matrices for CBD delivery, enabling nanoparticle formation, targeted transport, and enhanced pharmacokinetics. This review highlights the structural characteristics of CBD, its interaction mechanisms with polymeric matrices such as hydrogels, electrospun nanofibers, biodegradable microparticles, thin films, and lipid-polymer hybrid systems, and the principal encapsulation techniques, such as emulsion solvent evaporation, electrospinning, and supercritical fluid technologies, that facilitate stability and scalability. Furthermore, material characterization approaches, including microscopy, thermal, and degradation analyses, are discussed as tools for optimizing encapsulation systems. While notable advances have been made, key challenges remain in achieving reproducible large-scale production, ensuring regulatory compliance, and designing smart polymeric carriers personalized for specific therapeutic contexts. By addressing these gaps, polymer-based encapsulation may unlock new opportunities for CBD in pharmaceutical, nutraceutical, and therapeutic applications, providing a guide for future innovation and translation into effective patient-centered products. Full article
(This article belongs to the Special Issue Composite Hydrogels for Biomedical Applications)
Show Figures

Figure 1

18 pages, 2202 KB  
Article
Modulation of Piceatannol Skin Diffusion by Spilanthol and UV Filters: Insights from the Strat-M™ Model
by Gisláine C. da Silva, Rodney A. F. Rodrigues and Carla B. G. Bottoli
Dermato 2025, 5(4), 19; https://doi.org/10.3390/dermato5040019 - 7 Oct 2025
Viewed by 554
Abstract
Background: currently, there is a growing trend toward multifunctional cosmetics, which combine several active ingredients in a single product to enhance efficacy and user convenience. As ingredients may influence one another, it is important to study the behavior of mixing multiple compounds in [...] Read more.
Background: currently, there is a growing trend toward multifunctional cosmetics, which combine several active ingredients in a single product to enhance efficacy and user convenience. As ingredients may influence one another, it is important to study the behavior of mixing multiple compounds in complex formulations, especially regarding their interaction with the skin. Piceatannol, for instance, is a naturally occurring stilbene recognized for its in vitro potent antioxidant, anti-inflammatory, and anti-aging activities, making it a promising candidate for dermocosmetic use in suncare. But despite its beneficial biological activities, its cutaneous permeation remains poorly understood, particularly when delivered from complex formulations containing multiple ingredients. Objectives: in this sense, this study aimed to evaluate the in vitro skin diffusion profile of piceatannol from a passion fruit seed extract (Pext) incorporated into a topical base (Bem) or an organic sunscreen emulsion (Oem), with or without a spilanthol-rich Acmella oleracea extract (Jext) used as a natural permeation enhancer. Methods: due to ethical and variability issues with human and animal skins, the Strat-M™ synthetic membrane was chosen as a standardized model for the in vitro skin permeation assays. Piceatannol localization within membrane layers was examined by confocal Raman microscopy (CRM), while compound identification in donor and receptor compartments was performed via UHPLC-DAD. Results: piceatannol from Bem was detected up to 140 µm from the Strat-M™ surface and exceeded 180 µm in depth when Jext and organic sunscreens were included in the formulation. Notably, formulations containing Jext and those based on Oem promoted enhanced accumulation in both the stratum corneum and deeper skin layers, suggesting an improved delivery potential in lipid-rich vehicles. Conclusions: even though some instability issues were observed, piceatannol penetration into Strat-M™ from the proposed formulations was confirmed, and the results provide a foundation for further research on its topical delivery, supporting the rational development of formulations capable of harnessing its demonstrated biological properties. Full article
(This article belongs to the Special Issue Systemic Photoprotection: New Insights and Novel Approaches)
Show Figures

Figure 1

14 pages, 1581 KB  
Article
Physicochemical Morphological Evaluation and Stability Assessment of Nanoemulsions Containing Nutrients for Parenteral Nutrition
by Panos Papandreou, Efstathia Triantafyllopoulou, Ioannis Pispas, Sophia Havaki, Aristeidis Papagiannopoulos, Vassilis G. Gorgoulis and Natassa Pippa
Colloids Interfaces 2025, 9(5), 64; https://doi.org/10.3390/colloids9050064 - 25 Sep 2025
Viewed by 531
Abstract
Parenteral nutrition is an integral part of the nutritional support of critically ill neonates, infants, and children in the intensive care units (ICUs) and at home. Therefore, the adequacy and the effectiveness of parenteral nutrition, PN, support are among the major concerns of [...] Read more.
Parenteral nutrition is an integral part of the nutritional support of critically ill neonates, infants, and children in the intensive care units (ICUs) and at home. Therefore, the adequacy and the effectiveness of parenteral nutrition, PN, support are among the major concerns of doctors and pharmacists. The aim of this study is the physicochemical and stability evaluation of nanoemulsions, which are used for parenteral nutrition. These nanoemulsions are for intravenous (IV) administration of lipids, amino acids, glucose, electrolytes, trace elements as well as vitamins. Light scattering techniques are used for the identification of the hydrodynamic diameter (Dh), size polydispersity index (PDI), and the ζ-potential of the prepared nanoemulsions. Stability assessment is performed in different conditions, mimicking those of the hospital. The stability studies involve shelf-life measurement of these NEs over 10 days in two storage conditions (25 °C and 4 °C) using dynamic light scattering. According to the US Pharmacopeia, the droplet size should be under the upper limit of 500 nm (0.5 μm). Transmission electron microscopy (TEM) is used for the shape of the droplets of the nanoemulsion emulsion for parenteral nutrition for the first time. The results showed that the droplet size was around 300 nm, with a homogeneous population and negative ζ-potential. The morphology was vesicular and spherical, typical for NE droplet shape. The results from all the characterization techniques show that the formulations meet the high-quality standards of nanoemulsions for neonates, infants and children. Full article
Show Figures

Figure 1

20 pages, 3324 KB  
Article
Microencapsulation of Camellia oleifera Seed Oil Emulsion By-Products: Structural Characterization and Lipidomics Analysis
by Xue Wu, Yunhe Chang, Mingfa Song, Juncai Hou and Hongxia Feng
Foods 2025, 14(19), 3314; https://doi.org/10.3390/foods14193314 - 24 Sep 2025
Viewed by 688
Abstract
To unlock the potential value of the emulsified by-product from the aqueous enzymatic extraction (AEE) of Camellia oleifera seed oil, this study introduced an innovative approach for its food industrial application. We applied spray-drying microencapsulation technology to convert the emulsion-phase (EP) by-product into [...] Read more.
To unlock the potential value of the emulsified by-product from the aqueous enzymatic extraction (AEE) of Camellia oleifera seed oil, this study introduced an innovative approach for its food industrial application. We applied spray-drying microencapsulation technology to convert the emulsion-phase (EP) by-product into value-added microcapsules (EPM). The properties of EPM were systematically compared with those of microcapsules derived from the oil phase (OPM). The encapsulation efficiencies of EPM and OPM were 83.94% and 86.53%, respectively. Scanning electron microscopy revealed the formation of irregular spheroids with smooth surfaces and intact structures, with EPM exhibiting superior particle uniformity (D50 = 1.11 μm) compared to OPM (D50 = 2.30 μm). Fourier-transform infrared spectroscopy confirmed the successful encapsulation of EP. Differential scanning calorimetry indicated good thermal stability of the microcapsules, and the oxidative stability of EPM (24.75 h) was 9.2 times higher than that of the unencapsulated EP and 13.15 h longer than that of OPM. Lipidomic analysis using LC-MS/MS identified 477 lipid species across five subclasses—glycerolipids, glycerophospholipids, fatty acids, prenol lipids, and sphingolipids—revealing distinct lipid profiles between EPM and OPM. This microencapsulation strategy offers a sustainable approach to valorize aqueous enzymatic extraction by-products, with promising applications in functional foods and nutraceuticals, thereby enhancing the economic and environmental sustainability of Camellia oleifera seed oil processing. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

19 pages, 3379 KB  
Article
Anti-Obesity Potential of Modified Pomelo-Peel Dietary Fiber-Based Pickering Emulsion
by Kaitao Peng, Shiyi Tian, Shuang Bi, Xian Cui, Kaili Gao and Yuhuan Liu
Nutrients 2025, 17(19), 3036; https://doi.org/10.3390/nu17193036 - 23 Sep 2025
Cited by 1 | Viewed by 658
Abstract
Objectives: In response to the high prevalence of global obesity and associated metabolic diseases, this study aimed to investigate the effects of Pickering emulsions stabilized by cellulase-hydrolyzed pomelo peel insoluble dietary fiber (IDF), namely EPI and its octenyl succinic anhydride (OSA)-modified form (OSA-EPI), [...] Read more.
Objectives: In response to the high prevalence of global obesity and associated metabolic diseases, this study aimed to investigate the effects of Pickering emulsions stabilized by cellulase-hydrolyzed pomelo peel insoluble dietary fiber (IDF), namely EPI and its octenyl succinic anhydride (OSA)-modified form (OSA-EPI), on alleviating high-fat diet (HFD)-induced metabolic disorders in mice. Methods: Male C57BL/6J mice were subjected to an HFD-induced obesity model. Biochemical index determination, histopathological examination, gut microbiota analysis, and short-chain fatty acids (SCFAs) analysis were used to study the potential efficacy of pomelo peel IDF-based emulsion (EPI and OSA-EPI) in alleviating obesity and related metabolic diseases. Results: The findings demonstrated that both emulsions effectively mitigated HFD-induced health impairments: reduced weight gain, improved blood glucose and lipid profiles, attenuated tissue steatosis and inflammation, and lowered oxidative stress. Furthermore, both EPI and OSA-EPI restored gut microbiota diversity, promoted the proliferation of beneficial bacterial taxa (e.g., Akkermansia), and inhibited the growth of harmful genera (e.g., Muribaculum, Faecalibaculum). These changes were accompanied by increased production of SCFAs. Conclusions: This study confirms that modified pomelo peel IDF can effectively exert the health intervention effect of IDF on obesity when used as an emulsion stabilizer, providing a robust scientific foundation for the application of emulsified dietary fibers in combating obesity and related metabolic disorders. Full article
Show Figures

Graphical abstract

20 pages, 735 KB  
Article
Chemical, Bioactive, and Functional Characterization of a Protein Preparation from Prunus padus L. Flour
by Izabela Kusak, Joanna Miedzianka, Agnieszka Nemś, Alicja Kosmenda and Szymon Wolny
Molecules 2025, 30(18), 3766; https://doi.org/10.3390/molecules30183766 - 16 Sep 2025
Viewed by 566
Abstract
This study analyzed the chemical, functional, and bioactive properties of a protein preparation obtained from bird cherry (Prunus padus L.) flour. The extraction process significantly increased the protein content from 15.44 g/100 g to 39.72 g/100 g and altered the lipid composition, [...] Read more.
This study analyzed the chemical, functional, and bioactive properties of a protein preparation obtained from bird cherry (Prunus padus L.) flour. The extraction process significantly increased the protein content from 15.44 g/100 g to 39.72 g/100 g and altered the lipid composition, with an increase in saturated and polyunsaturated fatty acids. The protein preparation exhibited high solubility (76%) and water-binding capacity, demonstrating technological potential for use in the production of plant-based beverages and emulsions. Changes in color and emulsifying properties indicated its suitability for incorporation into colored food products. The analysis of total phenolic content, antioxidant activity, and amygdalin showed that the extraction process largely retained these bioactive properties, although individual phenolic compounds were not profiled. This study is the first to provide a comprehensive characterization of the protein fraction from Prunus padus L. flour, encompassing chemical, functional, and bioactive properties, thereby filling a significant gap in the literature. In summary, bird cherry flour is an attractive source of natural proteins and bioactive compounds, with potential applications in the food industry, while maintaining a favorable nutritional and functional profile. To date, no comprehensive chemical, functional, and bioactive characterization of the protein fraction from Prunus padus L. flour has been reported. Full article
Show Figures

Figure 1

17 pages, 2006 KB  
Article
Valorization of Coffee Pulp: Spray-Dried Hemp Oil Microcapsules Stabilized with Coffee Pectin and Maltodextrin
by Ozan Kahraman, Greg E. Petersen and Christine Fields
Sustainability 2025, 17(18), 8152; https://doi.org/10.3390/su17188152 - 10 Sep 2025
Viewed by 752
Abstract
The global challenge of food waste presents an opportunity to explore the untapped potential of agricultural by-products. Coffee pulp, a major by-product of the coffee industry, is a promising source of functional polysaccharides such as coffee pectin, which can be valorized for sustainable [...] Read more.
The global challenge of food waste presents an opportunity to explore the untapped potential of agricultural by-products. Coffee pulp, a major by-product of the coffee industry, is a promising source of functional polysaccharides such as coffee pectin, which can be valorized for sustainable applications in food systems. This study investigates the microencapsulation of hemp seed oil—rich in essential fatty acids and bioactive lipids—using coffee pectin and maltodextrin as wall materials via spray drying. Emulsions with varying oil-to-wall ratios were formulated and characterized for viscosity, particle size, and zeta potential. The resultant microcapsules were analyzed for physicochemical properties, encapsulation efficiency, oxidative stability (peroxide value), and in vitro release in simulated gastrointestinal fluids. Encapsulation efficiencies ranged from 63.27% to 70.77%, with lower oil content formulations exhibiting higher efficiency. The peroxide values indicated enhanced oxidative stability, with the lowest value (10.69 meq O2/kg oil) observed in the most efficient encapsulation formulation. Microcapsule morphology analysis confirmed the formation of spherical particles with varying degrees of surface roughness. Release studies demonstrated controlled oil delivery, with higher retention in gastric conditions and progressive release in intestinal fluids. These findings demonstrate the potential of upcycled coffee pulp-derived pectin as a functional, sustainable encapsulant, aligning with circular economy principles and supporting the development of stable bioactive delivery systems for nutraceutical and food applications. Full article
Show Figures

Figure 1

22 pages, 1043 KB  
Article
Strategies for Reducing Fat in Mayonnaise and Their Effects on Physicochemical Properties
by Cecilia Abirached, María Noel Acuña, Tatiana Carreras and Ignacio Vieitez
Foods 2025, 14(17), 3133; https://doi.org/10.3390/foods14173133 - 8 Sep 2025
Viewed by 1814
Abstract
Mayonnaise is a widely consumed food emulsion. Traditional mayonnaise contains approximately 70–80% lipids, making it a high-fat, calorie-dense food. This study aimed to develop a reduced-fat mayonnaise with physicochemical properties comparable to commercial low-fat formulations but with a lower oil content (<30%). Three [...] Read more.
Mayonnaise is a widely consumed food emulsion. Traditional mayonnaise contains approximately 70–80% lipids, making it a high-fat, calorie-dense food. This study aimed to develop a reduced-fat mayonnaise with physicochemical properties comparable to commercial low-fat formulations but with a lower oil content (<30%). Three formulations were prepared using canola oil and high-oleic sunflower oil at different concentrations (10%, 15%, and 30%), with and without the addition of synthetic antioxidants (BHA and BHT). Guar gum was used to control the viscosity of the continuous phase, adjusting its concentration between 0.75% and 1.55%. The formulations were compared with a commercial low-fat sample (MH) in terms of flow and rheological properties, color, phase separation stability, particle size, microscopy, and oxidative stability. The formulations exhibited flow behavior and Konini’s viscosity similar to MH. The 15% oil formulation (MHO-15%) had a particle size comparable to MH. Both MH and the experimental formulations exhibited a weak gel structure. To achieve the characteristic yellow color, β-carotene should be added to MHO-15%. Formulations containing canola oil and those without antioxidants showed higher susceptibility to oxidation, leading to the selection of high-oleic oil with added antioxidants. Based on these findings, a potential reduced-fat mayonnaise-type sauce could be formulated by decreasing lipid content from 30% to 15%. Full article
(This article belongs to the Special Issue Healthy Lipids for Food Processing)
Show Figures

Figure 1

Back to TopTop