Strategies for Reducing Fat in Mayonnaise and Their Effects on Physicochemical Properties
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Determination of the Centesimal Composition of Egg Yolk
2.3. Preparation of Reduced-Fat Mayonnaise-Type Sauces
2.4. Determination of Flow and Rheological Behavior
2.5. Phase Separation Stability
2.6. Microstructure Determination
2.7. Particle Size Measurement
2.8. pH Measurement
2.9. Color Measurement
2.10. Determination of Fatty Acid Composition and Tocopherols Content of High-Oleic Sunflower and Canola Oils
2.11. Study of Oxidative Stability
2.12. Statistical Analysis
3. Results and Discussion
3.1. Proximal Composition of Pasteurized Liquid Egg Yolk
3.2. Formulation, Flow Behavior, and Rheological Characterization of Mayonnaise-Type Sauce
3.2.1. Formulation of Mayonnaise-Type Sauces
3.2.2. Flow Behavior of Mayonnaise-Type Sauce
3.2.3. Rheological Characterization of Mayonnaise-Type Sauce
Sample | D(3,2) (µm) Initial | D(3,2) (µm) 3 Months | D(4,3) (µm) Initial | D(4,3) (µm) 3 Months | |∆BS| (%) |
---|---|---|---|---|---|
MH | (4.25 ± 0.29) b,A | (4.06 ± 0.31) c,A | (15.01 ± 0.66) b,A | (15.50 ± 0.83) b,A | (0.54 ± 0.17) b |
MHO-10% | (4.03 ± 0.08) b,A | (3.67 ± 0.32) b,A | (23.55 ± 1.37) c,A | (21.91 ± 0.93) d,A | (4.02 ± 0.37) a |
MHO-15% | (3.24 ± 0.12) a,A | (3.19 ± 0.23) a,A | (13.97 ± 5.26) a,b,A | (17.66 ± 0.75) c,A | (5.16 ± 0.19) a |
MHO-30% | (3.29 ± 0.48) a,A | (2.84 ± 0.40) a,A | (11.15 ± 2.70) a,A | (10.24 ± 2.79) a,A | (5.09 ± 0.83) a |
3.3. Microstructure, Particle Size, and Stability
3.3.1. Microstructure
3.3.2. Particle Size
3.3.3. Storage Stability
3.4. pH
3.5. Color
3.6. Fatty Acid Composition of Oils and Oxidative Stability
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AOAC | Association of Official Analytical Chemists |
AOCS | American Oil Chemists’ Society |
BHA | Butylated hydroxyanisole |
BHT | Butylated hydroxytoluene |
BS | Backscattering |
│ΔBS│ | Variation in BS between time zero and 3 months of storage |
D(3,2), D(4,3) | Sauter and De Brouckere diameters, respectively |
EDTA | Ethylenediaminetetraacetic acid |
F1, F2, F3 | Formulations of Mayonnaise-Type Sauce, 10%, 15%, 30% of oil, respectively |
FID | Flame Ionization Detector |
GC | Gas chromatography |
GG | Guar gum |
HDLs | High-density lipoproteins |
IP | Induction period |
IUPAC | International Union of Pure and Applied Chemistry |
LDLs | Low-density lipoproteins |
LEY | Lyophilized egg yolk |
MC | Formulations of Mayonnaise-Type Sauce, X% (10, 15 or 30) of canola oil |
MH | commercial mayonnaise |
MHO-X% | Formulations of Mayonnaise-Type Sauce, X% (10, 15 or 30) of sunflower high-oleic oil |
MHO-X%-A | Formulations of Mayonnaise-Type Sauce, X% (10, 15 or 30) of sunflower high-oleic oil with antioxidant |
O/W | Oil in water emulsion |
RBN | National Food Regulation (Reglamento Bromatológico Nacional) |
TBHQ | Tertiary butylhydroquinone |
τ | Shear stress |
τ0 | Yield stress |
K | Consistency index |
is the shear rate | |
n | Flow behavior index |
G’ and G’’ | Elastic and viscous modulus, respectively |
τy | Yield point |
τf | Flow point |
LVER | Linear viscoelastic region |
δ | Phase angle |
L*, a*, b* | Luminosity, red-green and yellow-blue coordinates, respectively |
References
- Kryskova, L.; Spivak, S. Developing a Strategy for Improving Mayonnaise with Different Proportions of Vegetable Oils. Technol. Audit Prod. Reserves 2023, 4, 15–18. [Google Scholar] [CrossRef]
- Katsaros, G.; Tsoukala, M.; Giannoglou, M.; Taoukis, P. Effect of Storage on the Rheological and Viscoelastic Properties of Mayonnaise Emulsions of Different Oil Droplet Size. Heliyon 2020, 6, e05788. [Google Scholar] [CrossRef] [PubMed]
- Ess Team. Top 10 Countries That Consume the Most Mayonnaise Per Capita in the World. Available online: https://essfeed.com/top-10-countries-consuming-the-most-mayonnaise-per-capita-top-10-countries-consuming-the-most-mayonnaise-per-capita/ (accessed on 18 August 2025).
- Ministerio de Salud Pública. Reglamento Bromatológico Nacional; IMPO: Montevideo, Uruguay, 2012. [Google Scholar]
- McClements, D.J. Future Foods: Is It Possible to Design a Healthier and More Sustainable Food Supply? Nutr. Bull. 2020, 45, 341–354. [Google Scholar] [CrossRef]
- Tetra Pack. 3 Global Food Trends and the Challenges They Pose for Mayonnaise Producers. Available online: https://www.tetrapak.com/insights/cases-articles/food-trends-for-mayonnaise (accessed on 18 August 2025).
- Mirzanajafi-Zanjani, M.; Yousefi, M.; Ehsani, A. Challenges and Approaches for Production of a Healthy and Functional Mayonnaise Sauce. In Food Science and Nutrition; Wiley-Blackwell: Hoboken, NJ, USA, 2019; pp. 2471–2484. [Google Scholar] [CrossRef]
- Carcelli, A.; Crisafulli, G.; Carini, E.; Vittadini, E. Can a Physically Modified Corn Flour Be Used as Fat Replacer in a Mayonnaise? Eur. Food Res. Technol. 2020, 246, 2493–2503. [Google Scholar] [CrossRef]
- Ma, Z.; Boye, J.I. Advances in the Design and Production of Reduced-Fat and Reduced-Cholesterol Salad Dressing and Mayonnaise: A Review. In Food and Bioprocess Technology; Springer Science and Business Media, LLC.: Berlin/Heidelberg, Germany, 2013; pp. 648–670. [Google Scholar] [CrossRef]
- Wang, W.; Hu, C.; Sun, H.; Zhao, J.; Xu, C.; Ma, Y.; Ma, J.; Jiang, L.; Hou, J. Physicochemical Properties, Stability and Texture of Soybean-Oil-Body-Substituted Low-Fat Mayonnaise: Effects of Thickeners and Storage Temperatures. Foods 2022, 11, 2201. [Google Scholar] [CrossRef]
- Chung, C.; McClements, D.J. Structure-Function Relationships in Food Emulsions: Improving Food Quality and Sensory Perception. Food Struct. 2014, 1, 106–126. [Google Scholar] [CrossRef]
- McClements, D.J. Food Emulsions: Principles, Practices, and Techniques, 3rd ed.; CRC Press: Boca Ratón, FL, USA, 2016. [Google Scholar]
- Duncan, S.E. Fats: Mayonnaise. In Food Processing: Principles and Applications; Scott Smith, J., Hui, Y.H., Eds.; Blackwell Publishing: Ames, IA, USA, 2004; pp. 329–341. [Google Scholar] [CrossRef]
- Bautista Villarreal, M.; Gallardo Rivera, C.T.; Márquez, E.G.; Rodríguez, J.R.; González, M.A.N.; Montes, A.C.; Báez González, J.G. Comparative Reduction of Egg Yolk Cholesterol Using Anionic Chelating Agents. Molecules 2018, 23, 3204. [Google Scholar] [CrossRef]
- Nilsson, L.; Osmark, P.; Fernandez, C.; Bergenståhl, B. Competitive Adsorption of Proteins from Total Hen Egg Yolk during Emulsification. J. Agric. Food Chem. 2007, 55, 6746–6753. [Google Scholar] [CrossRef]
- Liu, H.; Xu, X.M.; Guo, S.D. Rheological, Texture and Sensory Properties of Low-Fat Mayonnaise with Different Fat Mimetics. LWT 2007, 40, 946–954. [Google Scholar] [CrossRef]
- Ouerfelli, M.; Almajano, M. del P. Estabilidad Oxidativa de Emulsiones Alimentarias de Aceite En Agua. Tecnifood 2021, 133, 106–108. [Google Scholar] [CrossRef]
- Xu, X.; Liu, A.; Hu, S.; Ares, I.; Martínez-Larrañaga, M.R.; Wang, X.; Martínez, M.; Anadón, A.; Martínez, M.A. Synthetic Phenolic Antioxidants: Metabolism, Hazards and Mechanism of Action. Food Chem. 2021, 353, 129488. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists. Official Methods of Analysis, 15th ed.; AOAC International: Gaithersburg, MD, USA, 1999. [Google Scholar]
- Hara, A.; Radin, N.S. Lipid Extraction of Tissues with a Low-Toxicity Solvent. Anal. Biochem. 1978, 90, 420–426. [Google Scholar] [CrossRef]
- Wendin, K.; Aaby, K.; Edris, A.; Ellekjaer, M.R.; Albin, R.; Bergenståhl, B.; Johansson, L.; Willers, E.P.; Solheim, R. Low-Fat Mayonnaise: Influences of Fat Content, Aroma Compounds and Thickeners. Food Hydrocoll. 1997, 11, 87–99. [Google Scholar] [CrossRef]
- Li, J.; Chen, J.; Bi, Y.; Yang, H. Insight into Synergistic Antioxidation Mechanisms of Butyl Hydroxyanisole with Common Synthetic Antioxidants. Grain Oil Sci. Technol. 2022, 5, 114–130. [Google Scholar] [CrossRef]
- Tabilo-Munizaga, G.; Barbosa-Cánovas, G.V. Rheology for the Food Industry. J. Food Eng. 2005, 67, 147–156. [Google Scholar] [CrossRef]
- Regalado Méndez, A.; Noriega Ramos, O.A. Comportamiento Reológico de Un Fluido. Ciencia Mar 2008, 36, 35–42. [Google Scholar]
- Mezger, T. Reología Aplicada—En El Camino de La Reología Con Joe Flow; Anton Paar GmbH: Graz, Austria, 2018. [Google Scholar]
- Huck-Iriart, C.; Candal, R.J.; Herrera, M.L. Effect of Processing Conditions and Composition on Sodium Caseinate Emulsions Stability. Procedia Food Sci. 2011, 1, 116–122. [Google Scholar] [CrossRef]
- Bonifacino, C.; López, D.N.; Palazolo, G.G.; Panizzolo, L.A.; Abirached, C. Optimization of Emulsification Conditions with Rice Bran Concentrates for the Preliminary Formulation of Potential Vegan Dressings and Their Characterization. J. Food Sci. 2024, 89, 2174–2187. [Google Scholar] [CrossRef] [PubMed]
- International Union of Pure and Applied Chemistry. Standard Methods for the Analysis of Oils, Fats and Derivatives; IUPAC: Oxford, UK, 1992; p. 151. [Google Scholar]
- American Oil Chemists’ Society. Official Methods and Recommended Practices of the American Oil Chemists’ Society, 4th ed.; Firestone, D., Ed.; American Oil Chemists’ Society: Champaign, IL, USA, 1990. [Google Scholar]
- Gunstone, F.D.; Hilditch, T.P. The Autoxidation of Methyl Oleate in Presence of Small Proportions of Methyl Linoleate. J. Chem. Soc. 1946, 0, 1022–1025. [Google Scholar] [CrossRef]
- Cosgrove, J.P.; Church, D.F.; Pryor, W.A. The Kinetics of the Autoxidation of Polyunsaturated Fatty Acids. Lipids 1987, 22, 299–304. [Google Scholar] [CrossRef] [PubMed]
- Andrikopoulos, N.K.; Brueschweilet, H.; Felber, H.; Taeschler, C. HPLC Analysis of Phenolic Antioxidants, Tocopherols and Triglycerides. J. Am. Oil Chem. Soc. 1991, 68, 359–364. [Google Scholar] [CrossRef]
- Yim, H.S.; Chye, Y.; Liow, M.L.; Ho, C.W. Antioxidant Potential of Pleurotus Porrigens Extract and Application in Sunflower Oil during Accelerated Storage. Chiang Mai J. Sci. 2013, 40, 34–38. [Google Scholar]
- Koppmann, M. El Huevo: Un Abanico de Aplicaciones Culinarias. Ciencia Hoy 2012, 22, 53–55. [Google Scholar]
- Herrera Fontana, M.E.; Chisaguano, A.M.; Jumbo, J.V.; Castro Morrillo, N.P.; Achundía Ortega, A.P. Tabla de Composición de Alimentos Usfq. Bitácora Académica USFQ 2021, 11, 7–66. [Google Scholar]
- Ministerio de Trabajo y Seguridad Social; Instituto Nacional de Alimentación; Universidad de la República; Facultad de Química. Tabla de Composición de Alimentos de Uruguay; MTSS: Montevideo, Uruguay, 2002. [Google Scholar]
- Patil, U.; Benjakul, S. Physical and Textural Properties of Mayonnaise Prepared Using Virgin Coconut Oil/Fish Oil Blend. Food Biophys. 2019, 14, 260–268. [Google Scholar] [CrossRef]
- Rojas-Martin, L.; Quintana, S.E.; García-Zapateiro, L.A. Physicochemical, Rheological, and Microstructural Properties of Low-Fat Mayonnaise Manufactured with Hydrocolloids from Dioscorea Rotundata as a Fat Substitute. Processes 2023, 11, 492. [Google Scholar] [CrossRef]
- Rodrigues do Carmo, J.; dos Santos Costa, T.; da Silva Pena, R. Tucupi-Added Mayonnaise: Characterization, Sensorial Evaluation, and Rheological Behavior. CyTA-J. Food 2019, 17, 479–487. [Google Scholar] [CrossRef]
- García Félix, L. Preparation and Characterization of Oil in Water in Water (O/W/W) Emulsions with Food Applications. Degree Thesis, Universitat de Barcelona, Barcelona, Spain, 2019. [Google Scholar]
- Paananen, O. Effects of Changes in Production on Stability of Mayonnaise. Ph.D. Thesis, University of Turku, Turku, Finland, 2017. [Google Scholar]
- Su, H.P.; Lien, C.P.; Lee, T.A.; Ho, J.H. Development of Low-Fat Mayonnaise Containing Polysaccharide Gums as Functional Ingredients. J. Sci. Food Agric. 2010, 90, 806–812. [Google Scholar] [CrossRef]
- Zhang, X.; Luo, X.; Wang, Y.; Li, Y.; Li, B.; Liu, S. Concentrated O/W Pickering Emulsions Stabilized by Soy Protein/Cellulose Nanofibrils: Influence of PH on the Emulsification Performance. Food Hydrocoll. 2020, 108, 106025. [Google Scholar] [CrossRef]
- Ghazaei, S.; Mizani, M.; Piravi-Vanak, Z.; Alimi, M. Particle Size and Cholesterol Content of a Mayonnaise Formulated by OSA-Modified Potato Starch. Food Sci. Technol. 2015, 35, 150–156. [Google Scholar] [CrossRef]
- Berjano, P.M.; Gallegos, Y. Comportamiento Reologico Dinámico de Mayonesas Comerciales: Influencia de La Temperatura y Del Contenido En Aceite. Grasas Aceites 1991, 42, 376–378. [Google Scholar] [CrossRef]
- Ma, L.; Barbosa-Cánovas, G.V. Rheological Characterization of Mayonnaise. Part II: Flow and Viscoelastic Properties at Different Oil and Xanthan Gum Concentrations. J. Food Eng. 1995, 25, 409–425. [Google Scholar] [CrossRef]
- Verheyen, D.; Govaert, M.; Seow, T.K.; Ruvina, J.; Mukherjee, V.; Baka, M.; Skåra, T.; Van Impe, J.F.M. The Complex Effect of Food Matrix Fat Content on Thermal Inactivation of Listeria Monocytogenes: Case Study in Emulsion and Gelled Emulsion Model Systems. Front. Microbiol. 2020, 10, 3149. [Google Scholar] [CrossRef]
- Morell Esteve, P. Empleo de Distintos Estabilizantes y Procedimientos Para Mejorar La Estabilidad y Vida Útil de Mayonesas. Master’s thesis, Universidad Politécnica de Valencia, Valencia, Spain, 2013. [Google Scholar]
- Worrasinchai, S.; Suphantharika, M.; Pinjai, S.; Jamnong, P. β-Glucan Prepared from Spent Brewer’s Yeast as a Fat Replacer in Mayonnaise. Food Hydrocoll. 2006, 20, 68–78. [Google Scholar] [CrossRef]
- Walstra, P. Formation of Emulsions. In Encyclopedia of Emulsion Technology; Becher, P., Ed.; Marcel Dekker: New York, NY, USA, 1983; pp. 57–127. [Google Scholar]
- Abirached, C.; Medrano, A.; Añón, M.C.; Panizzolo, L.A. Effect of Acid Modification of Soy Glycinin on Its Interfacial and Emulsifying Properties. J. Am. Oil Chem. Soc. 2018, 95, 313–323. [Google Scholar] [CrossRef]
- Widerström, E.; Öhman, R. Mayonnaise: Quality and Catastrophic Phase Inversion. Master’s Thesis, Lund University, Lund, Sweden, 2017. [Google Scholar]
- Huck-Iriart, C.; Rincón-Cardona, J.A.; Herrera, M.L. Stability of Whey Protein Concentrate/Sunflower Oil Emulsions as Affected by Sucrose and Xanthan Gum. Food Bioprocess Technol. 2014, 7, 2646–2656. [Google Scholar] [CrossRef]
- Biller, E.; Waszkiewicz-Robak, B.; Longo, E.; Boselli, E.; Obiedziński, M.; Siwek, A.; Stachelska, M.A. Effects of the Addition of Spray-Dried Whey on the Stability of Fat-Reduced Mayonnaise-Type Emulsions During Storage. J. Am. Oil Chem. Soc. 2018, 95, 337–348. [Google Scholar] [CrossRef]
- Dickinson, E. Stabilising Emulsion-Based Colloidal Structures with Mixed Food Ingredients. J. Sci. Food Agric. 2013, 93, 710–721. [Google Scholar] [CrossRef] [PubMed]
- McClements, D.J. Reduced-Fat Foods: The Complex Science of Developing Diet-Based Strategies for Tackling Overweight and Obesity. Adv. Nutr. 2015, 6, 338S–352S. [Google Scholar] [CrossRef] [PubMed]
- Yüceer, M.; Ilyasoǧlu, H.; Özçelik, B. Comparison of Flow Behavior and Physicochemical Characteristics of Low-Cholesterol Mayonnaises Produced with Cholesterol-Reduced Egg Yolk. J. Appl. Poult. Res. 2016, 25, 518–527. [Google Scholar] [CrossRef]
- Amin, M.H.H.; Elbeltagy, A.E.; Mustafa, M.; Khalil, A.H. Development of Low Fat Mayonnaise Containing Different Types and Levels of Hydrocolloid Gum. J. Agroaliment. Process. Technol. 2014, 20, 54–63. [Google Scholar]
- De Greyt, W.; Kellens, M. Deodorization. In Bailey’s Industrial Oil and Fat Products; Shahidi, F., Ed.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2005; pp. 340–383. [Google Scholar] [CrossRef]
- Choe, E.; Min, D.B. Mechanisms of Antioxidants in the Oxidation of Foods. Compr. Rev. Food Sci. Food Saf. 2009, 8, 345–358. [Google Scholar] [CrossRef]
- Vieitez, I.; Maceiras, L.; Jachmanián, I.; Alborés, S. Antioxidant and Antibacterial Activity of Different Extracts from Herbs Obtained by Maceration or Supercritical Technology. J. Supercrit. Fluids 2018, 133, 58–64. [Google Scholar] [CrossRef]
- Ahmadi-Dastgerdi, A.; Ezzatpanah, H.; Asgary, S.; Dokhani, S.; Rahimi, E. Determination of Antioxidative Effect of Achillea Millefolium Essential Oil on Mayonnaise Stability by Rancimat Method. Herb. Med. J. 2017, 2, 66–70. [Google Scholar] [CrossRef]
- Merrill, L.I.; Pike, O.A.; Ogden, L.V.; Dunn, M.L. Oxidative Stability of Conventional and High-Oleic Vegetable Oils with Added Antioxidants. JAOCS, J. Am. Oil Chem. Soc. 2008, 85, 771–776. [Google Scholar] [CrossRef]
- Jimenez, P.; Masson, L.; Barriga, A.; Chávez, J.; Robert, P. Oxidative Stability of Oils Containing Olive Leaf Extracts Obtained by Pressure, Supercritical and Solvent-Extraction. Eur. J. Lipid Sci. Technol. 2011, 113, 497–505. [Google Scholar] [CrossRef]
Ingredients (%w/w) | Wendin et al. [21] | F 1 | F 2 | F 3 | |
---|---|---|---|---|---|
Oil | 15.0 | 30.0 | 10.0 | 15.0 | 30.0 |
Egg yolk | 1.5 | 3.0 | 1.5 | 1.5 | 3.0 |
Distilled water | 72.3 | 55.8 | 76.6 | 71.7 | 55.5 |
Vinegar (%) | 4.0 | 4.0 | 5.0 | 5.0 | 5.0 |
Sodium chloride | 1.4 | 1.4 | 1.4 | 1.4 | 1.4 |
Sodium benzoate | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
Guar gum | 1.6 | 1.6 | 1.4 | 1.3 | 1.0 |
Sucrose | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 |
Sodium azide | --- | --- | 0.02 | 0.02 | 0.02 |
Potassium benzoate | 0.1 | 0.1 | --- | --- | --- |
High-Oleic Sunflower Oil (%) | Canola Oil (%) | |
---|---|---|
16:0 | 3.5 ± 0.1 | 4.7 ± 0.3 |
16:1 n-7 | 0.1 ± 0.02 | 0.1 ± 0.01 |
18:0 | 2.5 ± 0.1 | 2.0 ± 0.1 |
18:1 cis n-9 | 87.4 ± 1.4 | 59.4 ± 0.8 |
18:2 cis n-6 | 4.7 ± 0.1 | 22.5 ± 0.5 |
18:3 cis n-3 | 0.2 ± 0.03 | 8.9 ± 0.4 |
20:0 | 0.2 ± 0.02 | 0.1 ± 0.01 |
20:1 cis n-9 | 0.3 ± 0.02 | 0.9 ± 0.02 |
22:0 | 0.8 ± 0.02 | 0.1 ± 0.01 |
Saturated Fatty Acids | 7.3 ± 0.3 | 6.8 ± 0.2 |
Monounsaturated Fatty Acids | 87.8 ± 1.5 | 59.5 ± 1.2 |
Polyunsaturated Fatty Acids | 4.9 ± 0.2 | 31.4 ± 0.7 |
Oxidability | 0.07 | 0.42 |
Inherent Stability | 1.4 | 5.1 |
α tocopherol (mg/kg) | 809.0 ± 0.7 | 208.1 ± 0.2 |
β + γ tocopherols (mg/kg) | 76.2 ± 0.1 | 1211.3 ± 0.9 |
δ tocopherol (mg/kg) | 7.0 ± 0.1 | 57.7 ± 0.2 |
Liquid Egg Yolk (% w/w) | Koppmann [34] (%) | Ecuatorian Food Composition Table [35] | Uruguayan Food Composition Table [36] (%) | |
---|---|---|---|---|
Moisture | 57.25 ± 0.33 | 48.0 | 53.3 | 52.1 |
Lipids | 28.96 ± 1.40 | 32.5 | 26.4 | 28.7 |
Proteins | 14.51 ± 1.38 | 17.5 | 15.9 | 16.6 |
Ashes | 1.37 ± 0.13 | 2.0 | 0.7 | 2.6 |
Sample | K (Pa.sn) | n | Kokini’s Viscosity (Pa·s) |
---|---|---|---|
MH | 33.71 ± 1.35 a | 0.382 ± 0.001 a | 12.50 ± 0.71 a |
MHO-10% | 31.35± 0.23 b | 0.317 ± 0.001 d | 12.15 ± 0.14 a |
MHO-15% | 32.36 ± 0.52 a,b | 0.321 ± 0.003 c | 12.55 ± 0.21 a |
MHO-30% | 32.94 ± 1.01 a,b | 0.331 ± 0.002 b | 12.62 ± 0.35 a |
Sample | G’ (Pa) | G’’ (Pa) | τy (Pa) | τf (Pa) | tan δ |
---|---|---|---|---|---|
MH | 194.6 ± 7.7 c | 36.7 ± 0.2 a | 8.6 ± 0.8 a | 76.7 ± 2.2 a | 0.189 ± 0.009 a |
MHO-10% | 82.2 ± 0.7 a | 40.6 ± 0.2 b | 27.3 ± 0.8 c | 106.9 ± 0.7 c | 0.494 ± 0.002 d |
MHO-15% | 88.14 ± 0.01 a,b | 41.91 ± 0.14 c | 19.6 ± 2.2 b | 104.8 ± 0.9 c | 0.475 ± 0.002 c |
MHO-30% | 103.5 ± 1.1 b | 44.3 ± 0.3 d | 17.5 ± 1.4 b | 89.2 ± 1.8 b | 0.428 ± 0.002 b |
Mayonnaise | Time (Months) | L* | a* | b* | pH |
---|---|---|---|---|---|
MH | 0 | (79.61 ± 0.21) a | (1.14 ± 0.01) a | (12.51 ± 0.02) a | 3.30 ± 0.01 |
3 | (76.00 ± 4.60) a | (1.02 ± 0.01) a | (11.25 ± 0.68) a | ||
MHO-10% | 0 | (78.73 ± 2.74) a | (−0.01 ± 0.01) c | (4.56 ± 0.07) c | 3.92 ± 0.01 |
3 | (79.70 ± 0.57) a | (−0.09± 0.03) c | (4.53 ± 0.03) c | ||
MHO-15% | 0 | (81.15 ± 2.62) a | (−0.01 ± 0.01) c | (4.71 ± 0.25) b,c | 3.99 ± 0.01 |
3 | (80.65 ± 0.13) a | (−0.08 ± 0.01) c | (4.73 ± 0.06) b,c | ||
MHO-30% | 0 | (80.87 ± 0.21) a | (0.45 ± 0.03) b | (6.27 ± 0.33) b | 4.05 ± 0.01 |
3 | (82.09 ± 0.71) a | (0.44 ± 0.04) b | (6.56 ± 0.01) b |
Sample | IP (h) for 0 Days | IP (h) for 3 Days |
---|---|---|
MH | (5.88 ± 0.31) d | (3.89 ± 0.08) d |
MHO-10% | (1.97 ± 0.11) e | (1.42 ± 0.08) e |
MHO-15% | (1.90 ± 0.03) e,f | (1.42 ± 0.20) e |
MHO-30% | (1.73 ± 0.04) e,f,g | (1.20 ± 0.07) e |
MC-10% | (1.38 ± 0.01) e,f,g | (0.75 ± 0.03) f |
MC-15% | (1.27 ± 0.06) f,g | (0.75 ± 0.07) f |
MC-30% | (1.20 ± 0.04) g | (0.65 ± 0.08) f |
MHO-10%-A | (8.03 ± 0.24) c | (7.62 ± 0.21) b |
MHO-15%-A | (7.98 ± 0.20) c | (7.88 ± 0.10) b |
MHO-30%-A | (8.07 ± 0.13) c | (8.03 ± 0.06) b |
Canola Oil | (8.84 ± 0.21) b | (6.20 ± 0.18) c |
High-oleic Oil | (17.36 ± 1.13) a | (13.08 ± 0.62) a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abirached, C.; Acuña, M.N.; Carreras, T.; Vieitez, I. Strategies for Reducing Fat in Mayonnaise and Their Effects on Physicochemical Properties. Foods 2025, 14, 3133. https://doi.org/10.3390/foods14173133
Abirached C, Acuña MN, Carreras T, Vieitez I. Strategies for Reducing Fat in Mayonnaise and Their Effects on Physicochemical Properties. Foods. 2025; 14(17):3133. https://doi.org/10.3390/foods14173133
Chicago/Turabian StyleAbirached, Cecilia, María Noel Acuña, Tatiana Carreras, and Ignacio Vieitez. 2025. "Strategies for Reducing Fat in Mayonnaise and Their Effects on Physicochemical Properties" Foods 14, no. 17: 3133. https://doi.org/10.3390/foods14173133
APA StyleAbirached, C., Acuña, M. N., Carreras, T., & Vieitez, I. (2025). Strategies for Reducing Fat in Mayonnaise and Their Effects on Physicochemical Properties. Foods, 14(17), 3133. https://doi.org/10.3390/foods14173133