Microencapsulation of Camellia oleifera Seed Oil Emulsion By-Products: Structural Characterization and Lipidomics Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Raw Materials and Reagents
2.2. Preparation of Microcapsule
2.2.1. Preparation of the Oil and Emulsion Phases of Camellia oleifera Seed
2.2.2. Microencapsulation of Oil and Emulsion Phases
2.3. Encapsulation Efficiency (EE)
2.3.1. Determination of Surface Oil Content
2.3.2. Determination of Total Oil Content
2.4. Morphology Characterization of Microcapsule
2.4.1. Moisture Content
2.4.2. Optical Microscopy
2.4.3. Morphology Observation (SEM)
2.4.4. Dispersibility
2.4.5. Powder Flow Properties Analysis
The Carr Index and the Hausner Ratio
Repose Angle
2.4.6. Particle Size Distribution and Zeta Potential
2.5. Fourier Transform Infrared Spectroscopy Analysis
2.6. Differential Scanning Calorimetry (DSC)
2.7. Thermogravimetric Analysis (TGA)
2.8. Oxidation Stability of Microcapsules
2.9. Lipid Composition
2.9.1. Sample Preparation and Extraction
2.9.2. Chromatography–Mass Spectrometry Acquisition Conditions
2.9.3. Lipid Content Determination
2.10. Statistical Analysis
3. Results and Discussion
3.1. Physical Properties of OPM and EPM
3.2. Microstructure Analysis by Scanning Electron Microscope
3.3. Particle Size Distribution and Zeta Potential of Microcapsule
3.4. FTIR Characterization of Microcapsules
3.5. Thermal Stability Analysis of Microcapsule
3.6. Oxidation Stability of Microcapsules
3.7. Analysis of Lipid Composition
3.7.1. Data Quality Control Analysis
3.7.2. Principal Component Analysis (PCA)
3.7.3. Qualitative and Quantitative Analysis of Total Lipids
3.7.4. Fatty Acid Analysis
3.7.5. Types of Triglyceride Molecules
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AEE | Aqueous Enzymatic Extraction |
CV | Coefficient of Variation |
DSC | Differential Scanning Calorimetry |
EE | Encapsulation Efficiency |
EP | Emulsion Phase |
EPM | Emulsion Phase Microcapsules |
FA | Fatty Acids |
FTIR | Fourier Transform Infrared Spectroscopy |
GL | Glycerolipids |
GP | Glycerophospholipids |
LC-MS/MS | Liquid Chromatography–Tandem Mass Spectrometry |
MD | Maltodextrin |
OP | Oil Phase |
OPM | Oil Phase Microcapsules |
OSI | Oxidative Stability Index |
PR | Prenol Lipids |
RPI | Rice Protein Isolate |
SEM | Scanning Electron Microscopy |
SP | Sphingolipids |
SPH | Soy Protein Hydrolysate |
TG | Triglyceride |
TGA | Thermogravimetric Analysis |
References
- Gao, L.; Jin, L.; Liu, Q.; Zhao, K.; Lin, L.; Zheng, J.; Li, C.; Chen, B.; Shen, Y. Recent advances in the extraction, composition analysis and bioactivity of Camellia (Camellia oleifera Abel.) oil. Trends Food Sci. Technol. 2024, 143, 104211. [Google Scholar] [CrossRef]
- Yang, D.; Wang, R.; Lai, H.; He, Y.; Chen, Y.; Xun, C.; Zhang, Y.; He, Z. Comparative Transcriptomic and Lipidomic Analysis of Fatty Acid Accumulation in Three Camellia oleifera Varieties During Seed Maturing. J. Agric. Food Chem. 2024, 72, 18257–18270. [Google Scholar] [CrossRef]
- Hsu, F.L.; Chen, Y.J.; Hsu, C.K.; Wang, L.J. Characterization of Seven Species of Camellia Oil: Oil Content, Volatile Compounds, and Oxidative Stability. Foods 2024, 13, 2610. [Google Scholar] [CrossRef]
- Li, Q.; Zhu, Y.; Qin, L. Comparative Study of Camellia oleifera Seed Oil on Chemical Constituents, Antioxidant Activities and Physicochemical Characteristics from Southern China. J. Oleo Sci. 2024, 73, 943–952. [Google Scholar] [CrossRef]
- Mwaurah, P.W.; Kumar, S.; Kumar, N.; Attkan, A.K.; Panghal, A.; Singh, V.K.; Garg, M.K. Novel oil extraction technologies: Process conditions, quality parameters, and optimization. Compr. Rev. Food Sci. Food Saf. 2020, 19, 3–20. [Google Scholar] [CrossRef]
- Zhang, F.; Zhu, F.; Chen, B.; Su, E.; Chen, Y.; Cao, F. Composition, bioactive substances, extraction technologies and the influences on characteristics of Camellia oleifera oil: A review. Food Res. Int. 2022, 156, 111159. [Google Scholar] [CrossRef]
- Zhou, D.; Shi, Q.; Pan, J.; Liu, M.; Long, Y.; Ge, F. Effectively improve the quality of camellia oil by the combination of supercritical fluid extraction and molecular distillation (SFE-MD). LWT 2019, 110, 175–181. [Google Scholar] [CrossRef]
- Lavenburg, V.M.; Rosentrater, K.A.; Jung, S. Extraction Methods of Oils and Phytochemicals from Seeds and Their Environmental and Economic Impacts. Processes 2021, 9, 1839. [Google Scholar] [CrossRef]
- Gai, Q.-Y.; Jiao, J.; Mu, P.-S.; Wang, W.; Luo, M.; Li, C.-Y.; Zu, Y.-G.; Wei, F.-Y.; Fu, Y.-J. Microwave-assisted aqueous enzymatic extraction of oil from Isatis indigotica seeds and its evaluation of physicochemical properties, fatty acid compositions and antioxidant activities. Ind. Crops Prod. 2013, 45, 303–311. [Google Scholar] [CrossRef]
- Meng, X.; Ge, H.; Ye, Q.; Peng, L.; Wang, Z.; Jiang, L. Efficient and Response Surface Optimized Aqueous Enzymatic Extraction of Camellia oleifera (Tea Seed) Oil Facilitated by Concurrent Calcium Chloride Addition. J. Am. Oil Chem. Soc. 2018, 95, 29–37. [Google Scholar] [CrossRef]
- Zhu, F.; Wu, R.; Chen, B.; Zhang, F.; Chen, Y.; Cao, F.; Yu, P.; Su, E. Development of an efficient procedure for preparing high quality Camellia oleifera seed oil by enzymatic extraction and demulsification. Ind. Crops Prod. 2024, 212, 118392. [Google Scholar] [CrossRef]
- Wang, H.; Tong, X.; Yuan, Y.; Peng, X.; Zhang, Q.; Zhang, S.; Xie, C.; Zhang, X.; Yan, S.; Xu, J.; et al. Effect of Spray-Drying and Freeze-Drying on the Properties of Soybean Hydrolysates. J. Chem. 2020, 2020, 9201457. [Google Scholar] [CrossRef]
- Wang, Z.; Ju, X.; He, R.; Yuan, J.; Wang, L. The Effect of Rapeseed Protein Structural Modification on Microstructural Properties of Peptide Microcapsules. Food Bioprocess Technol. 2015, 8, 1305–1318. [Google Scholar] [CrossRef]
- Gomes, M.H.G.; Kurozawa, L.E. Influence of rice protein hydrolysate on lipid oxidation stability and physico-chemical properties of linseed oil microparticles obtained through spray-drying. LWT 2020, 139, 110510. [Google Scholar] [CrossRef]
- Peng, L.; Ye, Q.; Liu, X.; Liu, S.; Meng, X. Optimization of aqueous enzymatic method for Camellia sinensis oil extraction and reuse of enzymes in the process. J. Biosci. Bioeng. 2018, 128, 716–722. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Tu, J.; Li, C.; Peng, J.; Xiao, Z.; Wen, L.; Chen, Y.; Xie, S.; Liu, S.; Xiao, J. Microencapsulation of camellia seed oil by spray drying with pea protein and maltodextrin. LWT 2024, 203, 116348. [Google Scholar] [CrossRef]
- Cui, T.; Chen, C.; Jia, A.; Li, D.; Shi, Y.; Zhang, M.; Bai, X.; Liu, X.; Liu, C. Characterization and human microfold cell assay of fish oil microcapsules: Effect of spray drying and freeze-drying using konjac glucomannan (KGM)-soybean protein isolate (SPI) as wall materials. J. Funct. Foods 2021, 83, 104542. [Google Scholar] [CrossRef]
- Jiang, X.; Tang, C.; Yu, J.; Zhou, Y.; Zuo, X. Self-Healing Properties of Crosslinked PMMA-DVB Copolymer Microcapsules Based on Interfacial Polymerization. Polymers 2025, 17, 569. [Google Scholar] [CrossRef]
- Székely-Szentmiklósi, I.; Rédai, E.M.; Kovács, B.; Gergely, A.-L.; Albert, C.; Szabó, Z.-I.; Székely-Szentmiklósi, B.; Sipos, E. Investigation of Yarrow Essential Oil Composition and Microencapsulation by Complex Coacervation Technology. Appl. Sci. 2024, 14, 7867. [Google Scholar] [CrossRef]
- Peng, Q.; Luo, X.; Su, J.; Bi, Y.; Kong, F.; Wang, Z.; Tan, S.; Zhang, J. Microencapsulation of star anise essential oil: Preparation, characterization, in vitro digestion, and biological activity. Colloids Surf. A Physicochem. Eng. Asp. 2024, 696, 134358. [Google Scholar] [CrossRef]
- United States Pharmacopeial Convention. <1174> Powder Flow. In United States Pharmacopeia and National Formulary (USP-NF); United States Pharmacopeial Convention: Rockville, MD, USA, 2024. [Google Scholar]
- Cano-Chauca, M.; Stringheta, P.C.; Ramos, A.M.; Cal-Vidal, J. Effect of the carriers on the microstructure of mango powder obtained by spray drying and its functional characterization. Innov. Food Sci. Emerg. Technol. 2005, 6, 420–428. [Google Scholar] [CrossRef]
- Müller, D.; Fimbinger, E.; Brand, C. Algorithm for the determination of the angle of repose in bulk material analysis. Powder Technol. 2021, 383, 598–605. [Google Scholar] [CrossRef]
- Li, C.; Fan, X.; Sun, Y.; Zhou, C.; Pan, D. Preparation, Morphology and Release of Goose Liver Oil Microcapsules. Foods 2022, 11, 1236. [Google Scholar] [CrossRef] [PubMed]
- Timilsena, Y.P.; Adhikari, R.; Barrow, C.J.; Adhikari, B. Microencapsulation of chia seed oil using chia seed protein isolate—Chia seed gum complex coacervates. Int. J. Biol. Macromol. 2016, 91, 347–357. [Google Scholar] [CrossRef] [PubMed]
- Corte, A.D.; Chitarrini, G.; Gangi, I.M.D.; Masuero, D.; Soini, E.; Mattivi, F.; Vrhovsek, U. Studies from Edmund Mach Foundation Have Provided New Data on General Chemistry (A rapid LC-MS/MS method for quantitative profiling of fatty acids, sterols, glycerolipids, glycerophospholipids and sphingolipids in grapes). Chem. Chem. 2015, 140, 52–61. [Google Scholar] [CrossRef]
- Yu, Z.; Xu, R.; Duan, H.; Ma, L. Comparative analysis of lipid profiles and flavor composition of marinated eggs from different species. J. Food Process. Preserv. 2022, 46, e16391. [Google Scholar] [CrossRef]
- Liebisch, G.; Fahy, E.; Aoki, J.; Dennis, E.A.; Durand, T.; Ejsing, C.S.; Fedorova, M.; Feussner, I.; Griffiths, W.J.; Köfeler, H.; et al. Update on LIPID MAPS Classification, Nomenclature and Shorthand Notation for MS-derived Lipid Structures. J. Lipid Res. 2020, 61, 1539–1555. [Google Scholar] [CrossRef]
- Zhao, M.; Cao, W.; Li, L.; Ren, A.; Ang, Y.; Chen, J.; Bhandari, B.; Wang, Z.; Ren, X.; Ren, G.; et al. Effects of different proteins and maltodextrin combinations as wall material on the characteristics of Cornus officinalis flavonoids microcapsules. Front. Nutr. 2022, 9, 1007863. [Google Scholar] [CrossRef]
- An, Y.; Wang, B.; Meng, Z.; Song, Y.; Wang, Y.; Wang, W.; Xu, M.; An, X. Optimization of the enzymatic hydrolysis process for sea buckthorn leaf polysaccharides: An investigation into their enhanced physicochemical properties and antioxidant activities. Chem. Biol. Technol. Agric. 2024, 11, 193. [Google Scholar] [CrossRef]
- Yang, J.Y.; Li, J.; Wang, M.; Zou, X.G.; Peng, B.; Yin, Y.L.; Deng, Z.Y. A Novel Aqueous Extraction for Camellia Oil by Emulsified Oil: A Frozen/Thawed Method. Eur. J. Lipid Sci. Technol. 2019, 121, 1800431. [Google Scholar] [CrossRef]
- Deng, M.; Chen, H.; Xie, L.; Liu, K.; Zhang, X.; Li, X. Tea saponins as natural emulsifiers and cryoprotectants to prepare silymarin nanoemulsion. LWT 2022, 156, 113042. [Google Scholar] [CrossRef]
- Xu, S.; Tang, Z.; Liu, H.; Wang, M.; Sun, J.; Song, Z.; Cui, C.; Sun, C.; Liu, S.; Wang, Z.; et al. Microencapsulation of sea buckthorn (Hippophae rhamnoides L.) pulp oil by spray drying. Food Sci. Nutr. 2020, 8, 5785–5797. [Google Scholar] [CrossRef]
- Carneiro, H.C.F.; Tonon, R.V.; Grosso, C.R.F.; Hubinger, M.D. Encapsulation efficiency and oxidative stability of flaxseed oil microencapsulated by spray drying using different combinations of wall materials. J. Food Eng. 2013, 115, 443–451. [Google Scholar] [CrossRef]
- Zhao, J.; Qin, X.; Liu, Y.; He, Q.; Qin, J.; Shen, F.; Wu, Z. Comparative Evaluation of Spray-Drying Versus Freeze-Drying Techniques on the Encapsulation Efficiency and Biofunctional Performance of Chenpi Extract Microcapsules. Foods 2025, 14, 1825. [Google Scholar] [CrossRef]
- Jiménez-Martín, E.; Gharsallaoui, A.; Pérez-Palacios, T.; Carrascal, J.R.; Rojas, T.A. Suitability of Using Monolayered and Multilayered Emulsions for Microencapsulation of ω-3 Fatty Acids by Spray Drying: Effect of Storage at Different Temperatures. Food Bioprocess Technol. 2015, 8, 100–111. [Google Scholar] [CrossRef]
- Liu, H.; Zhao, Z.; Xu, W.; Cheng, M.; Chen, Y.; Xun, M.; Liu, Q.; Wang, W. Preparation, Characterization, Release and Antibacterial Properties of Cinnamon Essential Oil Microcapsules. Coatings 2023, 13, 973. [Google Scholar] [CrossRef]
- Silva, T.M.; Borges, L.L.; Alves, S.F.; Vaz, P.D.S.; Silva, L.P.; Paula, J.R.d.; Bara, M.T.F.; Conceição, E.C.; Caramori, S.S. New Spray-Dried Microcapsule Based on Brazilian Cashew Polysaccharide (Anacardium othonianum Rizz.) and Maltodextrin as Wall Material. J. Polym. Environ. 2020, 28, 854–862. [Google Scholar] [CrossRef]
- Zhang, S.; Pan, Y.-G.; Zheng, L.; Yang, Y.; Zheng, X.; Ai, B.; Xu, Z.; Sheng, Z. Application of steam explosion in oil extraction of camellia seed (Camellia oleifera Abel.) and evaluation of its physicochemical properties, fatty acid, and antioxidant activities. Food Sci. Nutr. 2019, 7, 1004–1016. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Gong, L.; Guo, Z.; Wang, W.; Zhang, H.; Liu, X.; Yu, S.; Xiong, L.; Luo, J. A Novel Integrated Method for Large-Scale Detection, Identification, and Quantification of Widely Targeted Metabolites: Application in the Study of Rice Metabolomics. Mol. Plant 2013, 6, 1769–1780. [Google Scholar] [CrossRef]
- Yang, K.; Liu, A.; Hu, A.; Li, J.; Zen, Z.; Liu, Y.; Tang, S.; Li, C. Preparation and characterization of cinnamon essential oil nanocapsules and comparison of volatile components and antibacterial ability of cinnamon essential oil before and after encapsulation. Food Control 2020, 123, 107783. [Google Scholar] [CrossRef]
- Sacchet, S.; Valentini, F.; Rizzo, C.; Po, R.; Fambri, L. High density polyethylene with phase change materials for thermal energy management. Energy Mater. 2025, 5. [Google Scholar] [CrossRef]
- Darmawan, M.A.; Ramadhan, M.Y.A.; Curie, C.A.; Muryanto; Sahlan, M.; Utami, T.S.; Abd-Aziz, S.; Gozan, M. Shelf life of indigenous tengkawang butter: Storage kinetic and effect of antioxidant to oxidation stability index. Heliyon 2023, 9, e15643. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, L.; Yao, X.; Wang, K.; Cao, Y.; Zhang, C.; Chang, J.; Ren, H. Oxidation stability of seed oils from four woody oil plant species. CyTA—J. Food 2024, 22, 2285839. [Google Scholar] [CrossRef]
- Linke, A.; Hinrichs, J.; Kohlus, R. Impact of the powder particle size on the oxidative stability of microencapsulated oil. Powder Technol. 2020, 364, 115–122. [Google Scholar] [CrossRef]
- MacWilliams, S.V.; Clulow, A.J.; Gillies, G.; Beattie, D.A.; Krasowska, M. Recent advances in studying crystallisation of mono- and di-glycerides at oil-water interfaces. Adv. Colloid Interface Sci. 2024, 326, 103138. [Google Scholar] [CrossRef] [PubMed]
- Pritzl, S.D.; Morstein, J.; Pritzl, N.A.; Lipfert, J.; Lohmüller, T.; Trauner, D.H. Photoswitchable phospholipids for the optical control of membrane processes, protein function, and drug delivery. Commun. Mater. 2025, 6, 59. [Google Scholar] [CrossRef] [PubMed]
- Shishir, M.R.I.; Xie, L.; Sun, C.; Zheng, X.; Chen, W. Advances in micro and nano-encapsulation of bioactive compounds using biopolymer and lipid-based transporters. Trends Food Sci. Technol. 2018, 78, 34–60. [Google Scholar] [CrossRef]
- Shahidi, F.; Ambigaipalan, P. Omega-3 Polyunsaturated Fatty Acids and Their Health Benefits. Annu. Rev. Food Sci. Technol. 2018, 9, 345–381. [Google Scholar] [CrossRef]
- Meesapyodsuk, D.; Sun, K.; Zhou, R.; Thoms, K.; Qiu, X. Stepwise metabolic engineering of docosatrienoic acid—An ω3 very long chain polyunsaturated fatty acid with potential health benefits in Brassica carinata. Plant Biotechnol. J. 2022, 21, 8–10. [Google Scholar] [CrossRef]
- Karupaiah, T.; Sundram, K. Effects of stereospecific positioning of fatty acids in triacylglycerol structures in native and randomized fats: A review of their nutritional implications. Nutr. Metab. 2007, 4, 16. [Google Scholar] [CrossRef]
- Xu, E.; Chen, C.; Fu, J.; Zhu, L.; Shu, J.; Jin, M.; Wang, Y.; Zong, X. Dietary fatty acids in gut health: Absorption, metabolism and function. Anim. Nutr. 2021, 7, 1337–1344. [Google Scholar] [CrossRef]
- Long, L.; Gao, C.; Qiu, J.; Yang, L.; Wei, H.; Zhou, Y. Fatty acids and nutritional components of the seed oil from Wangmo red ball Camellia oleifera grown in the low-heat valley of Guizhou, China. Sci. Rep. 2022, 12, 16554. [Google Scholar] [CrossRef]
- Rajput, C.V.; Sastry, N.V.; Chikhaliya, N.P. Vegetable oils based precursors: Modifications and scope for futuristic bio-based polymeric materials. J. Polym. Res. 2023, 30, 159. [Google Scholar] [CrossRef]
OPM | EPM | |
---|---|---|
Visual and Textural Observations | ||
color | milky white | light gray |
Taste and smell | free from extraneous odor | free from extraneous odor |
texture | powder-like, loose, no caking | powder-like, loose, no caking |
Color parameters | ||
L* | 95.90 ± 0.8 b | 96.22 ± 0.5 a |
a* | −0.3 ± 0.01 b | 0.17 ± 0.01 a |
b* | 2.67 ± 0.08 b | 2.82 ± 0.03 a |
Physical properties | ||
EE (%) | 86.53 ± 0.14 a | 83.94 ± 0.1 b |
Moisture content (%) | 1.29 ± 0.03 b | 1.88 ± 0.02 a |
Dispersibility (%) | 57.68 ± 0.05 b | 90.50 ± 0.09 a |
Carr index (%) | 18.2 ± 1.5 a | 12.5 ± 1.1 b |
Hausner ratio | 1.22 ± 0.02 a | 1.14 ± 0.02 b |
Angle of repose (°) | 12.73 ± 0.01 a | 10.56 ± 0.01 b |
Bulk density (g/cm3) | 0.41 ± 0.01 b | 0.47 ± 0.01 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, X.; Chang, Y.; Song, M.; Hou, J.; Feng, H. Microencapsulation of Camellia oleifera Seed Oil Emulsion By-Products: Structural Characterization and Lipidomics Analysis. Foods 2025, 14, 3314. https://doi.org/10.3390/foods14193314
Wu X, Chang Y, Song M, Hou J, Feng H. Microencapsulation of Camellia oleifera Seed Oil Emulsion By-Products: Structural Characterization and Lipidomics Analysis. Foods. 2025; 14(19):3314. https://doi.org/10.3390/foods14193314
Chicago/Turabian StyleWu, Xue, Yunhe Chang, Mingfa Song, Juncai Hou, and Hongxia Feng. 2025. "Microencapsulation of Camellia oleifera Seed Oil Emulsion By-Products: Structural Characterization and Lipidomics Analysis" Foods 14, no. 19: 3314. https://doi.org/10.3390/foods14193314
APA StyleWu, X., Chang, Y., Song, M., Hou, J., & Feng, H. (2025). Microencapsulation of Camellia oleifera Seed Oil Emulsion By-Products: Structural Characterization and Lipidomics Analysis. Foods, 14(19), 3314. https://doi.org/10.3390/foods14193314