Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,840)

Search Parameters:
Keywords = Li-Ion Batteries

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
38 pages, 2474 KB  
Review
A Comprehensive Review of Equivalent Circuit Models and Neural Network Models for Battery Management Systems
by Davide Pio Laudani, Davide Milillo, Michele Quercio, Francesco Riganti Fulginei and Lorenzo Sabino
Batteries 2026, 12(1), 37; https://doi.org/10.3390/batteries12010037 - 22 Jan 2026
Viewed by 29
Abstract
Lithium-ion batteries are the most widely used electrochemical energy storage technology due to their excellent performance. They play a crucial role in enabling the widespread adoption of sustainable transportation and renewable energy storage. Comprehensive battery monitoring, encompassing both performance and safety aspects, presents [...] Read more.
Lithium-ion batteries are the most widely used electrochemical energy storage technology due to their excellent performance. They play a crucial role in enabling the widespread adoption of sustainable transportation and renewable energy storage. Comprehensive battery monitoring, encompassing both performance and safety aspects, presents various challenges. Generally, this task is handled by a battery management system (BMS). Therefore, this paper provides a brief introduction to the key battery state parameters, such as the state of charge (SOC), state of health (SOH), and state of power (SOP). Subsequently, after a brief overview of BMS structural and software architectures, this work focuses on a detailed description of equivalent circuit models (ECMs) and artificial neural networks (ANNs), which represent part of the modeling approaches available in the literature, providing a characterization of the complex and nonlinear dynamics underlying lithium-ion batteries. These approaches are systematically evaluated, including hybrid methods to highlight their respective advantages, limitations, and suitability for different BMS functionalities. Full article
Show Figures

Figure 1

21 pages, 4803 KB  
Article
Recovery of High-Purity Lithium Hydroxide Monohydrate from Lithium-Rich Leachate by Anti-Solvent Crystallization: Process Optimization and Impurity Incorporation Mechanisms
by Faizan Muneer, Ida Strandkvist, Fredrik Engström and Lena Sundqvist-Öqvist
Batteries 2026, 12(1), 35; https://doi.org/10.3390/batteries12010035 - 21 Jan 2026
Viewed by 62
Abstract
The increasing demand for lithium-ion batteries (LIBs) has intensified the need for efficient lithium (Li) recovery from secondary sources. This study focuses on anti-solvent crystallization for the recovery of high-purity lithium hydroxide monohydrate (LiOH·H2O) from a Li-rich leachate, derived from the [...] Read more.
The increasing demand for lithium-ion batteries (LIBs) has intensified the need for efficient lithium (Li) recovery from secondary sources. This study focuses on anti-solvent crystallization for the recovery of high-purity lithium hydroxide monohydrate (LiOH·H2O) from a Li-rich leachate, derived from the flue dust of a pilot-scale pyrometallurgical process for LIB material recycling. To optimize product yield and purity, a series of experiments were performed, focusing on the influence of parameters such as solvent type, organic-to-aqueous (O/A) volumetric ratio, crystallization time, stirring rate, and anti-solvent addition rate. Acetone was identified as the most effective anti-solvent, producing rectangular cuboid crystals with approximately 90% Li recovery and around 95% purity, under optimized conditions (O/A = 4, 3 h, 150 rpm, and solvent flow rate of 5 mL/min). The flow rate influenced crystal morphology and impurity entrapment, with 5 mL/min favoring nucleation-dominated crystallization regime, producing ~20 μm of well-dispersed crystals with reduced impurity incorporation. SEM-EDS, surface washing, and gradual dissolution of obtained LiOH·H2O crystals revealed that the impurities sodium (Na), potassium (K), aluminum (Al), calcium (Ca) and chromium (Cr) were crystallized as conglomerates. It was found that Na, K, Al, and Ca primarily crystallized as highly soluble conglomerates, while Cr was crystallized as a lowly soluble conglomerate impurity. In contrast Zn was distributed throughout the crystal bulk, suggesting either the entrapment of soluble zincate species within the growing crystals or the formation of mixed Li-Zn phase. Therefore, to achieve battery-grade purity, further purification measures are necessary. Full article
(This article belongs to the Section Battery Processing, Manufacturing and Recycling)
Show Figures

Graphical abstract

44 pages, 18955 KB  
Review
A Review of Gas-Sensitive Materials for Lithium-Ion Battery Thermal Runaway Monitoring
by Jian Zhang, Zhili Li and Lei Huang
Molecules 2026, 31(2), 347; https://doi.org/10.3390/molecules31020347 - 19 Jan 2026
Viewed by 110
Abstract
Lithium-ion batteries (LIBs) face the safety hazard of thermal runaway (TR). Gas-sensing-based monitoring is one of the viable warning approaches for batteries during operation, and TR warning using semiconductor gas sensors has garnered widespread attention. This review presents a comprehensive analysis of the [...] Read more.
Lithium-ion batteries (LIBs) face the safety hazard of thermal runaway (TR). Gas-sensing-based monitoring is one of the viable warning approaches for batteries during operation, and TR warning using semiconductor gas sensors has garnered widespread attention. This review presents a comprehensive analysis of the latest advances in this field. It details the gas release characteristics during the TR failure process and identifies H2, electrolyte vapor, CO, CO2, and CH4 as effective TR warning markers. The core of this review lies in an in-depth critical analysis of gas-sensing materials designed for these target gases, systematically summarizing the design, performance, and application research of semiconductor gas-sensing materials for each aforementioned gas in battery monitoring. We further summarize the current challenges of this technology and provide an outlook on future development directions of gas-sensing materials, including improved selectivity, integration, and intelligent advancement. This review aims to provide a roadmap that directs the rational design of next-generation sensing materials and fast-tracks the implementation of gas-sensing technology for enhanced battery safety. Full article
(This article belongs to the Special Issue Nanochemistry in Asia)
Show Figures

Graphical abstract

26 pages, 6197 KB  
Article
Experimental Comparison of Different Techniques for Estimating Li-Ion Open-Circuit Voltage
by Mehrshad Pakjoo and Luigi Piegari
Batteries 2026, 12(1), 32; https://doi.org/10.3390/batteries12010032 - 17 Jan 2026
Viewed by 173
Abstract
Electrochemical energy storage systems are increasingly utilized across a wide range of applications, from small-scale consumer electronics to large-scale utility systems providing grid services. Among these, lithium-ion batteries have emerged as a preferred solution because of their high efficiency and power density. However, [...] Read more.
Electrochemical energy storage systems are increasingly utilized across a wide range of applications, from small-scale consumer electronics to large-scale utility systems providing grid services. Among these, lithium-ion batteries have emerged as a preferred solution because of their high efficiency and power density. However, accurately modeling the behavior of Li-ion cells remains a critical and complex task. It is particularly important to determine the open-circuit voltage (OCV), which is an essential component of most battery models. This paper presents the results of an experimental comparison of three common methods for measuring and estimating the OCV of lithium-ion cells with nickel–manganese–cobalt cathodes. Each method is described in detail, with particular attention given to the testing procedures and influence of the experimental parameters on the accuracy of the resulting OCV curves. The outcomes are then analyzed and compared to highlight the strengths, limitations, and practical considerations associated with each approach. The findings of this work will assist researchers and practitioners in selecting the most appropriate OCV measurement techniques for various applications, especially where time constraints or experimental limitations must be considered. Full article
(This article belongs to the Special Issue Control, Modelling, and Management of Batteries)
Show Figures

Figure 1

12 pages, 1388 KB  
Article
Ageing and Water Detection in Hydroscopic Organic Electrolytes
by Eva Alonso-Muñoz, Janwa El Maiss, Wejdene Gongi, Divya Balakrishnan, Delphine Faye, Karine Mougin and César Pascual García
Electrochem 2026, 7(1), 2; https://doi.org/10.3390/electrochem7010002 - 16 Jan 2026
Viewed by 118
Abstract
Electrolyte degradation and trace water contamination critically affect the lifetime and safety of lithium-ion batteries. In organic-based electrolytes such as acetonitrile (MeCN), even small amounts of water can trigger PF6 hydrolysis, producing HF, POF3, and related species that contribute [...] Read more.
Electrolyte degradation and trace water contamination critically affect the lifetime and safety of lithium-ion batteries. In organic-based electrolytes such as acetonitrile (MeCN), even small amounts of water can trigger PF6 hydrolysis, producing HF, POF3, and related species that contribute to electrolyte ageing and alter interfacial reactions. This study explores the electrochemical signatures of ageing and moisture contamination in Bu4NPF6- and LiPF6-based MeCN electrolytes through a systematic cyclic voltammetry protocol. Platinum electrodes with different surface morphologies—flat, Nafion-coated, and nanostructured—were compared to assess their sensitivity to water-induced degradation. Cathodic Faradaic currents appearing around −0.7 to −1.0 V vs. Ag/AgCl were attributed to the protonic species generated by PF6-induced hydrolysis. The presence of LiPF6, commonly used in battery electrolytes, further increases the concentration of anions responsible for the protonic species, therefore contributing to the acceleration of the electrolyte degradation. Experiments using a Nafion proton-conductive membrane assess the protonic origin of these peaks. Meanwhile, nanostructured platinum exhibits approximately four times higher current responses and enhanced sensitivity to water additions, reflecting the influence of surface roughness and active area. Overall, the findings indicate that electrode morphology significantly influences the detectability of ageing- and water-driven reactions, supporting the potential of nanostructured Pt as a diagnostic material for in situ monitoring. Full article
(This article belongs to the Special Issue Feature Papers in Electrochemistry)
Show Figures

Figure 1

19 pages, 12219 KB  
Article
Multilayer Polyethylene Separator with Enhanced Thermal and Electrochemical Performance for Lithium-Ion Batteries
by Jingju Liu, Baohui Chen, Jiarui Liu, Luojia Chen, Jiangfeng Wang, Kuo Chen, Zuosheng Li, Chuanping Wu, Xuanlin Gong, Linjin Xie and Jin Cai
Materials 2026, 19(2), 342; https://doi.org/10.3390/ma19020342 - 15 Jan 2026
Viewed by 250
Abstract
The inherent limitations of conventional polyolefin separators, particularly their poor thermal stability and insufficient mechanical strength, pose significant safety risks for lithium-ion batteries (LIBs) by increasing susceptibility to thermal runaway. In this study, we developed a novel multilayer separator through sequential coating of [...] Read more.
The inherent limitations of conventional polyolefin separators, particularly their poor thermal stability and insufficient mechanical strength, pose significant safety risks for lithium-ion batteries (LIBs) by increasing susceptibility to thermal runaway. In this study, we developed a novel multilayer separator through sequential coating of a commercial polyethylene (PE) substrate with aluminum oxide (Al2O3), para-aramid (PA), and polyethylene wax microspheres (PEWMs) using a scalable micro-gravure process, denoted as SAPEAS, signifying a PE-based asymmetric structure separator with enhanced thermal shutdown and dimensional stability. The SAPEAS separator exhibits an early thermal shutdown capability at 105 °C, maintains structural integrity with negligible shrinkage at 180 °C, and demonstrates comprehensive performance enhancements, including enhanced mechanical strength (tensile strength: 212.3 MPa; puncture strength: 0.64 kgf), excellent electrolyte wettability (contact angle: 12.8°), a high Li+ transference number (0.71), superior ionic conductivity (0.462 mS cm−1), outperforming that of commercial PE separators. In practical LFP|Gr pouch cells with ampere-hour (Ah) level capacity, the SAPEAS separator enables exceptional cycling stability with 97.9% energy retention after 1000 cycles, while significantly improving overcharge tolerance compared to PE. This work provides an effective strategy for simultaneously improving the safety and electrochemical performance of LIBs. Full article
(This article belongs to the Section Electronic Materials)
Show Figures

Figure 1

14 pages, 3347 KB  
Article
Enhancing Li-S Battery Kinetics via Cation-Engineered Al3+/Fe3+-Substituted Co3O4 Spinels
by Zhiying Lin, Mingyu Wang, Wen Fu, Zhixin Gu, Zhenkai Yang, Kai Guan, Zaixing Yang, Lulu Wang, Wenjun Wang and Kaixing Zhu
Materials 2026, 19(2), 326; https://doi.org/10.3390/ma19020326 - 13 Jan 2026
Viewed by 232
Abstract
Lithium–sulfur (Li-S) batteries promise high energy density and low cost but are hindered by polysulfide shuttling, sluggish redox kinetics, poor sulfur conductivity, and lithium dendrite formation. Here, a targeted cation-substitution strategy is applied to Co3O4 spinels by replacing octahedral Co [...] Read more.
Lithium–sulfur (Li-S) batteries promise high energy density and low cost but are hindered by polysulfide shuttling, sluggish redox kinetics, poor sulfur conductivity, and lithium dendrite formation. Here, a targeted cation-substitution strategy is applied to Co3O4 spinels by replacing octahedral Co3+ sites with trivalent Al3+ or Fe3+, generating Al2CoO4 and Fe2CoO4 with exclusively tetrahedral Co2+ sites. Structural characterizations confirm the reconstructed cationic environments, and electrochemical analyses show that both substituted spinels surpass pristine Co3O4 in LiPS adsorption and catalytic activity, with Al2CoO4 delivering the strongest LiPS binding, fastest Li+ transport, and most efficient redox conversion. As a result, Li-S cells equipped with Al2CoO4-modified separators exhibit an initial capacity of 1327.5 mAh g−1 at 0.1C, maintain 883.3 mAh g−1 after 200 cycles, and deliver 958.6 mAh g−1 at 1C with an ultralow decay rate of 0.034% per cycle over 1000 cycles. These findings demonstrate that selective Co-site substitution effectively tailors spinel chemistry to boost polysulfide conversion kinetics, ion transport, and long-term cycling stability in high-performance Li-S batteries. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Figure 1

10 pages, 1592 KB  
Article
Direct Regeneration of Spent LiNi0.5Co0.2Mn0.3O2 Cathodes by Utilizing Eutectic Lithium Salts for High-Performance Lithium-Ion Batteries
by Jian Yan, Yongji Xia, Sheng Lin, Yingpeng Du, Zhidong Zhou, Jintang Li and Guanghui Yue
Coatings 2026, 16(1), 107; https://doi.org/10.3390/coatings16010107 - 13 Jan 2026
Viewed by 232
Abstract
With the wide application of lithium-ion batteries (LIBs), many spent LIBs will face the problem of recycling and treatment in the future. The recycling of valuable substances from battery materials is particularly important. In this paper, the spent LiNi0.5Co0.2Mn [...] Read more.
With the wide application of lithium-ion batteries (LIBs), many spent LIBs will face the problem of recycling and treatment in the future. The recycling of valuable substances from battery materials is particularly important. In this paper, the spent LiNi0.5Co0.2Mn0.3O2 (S-NCM523) cathode material from used LIBs was regenerated by using the eutectic lithium salt of Li2CO3/LiOH. The lithium element lost by S-NCM523 was supplemented through solid–liquid contact with the molten lithium salt, restoring the layered structure at high temperatures. The successful repair of the regenerated material was verified by various characterization methods, including the elimination of the rock salt phase and the lower Li+/Ni2+ disorder. This research shows that the regenerated cathode material still has a high specific discharge capacity of 146.8 mAh/g after 100 cycles, with a capacity retention rate of 96.0%. The excellent electrochemical performance of the regenerated material demonstrates the feasibility of directly regenerating spent NCM using the molten salt method. Full article
Show Figures

Figure 1

20 pages, 3674 KB  
Article
Excitation Pulse Influence on the Accuracy and Robustness of Equivalent Circuit Model Parameter Identification for Li-Ion Batteries
by Dmitrii K. Grebtsov, Alexey Alekseevich Druzhinin and Artem V. Sergeev
World Electr. Veh. J. 2026, 17(1), 38; https://doi.org/10.3390/wevj17010038 - 13 Jan 2026
Viewed by 219
Abstract
An equivalent circuit model (ECM) is a highly practical tool for simulating Li-ion battery behavior. There are many relevant studies which compare different ECM variants or suggest algorithms to extract model parameters from the experimental data. However, little attention has been given to [...] Read more.
An equivalent circuit model (ECM) is a highly practical tool for simulating Li-ion battery behavior. There are many relevant studies which compare different ECM variants or suggest algorithms to extract model parameters from the experimental data. However, little attention has been given to the battery tests used for identification of the ECM parameters. Therefore, here the influence of experimental test pulse characteristics on the parameterized ECM accuracy was systematically studied. The test pulse duration was varied in a wide range from 9 s to about 2.5 min. The portion of the relaxation phase data used by the parameter optimization algorithm was also varied in an even wider range. Total 168 ECM parameter sets were obtained. Each parameter set was validated using nine diverse current profiles representing different battery operation conditions, including one based on Urban Dynamometer Driving Schedule (UDDS). The validation results prove that the impact of the test pulse choice on the parameterized ECM accuracy is great to the point that it can overshadow the use of a higher-order Thevenin model. By choosing the optimal parameter set, the simulated voltage root mean square error (RMSE) was reduced to as low as 3.0 mV and 1.2 mV for first- and second-order ECM, respectively, while the second-order model based on arbitrary chosen test pulse on average yields RMSE value above 5 mV. Full article
(This article belongs to the Section Storage Systems)
Show Figures

Figure 1

14 pages, 1098 KB  
Article
The Effect of Ni Doping on the Mechanical and Thermal Properties of Spinel-Type LiMn2O4: A Theoretical Study
by Xiaoran Li, Lu Ren, Changxin Li, Lili Zhang, Jincheng Ji, Mao Peng and Pengyu Xu
Ceramics 2026, 9(1), 5; https://doi.org/10.3390/ceramics9010005 - 10 Jan 2026
Viewed by 164
Abstract
The development of lithium-ion batteries necessitates cathode materials that possess excellent mechanical and thermal properties in addition to electrochemical performance. As a prominent functional ceramic, the properties of spinel LiMn2O4 are governed by its atomic-level structure. This study systematically investigates [...] Read more.
The development of lithium-ion batteries necessitates cathode materials that possess excellent mechanical and thermal properties in addition to electrochemical performance. As a prominent functional ceramic, the properties of spinel LiMn2O4 are governed by its atomic-level structure. This study systematically investigates the impact of Ni doping concentration on the mechanical and thermal properties of spinel LiNixMn2−xO4 via first-principles calculations combined with the bond valence model. The results suggest that when x = 0.25, the LiNixMn2−xO4 shows excellent mechanical properties, including a high bulk modulus and hardness, due to the favorable ratio of bond valence to bonds length in octahedra. Furthermore, this optimized composition shows a lower thermal expansion coefficient. Additionally, Ni doping concentration has a very minimal influence on the maximum tolerable temperature of the cathode material during rapid heating. Therefore, from the perspective of mechanical and thermal properties, this composition could be beneficial for improving the cycling life of the battery, since comparatively inferior mechanical properties and a higher thermal expansion coefficient make it prone to microcrack formation during charge–discharge cycles. Full article
Show Figures

Figure 1

26 pages, 6395 KB  
Review
In Situ Characterization of Anode Materials for Rechargeable Li-, Na- and K-Ion Batteries: A Review
by Jinqi Gui, Shuaiju Meng, Xijun Liu and Zhifeng Wang
Materials 2026, 19(2), 280; https://doi.org/10.3390/ma19020280 - 9 Jan 2026
Viewed by 272
Abstract
Rechargeable lithium-, sodium-, and potassium-ion batteries are utilized as essential energy storage devices for portable electronics, electric vehicles, and large-scale energy storage systems. In these systems, anode materials play a vital role in determining energy density, cycling stability, and safety of various batteries. [...] Read more.
Rechargeable lithium-, sodium-, and potassium-ion batteries are utilized as essential energy storage devices for portable electronics, electric vehicles, and large-scale energy storage systems. In these systems, anode materials play a vital role in determining energy density, cycling stability, and safety of various batteries. However, the complex electrochemical reactions and dynamic changes that occur in anode materials during charge–discharge cycles generate major challenges for performance optimization and understanding failure mechanisms. In situ characterization techniques, capable of real-time tracking of microstructures, composition, and interface dynamics under operating conditions, provide critical insights that bridge macroscopic performance and microscopic mechanisms of anodes. This review systematically summarizes the applications of such techniques in studying anodes for lithium-, sodium-, and potassium-ion batteries, with a focus on their contributions across different anode types. It also indicates current challenges and future directions of these techniques, aiming to offer valuable references for relevant applications and the design of high-performance anodes. Full article
(This article belongs to the Special Issue Technology in Lithium-Ion Batteries: Prospects and Challenges)
Show Figures

Graphical abstract

21 pages, 266 KB  
Proceeding Paper
Metal Oxide Nanomaterials for Energy Density Improvement in Lithium-Ion and Solid-State Batteries
by Partha Protim Borthakur, Pranjal Sarmah, Madhurjya Saikia, Tamanna Afruja Hussain and Nayan Medhi
Mater. Proc. 2025, 25(1), 17; https://doi.org/10.3390/materproc2025025017 - 7 Jan 2026
Viewed by 233
Abstract
Metal oxide nanomaterials have emerged as transformative materials in the quest to enhance the energy density and overall performance of lithium-ion batteries (LIBs) and solid-state batteries (SSBs). Their unique properties—including their large surface areas and short ion diffusion pathways—make them ideal for next-generation [...] Read more.
Metal oxide nanomaterials have emerged as transformative materials in the quest to enhance the energy density and overall performance of lithium-ion batteries (LIBs) and solid-state batteries (SSBs). Their unique properties—including their large surface areas and short ion diffusion pathways—make them ideal for next-generation energy storage technologies. In LIBs, the high surface-to-volume ratio of metal oxide nanomaterials significantly enlarges the active interfacial area and shortens the lithium-ion diffusion paths, leading to an improved high-rate performance and enhanced energy density. Transition metal oxides (TMOs) such as nickel oxide (NiO), copper oxide (CuO), and zinc oxide (ZnO) have demonstrated significant theoretical capacities, while binary systems like NiCuO offer further improvements in cycling stability and energy output. Additionally, layered lithium-based TMOs, particularly those incorporating nickel, cobalt, and manganese, have shown remarkable promise in achieving high specific capacities and long-term stability. The synergistic integration of metal oxides with carbon-based nanostructures, such as carbon nanotubes (CNTs), enhances the electrical conductivity and structural durability further, leading to a superior electrochemical performance in LIBs. In SSBs, the use of oxide-based solid electrolytes like garnet-type Li7La3Zr2O12 (LLZO) and sulfide-based electrolytes has facilitated the development of high-energy-density systems with excellent ionic conductivity and chemical stability. However, challenges such as high interfacial resistance at the electrode–electrolyte interface persist. Strategies like the application of lithium niobate (LiNbO3) coatings have been employed to enhance interfacial stability and maintain electrochemical integrity. Furthermore, two-dimensional (2D) metal oxide nanomaterials, owing to their high active surface areas and rapid ion transport, have demonstrated considerable potential to boost the performance of SSBs. Despite these advancements, several challenges remain. Morphological optimization of nanomaterials, improved interface engineering to reduce the interfacial resistance, and solutions to address dendrite formation and mechanical degradation are critical to achieving the full potential of these materials. Full article
(This article belongs to the Proceedings of The 5th International Online Conference on Nanomaterials)
15 pages, 2823 KB  
Article
Using Digitalization to Reduce Laboratory Testing Time for Lithium-Ion Cells
by Piotr Duda, Mariusz Konieczny and Piotr Bielaczyc
Energies 2026, 19(2), 312; https://doi.org/10.3390/en19020312 - 7 Jan 2026
Viewed by 228
Abstract
The development of lithium-ion batteries for electric vehicles and other applications requires numerous complex and time-consuming research efforts. Numerical modeling can significantly reduce both the scope and duration of laboratory testing by enabling rapid prediction of cell behavior under various operating conditions. In [...] Read more.
The development of lithium-ion batteries for electric vehicles and other applications requires numerous complex and time-consuming research efforts. Numerical modeling can significantly reduce both the scope and duration of laboratory testing by enabling rapid prediction of cell behavior under various operating conditions. In this study, it is demonstrated that the parameters of the Newman–Tiedemann–Gu–Kim (NTGK) battery model can be determined using only extreme discharge current values, omitting intermediate currents. This approach increases the average voltage error by 0.23% but reduces the average temperature error by 0.22%. Additionally, the use of limited experimental data leads to extrapolation errors at an 8 A discharge current from 1.20% to 0.65% for voltage and from 7.04% to 5.78% for temperature. Furthermore, the proposed model enables accurate prediction of the state of charge (SoC) and battery temperature evolution without additional measurements under realistic driving conditions, such as the Worldwide Harmonized Light-Duty Vehicle Test Cycle (WLTC). Full article
Show Figures

Figure 1

19 pages, 5014 KB  
Article
In Situ Electrochemical Detection of Silicon Anode Crystallization for Full-Cell Health Management
by Hyeon-Woo Jung, Ga-Eun Lee and Heon-Cheol Shin
Energies 2026, 19(1), 279; https://doi.org/10.3390/en19010279 - 5 Jan 2026
Viewed by 195
Abstract
In this study, we investigate the relationship between the progressive lowering of the silicon (Si) anode potential during lithiation and the accompanying crystallization reaction to enable in situ electrochemical detection in Si-based full cells. Si–Li half cells were first analyzed by differential capacity [...] Read more.
In this study, we investigate the relationship between the progressive lowering of the silicon (Si) anode potential during lithiation and the accompanying crystallization reaction to enable in situ electrochemical detection in Si-based full cells. Si–Li half cells were first analyzed by differential capacity (dQ/dV), revealing a crystallization feature near 0.05 V vs. Li+/Li, commonly associated with crystallization to Li15Si4. In the initial cycle, this signal was obscured by a dominant amorphization peak near 0.1 V; however, once amorphization was completed and the end-of-lithiation potential dropped below ~0.05 V in later cycles, a distinct crystallization peak became clearly resolvable. Under capacity-limited cycling that mimics full-cell operation, degradation-induced lowering of the Si-anode potential led to the appearance of the crystallization signal when the anode potential crossed this threshold. Based on these results, we extended the analysis to LiFePO4–Si three-electrode full cells and, by reparameterizing dQ/dV as a function of charge time, separated electrode-specific contributions and identified the Si crystallization feature within the full-cell response when N/P ≈ 1. A simple degradation-modeling scenario further showed that in cells initially designed with N/P > 1, loss of anode active material can reduce the effective N/P, drive the Si potential into the crystallization window, and introduce a new peak in the full-cell dQ/dV curve associated with Si crystallization. These combined experimental and modeling results indicate that degradation-driven lowering of the Si-anode potential triggers crystallization and that this process can be detected in full cells via dQ/dV analysis. Practically, the emergence of the Si-crystallization feature provides an in situ marker that the effective N/P has drifted toward unity due to anode-dominated aging and may inform charge cut-off strategies to mitigate further Si-anode degradation. Full article
(This article belongs to the Special Issue Advanced Electrochemical Energy Storage Materials)
Show Figures

Figure 1

18 pages, 2044 KB  
Article
Evaluation of the Effectiveness of Selected Extinguishing Agents for Extinguishing Li-Ion Batteries and for Capturing Selected Contaminants
by Anna Rabajczyk, Justyna Gniazdowska, Piotr Stojek, Piotr Mortka and Tomasz Lutoborski
Materials 2026, 19(1), 180; https://doi.org/10.3390/ma19010180 - 3 Jan 2026
Viewed by 289
Abstract
The production and use of Li-ion batteries (LIBs) is steadily increasing each year, leading to a growing number of battery-powered products. Consequently, the number of chemical hazards associated with the operation and other stages of the life cycle of this type of cell [...] Read more.
The production and use of Li-ion batteries (LIBs) is steadily increasing each year, leading to a growing number of battery-powered products. Consequently, the number of chemical hazards associated with the operation and other stages of the life cycle of this type of cell is increasing as well. Therefore, this study examined the impact of selected extinguishing agents for extinguishing Li-ion battery fires—namely, a dedicated extinguishing granulate, a natural sorbent (exfoliated vermiculite), and quartz sand—on the level of heat and released substances. The study determined the emission of heavy metals and polycyclic aromatic hydrocarbons (PAH) into the air during a cell fire, the concentration of the inhalable aerosol fraction, and the concentration of hazardous substances in the extinguishing agent residue. The analysis concluded that quartz sand provides the most effective heat removal and insulation of the battery from the external environment, which also reduces the amount of pollutants released into the environment. Full article
(This article belongs to the Special Issue Technology in Lithium-Ion Batteries: Prospects and Challenges)
Show Figures

Graphical abstract

Back to TopTop