Enhancing Li-S Battery Kinetics via Cation-Engineered Al3+/Fe3+-Substituted Co3O4 Spinels
Abstract
1. Introduction
2. Experimental
2.1. Synthesis of Co3O4, Al2CoO4, and Fe2CoO4
2.2. Fabrication of Co3O4-, Al2CoO4-, and Fe2CoO4-Modified Separators
2.3. Preparation of S/CNT Cathode
2.4. Assembly of Cells
2.5. Lithium Polysulfide Adsorption Test
2.6. Polysulfide Diffusion Test
2.7. Lithium Sulfide (Li2S) Deposition Test
2.8. Electrochemical Testing
2.9. Material Characterization
3. Results and Discussion
3.1. Phase Analysis
3.2. Electrochemical Performance Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Braga, M.H.; Grundish, N.S.; Murchison, A.J.; Goodenough, J.B. Alternative strategy for a safe rechargeable battery. Energy Environ. Sci. 2017, 10, 331–336. [Google Scholar] [CrossRef]
- Peng, H.-J.; Huang, J.-Q.; Cheng, X.-B.; Zhang, Q. Review on High-Loading and High-Energy Lithium–Sulfur Batteries. Adv. Energy Mater. 2017, 7, 1700260. [Google Scholar] [CrossRef]
- Batyrgali, N.; Yerkinbekova, Y.; Tolganbek, N.; Kalybekkyzy, S.; Bakenov, Z.; Mentbayeva, A. Recent Advances on Modification of Separator for Li/S Batteries. ACS Appl. Energy Mater. 2023, 6, 588–604. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Q.; Sun, Y.-K. Recent progress of advanced binders for Li-S batteries. J. Power Sources 2018, 396, 19–32. [Google Scholar] [CrossRef]
- Qi, X.; Yang, Y.; Jin, Q.; Yang, F.; Xie, Y.; Sang, P.; Liu, K.; Zhao, W.; Xu, X.; Fu, Y.; et al. Two-Plateau Li-Se Chemistry for High Volumetric Capacity Se Cathodes. Angew. Chem. Int. Ed. 2020, 59, 13908–13914. [Google Scholar] [CrossRef]
- Ye, Z.; Jiang, Y.; Li, L.; Wu, F.; Chen, R. Enhanced catalytic conversion of polysulfide using 1D CoTe and 2D MXene for heat-resistant and lean-electrolyte Li–S batteries. Chem. Eng. J. 2022, 430, 132734. [Google Scholar] [CrossRef]
- Gu, X.; Lai, C. One dimensional nanostructures contribute better Li–S and Li–Se batteries: Progress, challenges and perspectives. Energy Storage Mater. 2019, 23, 190–224. [Google Scholar] [CrossRef]
- Liu, Y.-T.; Han, D.-D.; Wang, L.; Li, G.-R.; Liu, S.; Gao, X.-P. NiCo2O4 Nanofibers as Carbon-Free Sulfur Immobilizer to Fabricate Sulfur-Based Composite with High Volumetric Capacity for Lithium–Sulfur Battery. Adv. Energy Mater. 2019, 9, 1803477. [Google Scholar] [CrossRef]
- Xu, N.; Qian, T.; Liu, X.; Liu, J.; Chen, Y.; Yan, C. Greatly Suppressed Shuttle Effect for Improved Lithium Sulfur Battery Performance through Short Chain Intermediates. Nano Lett. 2017, 17, 538–543. [Google Scholar] [CrossRef]
- Ye, C.; Jiao, Y.; Jin, H.; Slattery, A.D.; Davey, K.; Wang, H.; Qiao, S.-Z. 2D MoN-VN Heterostructure To Regulate Polysulfides for Highly Efficient Lithium-Sulfur Batteries. Angew. Chem. Int. Ed. 2018, 57, 16703–16707. [Google Scholar] [CrossRef]
- He, D.; Meng, J.; Chen, X.; Liao, Y.; Cheng, Z.; Yuan, L.; Li, Z.; Huang, Y. Ultrathin Conductive Interlayers: Ultrathin Conductive Interlayer with High-Density Antisite Defects for Advanced Lithium–Sulfur Batteries (Adv. Funct. Mater. 2/2021). Adv. Funct. Mater. 2021, 31, 2170012. [Google Scholar] [CrossRef]
- Hu, X.; Zhong, L.; Shu, C.; Fang, Z.; Yang, M.; Li, J.; Yu, D. Versatile, Aqueous Soluble C2N Quantum Dots with Enriched Active Edges and Oxygenated Groups. J. Am. Chem. Soc. 2020, 142, 4621–4630. [Google Scholar] [CrossRef]
- Li, G.; Lu, F.; Dou, X.; Wang, X.; Luo, D.; Sun, H.; Yu, A.; Chen, Z. Polysulfide Regulation by the Zwitterionic Barrier toward Durable Lithium–Sulfur Batteries. J. Am. Chem. Soc. 2020, 142, 3583–3592. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Song, C.; Pang, Y.; Zheng, S. Functional Design of Separator for Li-S Batteries. Prog. Chem. 2020, 32, 1402–1411. [Google Scholar] [CrossRef]
- Xia, S.; Zhou, Q.; Peng, B.; Zhang, X.; Liu, L.; Guo, F.; Fu, L.; Wang, T.; Liu, Y.; Wu, Y. Co3O4@MWCNT modified separators for Li–S batteries with improved cycling performance. Mater. Today Energy 2022, 30, 101163. [Google Scholar] [CrossRef]
- Lim, W.-G.; Kim, S.; Jo, C.; Lee, J. A Comprehensive Review of Materials with Catalytic Effects in Li–S Batteries: Enhanced Redox Kinetics. Angew. Chem. Int. Ed. 2019, 58, 18746–18757. [Google Scholar] [CrossRef]
- Liu, D.; Zhang, C.; Zhou, G.; Lv, W.; Ling, G.; Zhi, L.; Yang, Q.-H. Catalytic Effects in Lithium–Sulfur Batteries: Promoted Sulfur Transformation and Reduced Shuttle Effect. Adv. Sci. 2018, 5, 1700270. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, J.; Wang, Z.; Nie, L.; Hu, X.; Yu, Y.; Liu, W. Electrocatalytic NiCo2O4 Nanofiber Arrays on Carbon Cloth for Flexible and High-Loading Lithium–Sulfur Batteries. Nano Lett. 2021, 21, 5285–5292. [Google Scholar] [CrossRef]
- Feng, G.; Liu, X.; Wu, Z.; Chen, Y.; Yang, Z.; Wu, C.; Guo, X.; Zhong, B.; Xiang, W.; Li, J. Enhancing performance of Li–S batteries by coating separator with MnO @ yeast-derived carbon spheres. J. Alloys Compd. 2020, 817, 152723. [Google Scholar] [CrossRef]
- Deng, N.; Liu, Y.; Li, Q.; Yan, J.; Zhang, L.; Wang, L.; Zhang, Y.; Cheng, B.; Lei, W.; Kang, W. Functional double-layer membrane as separator for lithium-sulfur battery with strong catalytic conversion and excellent polysulfide-blocking. Chem. Eng. J. 2020, 382, 122918. [Google Scholar] [CrossRef]
- Qian, X.; Jin, L.; Zhao, D.; Yang, X.; Wang, S.; Shen, X.; Rao, D.; Yao, S.; Zhou, Y.; Xi, X. Ketjen Black-MnO Composite Coated Separator for High Performance Rechargeable Lithium-Sulfur Battery. Electrochim. Acta 2016, 192, 346–356. [Google Scholar] [CrossRef]
- Kong, W.; Yan, L.; Luo, Y.; Wang, D.; Jiang, K.; Li, Q.; Fan, S.; Wang, J. Ultrathin MnO2/Graphene Oxide/Carbon Nanotube Interlayer as Efficient Polysulfide-Trapping Shield for High-Performance Li–S Batteries. Adv. Funct. Mater. 2017, 27, 1606663. [Google Scholar] [CrossRef]
- Chen, Y.; Ji, X. Bamboo-like Co3O4 nanofiber as host materials for enhanced lithium-sulfur battery performance. J. Alloys Compd. 2019, 777, 688–692. [Google Scholar] [CrossRef]
- Lu, Y.; Dong, C.-L.; Huang, Y.-C.; Zou, Y.; Liu, Z.; Liu, Y.; Li, Y.; He, N.; Shi, J.; Wang, S. Identifying the Geometric Site Dependence of Spinel Oxides for the Electrooxidation of 5-Hydroxymethylfurfural. Angew. Chem. Int. Ed. 2020, 59, 19215–19221. [Google Scholar] [CrossRef] [PubMed]
- Saroha, R.; Oh, J.H.; Lee, J.S.; Kang, Y.C.; Jeong, S.M.; Kang, D.-W.; Cho, C.; Cho, J.S. Hierarchically porous nanofibers comprising multiple core–shell Co3O4@graphitic carbon nanoparticles grafted within N-doped CNTs as functional interlayers for excellent Li–S batteries. Chem. Eng. J. 2021, 426, 130805. [Google Scholar] [CrossRef]
- Sun, S.; Sun, Y.; Zhou, Y.; Xi, S.; Ren, X.; Huang, B.; Liao, H.; Wang, L.P.; Du, Y.; Xu, Z.J. Shifting Oxygen Charge Towards Octahedral Metal: A Way to Promote Water Oxidation on Cobalt Spinel Oxides. Angew. Chem. Int. Ed. 2019, 58, 6042–6047. [Google Scholar] [CrossRef]
- Wang, H.Y.; Hung, S.F.; Chen, H.Y.; Chan, T.S.; Chen, H.M.; Liu, B. In Operando Identification of Geometrical-Site-Dependent Water Oxidation Activity of Spinel Co3O4. J. Am. Chem. Soc. 2015, 138, 36–39. [Google Scholar] [CrossRef]
- Wang, X.; Li, M.; Chang, Z.; Yang, Y.; Wu, Y.; Liu, X. Co3O4@MWCNT Nanocable as Cathode with Superior Electrochemical Performance for Supercapacitors. ACS Appl. Mater. Interfaces 2015, 7, 2280–2285. [Google Scholar] [CrossRef]
- Wu, J.; Wang, X.; Zheng, W.; Sun, Y.; Xie, Y.; Ma, K.; Zhang, Z.; Liao, Q.; Tian, Z.; Kang, Z.; et al. Identifying and Interpreting Geometric Configuration-Dependent Activity of Spinel Catalysts for Water Reduction. J. Am. Chem. Soc. 2022, 144, 19163–19172. [Google Scholar] [CrossRef]
- Wu, L.; Cai, C.; Yu, X.; Chen, Z.; Hu, Y.; Yu, F.; Zhai, S.; Mei, T.A.-O.; Yu, L.; Wang, X.A.-O. Scalable 3D Honeycombed Co3O4 Modified Separators as Polysulfides Barriers for High-Performance Li-S Batteries. ACS Appl. Mater. Interfaces 2022, 14, 35894–35904. [Google Scholar] [CrossRef]
- Duan, Y.; Sun, S.; Sun, Y.; Xi, S.; Chi, X.; Zhang, Q.; Ren, X.; Wang, J.; Ong, S.J.H.; Du, Y.; et al. Mastering Surface Reconstruction of Metastable Spinel Oxides for Better Water Oxidation. Adv. Mater. 2019, 31, 1807898. [Google Scholar] [CrossRef]
- Kim, J.; Ko, W.; Yoo, J.M.; Paidi, V.K.; Jang, H.Y.; Shepit, M.; Lee, J.; Chang, H.; Lee, H.S.; Jo, J.; et al. Structural Insights into Multi-Metal Spinel Oxide Nanoparticles for Boosting Oxygen Reduction Electrocatalysis. Adv. Mater. 2022, 34, 2107868. [Google Scholar] [CrossRef]
- Zhao, Q.; Yan, Z.; Chen, C.; Chen, J. Spinels: Controlled Preparation, Oxygen Reduction/Evolution Reaction Application, and Beyond. Chem. Rev. 2017, 117, 10121–10211. [Google Scholar] [CrossRef]
- Zhou, Y.; Sun, S.; Song, J.; Xi, S.; Chen, B.; Du, Y.; Fisher, A.C.; Cheng, F.; Wang, X.; Zhang, H.; et al. Enlarged Co–O Covalency in Octahedral Sites Leading to Highly Efficient Spinel Oxides for Oxygen Evolution Reaction. Adv. Mater. 2018, 30, 1802912. [Google Scholar] [CrossRef] [PubMed]
- Duan, X.; Pan, M.; Yu, F.; Yuan, D. Synthesis, structure and optical properties of CoAl2O4 spinel nanocrystals. J. Alloys Compd. 2011, 509, 1079–1083. [Google Scholar] [CrossRef]
- Lu, C.; Tu, C.; Yang, Y.; Ma, Y.; Zhu, M. Construction of Fe3O4@Fe2P Heterostructures as Electrode Materials for Supercapacitors. Batteries 2023, 9, 326. [Google Scholar] [CrossRef]
- Hu, Q.; Qi, S.; Huo, Q.; Zhao, Y.; Sun, J.; Chen, X.; Lv, M.; Zhou, W.; Feng, C.; Chai, X.; et al. Designing Efficient Nitrate Reduction Electrocatalysts by Identifying and Optimizing Active Sites of Co-Based Spinels. J. Am. Chem. Soc. 2024, 146, 2967–2976. [Google Scholar] [CrossRef]
- Wu, Z.; He, X.; Zhou, J.; Yang, X.; Sun, L.; Li, H.; Pan, Y.; Yu, L. Scalable fabrication of Ni(OH)2/carbon/polypropylene separators for high-performance Li-S batteries. J. Alloys Compd. 2022, 935, 168136. [Google Scholar] [CrossRef]
- Song, Y.-W.; Shen, L.; Yao, N.; Li, X.-Y.; Bi, C.-X.; Li, Z.; Zhou, M.-Y.; Zhang, X.-Q.; Chen, X.; Li, B.-Q.; et al. Cationic lithium polysulfides in lithium–sulfur batteries. Chem 2022, 8, 3031–3050. [Google Scholar] [CrossRef]
- Gao, X.; Yu, Z.; Wang, J.; Zheng, X.; Ye, Y.A.-O.; Gong, H.A.-O.; Xiao, X.; Yang, Y.; Chen, Y.; Bone, S.E.; et al. Electrolytes with moderate lithium polysulfide solubility for high-performance long-calendar-life lithium-sulfur batteries. Proc. Natl. Acad. Sci. USA 2023, 120, e2301260120. [Google Scholar] [CrossRef]
- Cao, Y.; Wu, H.; Li, G.; Liu, C.; Cao, L.; Zhang, Y.; Bao, W.; Wang, H.; Yao, Y.; Liu, S.; et al. Ion Selective Covalent Organic Framework Enabling Enhanced Electrochemical Performance of Lithium–Sulfur Batteries. Nano Lett. 2021, 21, 2997–3006. [Google Scholar] [CrossRef]
- Li, B.; Wang, P.; Yuan, J.; Song, N.; Feng, J.; Xiong, S.; Xi, B. Origin of Phase Engineering CoTe2 Alloy Toward Kinetics-Reinforced and Dendrite-Free Lithium−Sulfur Batteries. Adv. Mater. 2024, 36, 2309324. [Google Scholar] [CrossRef]
- Wang, N.; Zhang, X.; Ju, Z.; Yu, X.; Wang, Y.; Du, Y.; Bai, Z.; Dou, S.; Yu, G. Thickness-independent scalable high-performance Li–S batteries with high areal sulfur loading via electron-enriched carbon framework. Nat. Commun. 2021, 12, 4519. [Google Scholar] [CrossRef]






| Electrode | Peak | Slope, Ip/ν0.5 | DLi+/cm2s−1 |
|---|---|---|---|
| Peak 1 | 0.424 | 6.17431 × 10−8 | |
| Al2CoO4 | Peak 2 | 0.214 | 1.57284 × 10−8 |
| Peak 3 | 0.164 | 9.23729 × 10−9 | |
| Peak 1 | 0.260 | 2.32169 × 10−8 | |
| Fe2CoO4 | Peak 2 | 0.110 | 4.15568 × 10−9 |
| Peak 3 | 0.111 | 4.23158 × 10−9 | |
| Peak 1 | 0.271 | 2.52229 × 10−8 | |
| Co3O4 | Peak 2 | 0.086 | 2.54012 × 10−9 |
| Peak 3 | 0.120 | 4.94561 × 10−9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Lin, Z.; Wang, M.; Fu, W.; Gu, Z.; Yang, Z.; Guan, K.; Yang, Z.; Wang, L.; Wang, W.; Zhu, K. Enhancing Li-S Battery Kinetics via Cation-Engineered Al3+/Fe3+-Substituted Co3O4 Spinels. Materials 2026, 19, 326. https://doi.org/10.3390/ma19020326
Lin Z, Wang M, Fu W, Gu Z, Yang Z, Guan K, Yang Z, Wang L, Wang W, Zhu K. Enhancing Li-S Battery Kinetics via Cation-Engineered Al3+/Fe3+-Substituted Co3O4 Spinels. Materials. 2026; 19(2):326. https://doi.org/10.3390/ma19020326
Chicago/Turabian StyleLin, Zhiying, Mingyu Wang, Wen Fu, Zhixin Gu, Zhenkai Yang, Kai Guan, Zaixing Yang, Lulu Wang, Wenjun Wang, and Kaixing Zhu. 2026. "Enhancing Li-S Battery Kinetics via Cation-Engineered Al3+/Fe3+-Substituted Co3O4 Spinels" Materials 19, no. 2: 326. https://doi.org/10.3390/ma19020326
APA StyleLin, Z., Wang, M., Fu, W., Gu, Z., Yang, Z., Guan, K., Yang, Z., Wang, L., Wang, W., & Zhu, K. (2026). Enhancing Li-S Battery Kinetics via Cation-Engineered Al3+/Fe3+-Substituted Co3O4 Spinels. Materials, 19(2), 326. https://doi.org/10.3390/ma19020326

