Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (322)

Search Parameters:
Keywords = Landrace pigs

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 588 KiB  
Article
Genome-Wide Association Study of Gluteus Medius Muscle Size in a Crossbred Pig Population
by Yu He, Chunyan Bai, Junwen Fei, Juan Ke, Changyi Chen, Xiaoran Zhang, Wuyang Liu, Jing Li, Shuang Liang, Boxing Sun and Hao Sun
Vet. Sci. 2025, 12(8), 730; https://doi.org/10.3390/vetsci12080730 - 3 Aug 2025
Viewed by 79
Abstract
The size of the gluteus medius muscle (GM) in swine significantly impacts both hindlimb conformation and carcass yield, while little is known about the genetic architecture of this trait. This study aims to estimate genetic parameters and identify candidate genes associated with this [...] Read more.
The size of the gluteus medius muscle (GM) in swine significantly impacts both hindlimb conformation and carcass yield, while little is known about the genetic architecture of this trait. This study aims to estimate genetic parameters and identify candidate genes associated with this trait through a genome-wide association study (GWAS). A total of 439 commercial crossbred pigs, possessing both Landrace and Yorkshire ancestry, were genotyped using the Porcine 50K chip. The length and width of the GM were directly measured, and the area was then calculated from these values. The heritabilities were estimated by HIBLUP (V1.5.0) software, and the GWAS was conducted employing the BLINK model implemented in GAPIT3. The heritability estimates for the length, width, and area of the GM were 0.43, 0.40, and 0.46, respectively. The GWAS identified four genome-wide significant SNPs (rs81381267, rs697734475, rs81298447, and rs81458910) associated with the gluteus medius muscle area. The PDE4D gene was identified as a promising candidate gene potentially involved in the regulation of gluteus medius muscle development. Our analysis revealed moderate heritability estimates for gluteus medius muscle size traits. These findings enhance our understanding of the genetic architecture underlying porcine muscle development. Full article
Show Figures

Figure 1

16 pages, 1127 KiB  
Article
Effects of Corn–Soybean Meal-Based Fermented Feed Supplementation on Growth Performance, Meat Quality, Fatty Acid Profiles, Nutritional Values, and Gut Microbiota of Lean-Type Finishing Pigs
by Jiao Song, Xin Wang, Yuhan Cao, Yue He and Ye Yang
Foods 2025, 14(15), 2641; https://doi.org/10.3390/foods14152641 - 28 Jul 2025
Viewed by 421
Abstract
This research investigated the impact of corn–soybean meal-based fermented feed on the growth performance, pork quality, and fatty acid profiles of lean-type finishing pigs. A total of 80 lean-type growing DLY (Duroc × Landrace–Yorkshire) pigs were randomly assigned to 2 groups, with 5 [...] Read more.
This research investigated the impact of corn–soybean meal-based fermented feed on the growth performance, pork quality, and fatty acid profiles of lean-type finishing pigs. A total of 80 lean-type growing DLY (Duroc × Landrace–Yorkshire) pigs were randomly assigned to 2 groups, with 5 replicates of 8 pigs per pen. The pigs in control group (CON group) were fed a basal diet, while the pigs in fermented feed group (FF group) were fed a diet supplemented with 10% fermented feed. The experimental period lasted 70 days. Results exhibited that pigs in FF group had a significant increase in final body weight and average daily gain (ADG) (p < 0.05) and had a significant decrease in the feed-to-gain ratio (F/G) (p < 0.05). The FF group also exhibited significant promotion in muscle intramuscular fat content, marbling score, and meat color and significantly reduced the meat shear force and drip loss (p < 0.05). Serum analysis indicated that fermented feed significantly elevated blood glucose, total cholesterol, triglyceride levels, and serum hormones such as insulin, leptin, and IGF-1 (p < 0.05). Additionally, fermented feed significantly elevated the levels of polyunsaturated fatty acids (PUFAs) and monounsaturated fatty acids (MUFAs), whereas it decreased the saturated fatty acids (SFAs) contents (p < 0.05). The fermented feed also significantly enhanced pork nutritional values (p < 0.05). The fermented feed increased the expression of IGF-1, SREBP1c, PDE3, PPARγ, SCD5, and FAT/CD36 mRNA (p < 0.05). Furthermore, microbial 16S rDNA analysis uncovered that FF supplementation significantly reduced the Campilobacterota phylum abundance, while increasing the genus abundances of Clostridium_sensu_stricto, norank_f_Oscillospiraceae, unclassified_c_Clostridia, and V9D2013 (p < 0.05). In summary, the results indicated that the microbial fermented feed exhibited the regulation effects on pork quality and nutritional values of lean-type pigs through regulating lipid metabolism and gut microbial composition. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

17 pages, 1205 KiB  
Article
Feeding a Bitter Mix of Gentian and Grape Seed Extracts with Caffeine Reduces Appetite and Body Fat Deposition and Improves Meat Colour in Pigs
by Maximiliano Müller, Xinle Tan, Fan Liu, Marta Navarro, Louwrens C. Hoffman and Eugeni Roura
Animals 2025, 15(14), 2129; https://doi.org/10.3390/ani15142129 - 18 Jul 2025
Viewed by 320
Abstract
Dietary bitter compounds such as caffeine have the potential to reduce backfat in pigs. However, the use of caffeine as a feed additive has restrictions in many countries. It was hypothesised that grape seed and gentian plant extracts (GG) could replace caffeine in [...] Read more.
Dietary bitter compounds such as caffeine have the potential to reduce backfat in pigs. However, the use of caffeine as a feed additive has restrictions in many countries. It was hypothesised that grape seed and gentian plant extracts (GG) could replace caffeine in feed due to their bitterness and antiadipogenic effects. The effect of caffeine (0.5 g/kg), GG (2 g/kg) alone or in combination with caffeine (BM) at increasing concentrations (0.5, 1, 1.5, or 2 g/kg) on feed efficiency, carcass, and meat quality was assessed in finishing pigs (Large White × Landrace). Growth performance and carcass traits were evaluated at a pen level (n = 14). Loins (longissimus thoracis) were removed from eight pig/treatment at the abattoir to assess drip loss, lightness (L*), redness (a*), yellowness (b*), chroma (C*), hue angle (h°), pH, cook loss, and shear force. A linear increase (p < 0.05) in loin a*, b*, and C* values and a linear decrease (p < 0.05) in ADFI, ADG, backfat, dressing percentage, and HSCW were observed with increasing BM levels. At 1.5 g/kg, BM increased the loins a* (p < 0.05), b* (p < 0.05) and C* values (p < 0.05) compared to the control. Twenty-two proteins related to energy metabolism and myofibril assembly were identified to be upregulated (FDR < 0.05) in BM vs. control loins. In conclusion, GG could be used in combination with low doses of caffeine to modulate appetite and carcass leanness and improve pork colour. Full article
(This article belongs to the Section Animal Nutrition)
Show Figures

Figure 1

9 pages, 235 KiB  
Article
Inclusion of Milk Thistle Seed and Achyranthes japonica Extract Alone or in Combination in Diet of Weaning Pigs Results in Similar Growth Outcomes
by Shanmugam Suresh Kumar, Se Yeon Jang and In Ho Kim
Life 2025, 15(7), 1114; https://doi.org/10.3390/life15071114 - 16 Jul 2025
Viewed by 324
Abstract
The objective of this study was to assess the impacts of milk thistle seed (MTS) and Achyranthes japonica extract (AJE), both individually and in combination, on growth performance, nutrient digestibility, fecal score, fecal gas emissions, and cytokine responses in n = 120 crossbred [...] Read more.
The objective of this study was to assess the impacts of milk thistle seed (MTS) and Achyranthes japonica extract (AJE), both individually and in combination, on growth performance, nutrient digestibility, fecal score, fecal gas emissions, and cytokine responses in n = 120 crossbred [(Landrace Yorkshire) × Duroc] weaning piglets with an initial body weight of 6.53 ± 1.24 kg. Pigs were selected based on sex and randomly assigned to one of four dietary treatments for 6 weeks. The experimental diets were as follows: (1) CON—control/basal diet; (2) AJE (CON + 0.10% AJE); (3) MTS (CON + 0.10% MTS); and (4) CMB—combo feed (CON + 0.05% of AJE + 0.05% of MTS). Each treatment consisted of six replicates with five pigs (three ♀ and two barrows ♂) per pen. The incorporation of MTS has the potential to enhance (p < 0.05) the average daily gain in weaning pigs, particularly when used alone or in combination with AJE. But there were no significant effects or adverse effects observed on other growth parameters such as body weight, average daily feed intake, and gain-to-feed ratio. Also, there were no notable changes found in nutrient digestibility, fecal score, fecal gas emissions, or cytokine production. In summary, MTS and AJE, administered alone or in combination, reveal similar growth outcomes, suggesting that both additives could serve as potential options to improve animal performance without adverse effects. Full article
15 pages, 1363 KiB  
Article
The Effects of Dietary Supplementation of Chestnut Tannic Acid on the Growth Performance, Gut Morphology and Microbiota of Weaned Piglets
by Jinzhou Zhang, Yuting Zhang, Yuya Wang, Yanwei Li, Dongyang Liu, Hongbing Xie, Yongqiang Wang, Meinan Chang, Liping Guo and Zhiguo Miao
Metabolites 2025, 15(7), 477; https://doi.org/10.3390/metabo15070477 - 15 Jul 2025
Viewed by 367
Abstract
Background/Objectives: This study investigated the effects of chestnut tannic acid (TA) on the growth performance, the expression of tight junction proteins and the composition of the gut microbiota of weaned piglets, which could provide novel insights into the application of TA in [...] Read more.
Background/Objectives: This study investigated the effects of chestnut tannic acid (TA) on the growth performance, the expression of tight junction proteins and the composition of the gut microbiota of weaned piglets, which could provide novel insights into the application of TA in swine production. Methods: In a 42-day trial, 180 healthy, 21-day-old Duroc × Landrace × Yorkshire piglets were randomly assigned to a Control group and four treatment groups (TA1–4), fed commercial diets supplemented with 0, 0.06%, 0.12%, 0.18% or 0.24% TA. Each group had six replicates of six pigs each. Results: The average daily gain in all TA groups, the jejunal and ileal villus height and the villus height-to-crypt depth ratio in the TA3 and TA4 groups were markedly increased (p < 0.05). The mRNA levels of MUC2 and ZO-1 were upregulated in the TA3 group, as were those of MUC4 in the jejunum and ileum and claudin in the duodenum and ileum; glutathione peroxidase and total antioxidant capacity were upregulated in the duodenum and jejunum in the TA3 group, and total superoxide dismutase was increased in all the TA2 groups (p < 0.05). Conversely, the malondialdehyde significantly decreased in all the TA groups (p < 0.05). TA supplementation improved the alpha diversity of the intestinal microflora and augmented probiotic abundance while reducing that of pathogenic bacteria. The contents of acetic, isobutyric, valeric, isovaleric, hexanoic and propionic acids, as well as total short-chain fatty acids (SCFA), were higher in the TA2 and TA3 groups (p < 0.05). Conclusions: TA inclusion in piglet diets improved the intestinal environment by upregulating the antioxidant enzymes, improving intestinal morphology and promoting probiotic growth and SCFA production while reducing pathogenic bacterial abundance, consequently enhancing the gut barrier and the growth of weaned piglets. Full article
(This article belongs to the Section Animal Metabolism)
Show Figures

Figure 1

13 pages, 2083 KiB  
Article
Gut Fungal Community Modulates Fat Deposition in Ningxiang Pigs: Species-Specific Regulation via the Glucose–SCFAs Metabolic Axis
by Pengfei Huang, Hanmin Wang, Juan Wang, Zhenrong Qiu, Chunfeng Wang, Han Liu, Qiye Wang, Yali Li and Huansheng Yang
Animals 2025, 15(13), 1887; https://doi.org/10.3390/ani15131887 - 26 Jun 2025
Viewed by 300
Abstract
Despite limited understanding of gut fungal roles in fat deposition among indigenous pig breeds, a comparative study between high-fat-accumulating Ningxiang (NX) pigs and lean-type Duroc × Landrace × Yorkshire (DLY) pigs reveals a fungal-driven regulatory mechanism. NX pigs exhibited significantly higher fat percentage, [...] Read more.
Despite limited understanding of gut fungal roles in fat deposition among indigenous pig breeds, a comparative study between high-fat-accumulating Ningxiang (NX) pigs and lean-type Duroc × Landrace × Yorkshire (DLY) pigs reveals a fungal-driven regulatory mechanism. NX pigs exhibited significantly higher fat percentage, elevated serum glucose, and markedly reduced total colonic short-chain fatty acids (SCFAs) compared to DLY pigs (all p < 0.001), with butyrate showing the most pronounced decrease. Beta-diversity confirmed distinct fungal communities (p = 0.002), where NX pigs were enriched with Aspergillus and Penicillium, while DLY pigs harbored dominant Rhodotorula. Strong correlations were observed: NX-enriched fungi positively correlated with glucose and negatively with SCFAs, whereas Rhodotorula strongly associated with SCFAs (p < 0.001). FUNGuild analysis linked Aspergillus/Penicillium to enhanced polysaccharide degradation and glucose bioavailability. The findings propose a gut fungal-mediated “Glucose–SCFAs axis”: NX-enriched fungi elevate glucose (promoting lipogenesis) and suppress SCFAs (reducing butyrate-mediated adipocyte inhibition), whereas Rhodotorula in DLY pigs enhances SCFAs-induced lipolysis. Crucially, we demonstrate that fungal modulation primarily drives fat deposition differences between breeds, offering novel probiotics/antifungal strategies for precision swine breeding. Full article
(This article belongs to the Special Issue Advances in Pig Microbiome: Gut Influences and Beyond)
Show Figures

Figure 1

16 pages, 591 KiB  
Article
Variability in Fishmeal Nutritional Value in Weaned Pigs and Development of Predictive Equations
by Pei Yang, Xiaoyan Su, Bin Li, Junqi Jin, Bing Yu, Jun He, Jie Yu, Quyuan Wang, Huifen Wang, Daiwen Chen and Hui Yan
Animals 2025, 15(13), 1872; https://doi.org/10.3390/ani15131872 - 24 Jun 2025
Viewed by 305
Abstract
The apparent ileal digestibility (AID) and standardized ileal digestibility (SID) of amino acids, digestible energy (DE), metabolizable energy (ME), and the apparent total tract digestibility (ATTD) of nutrients in 10 fishmeal (FM) samples were evaluated in weaned barrows (Duroc × Landrace × Yorkshire) [...] Read more.
The apparent ileal digestibility (AID) and standardized ileal digestibility (SID) of amino acids, digestible energy (DE), metabolizable energy (ME), and the apparent total tract digestibility (ATTD) of nutrients in 10 fishmeal (FM) samples were evaluated in weaned barrows (Duroc × Landrace × Yorkshire) using two experiments. In Experiment 1, 11 piglets (18.87 ± 0.10 kg) fitted with T-cannulas were randomly allocated to an 11 × 6 Latin-square design with 11 diets (1 nitrogen-free diet and 10 assay diets) and six periods. The AID and SID of all amino acids (AAs) except proline showed significant differences among all FM (p < 0.05). Importantly, the SID of amino acids was positively correlated with key antioxidant markers and immune parameters, and it was negatively correlated with oxidative stress markers (MDA) and pro-inflammatory cytokines (IL-2 and IL-6). In Experiment 2, 11 piglets (18.05 ± 1.15 kg) were assigned to an 11 × 5 Latin-square design with 11 diets (a 96.35% corn diet and 10 assay diets) and five consecutive periods. Significant variations were observed in the DE, ME, and ATTD of dry matter among different FM samples (p < 0.05). Moreover, predictive equations for estimating the SID of lysine, methionine, threonine, and tryptophan, as well as DE and ME, were established using stepwise regression analysis based on the chemical composition of the FM. These findings demonstrate that the nutritional value of FM in nursery pig diets has been underestimated, and this study provides precise data and predictive methods for evaluating the nutritional quality of FM in precision nutrition. Full article
(This article belongs to the Section Pigs)
Show Figures

Figure 1

14 pages, 3201 KiB  
Article
Transcriptome Profiling Reveals Genetic Basis of Muscle Development and Meat Quality Traits in Chinese Congjiang Xiang and Landrace Pigs
by Jiada Yang, Qiaowen Tang, Chunying Sun, Qiuyue Li, Xiaoyu Li, Lu Hou, Yi Yang and Kang Yang
Metabolites 2025, 15(7), 426; https://doi.org/10.3390/metabo15070426 - 22 Jun 2025
Viewed by 409
Abstract
(1) Objectives: Understanding the genetic basis of muscle development and meat quality traits in divergent pig breeds is crucial for advancing precision breeding strategies. (2) Methods: This study investigated transcriptome differences in the longissimus dorsi muscle between Chinese Congjiang Xiang (CX) and Landrace [...] Read more.
(1) Objectives: Understanding the genetic basis of muscle development and meat quality traits in divergent pig breeds is crucial for advancing precision breeding strategies. (2) Methods: This study investigated transcriptome differences in the longissimus dorsi muscle between Chinese Congjiang Xiang (CX) and Landrace (LAN) pigs. RNA sequencing was performed on muscle tissues from ten individuals of each breed, generating 874.5 million raw reads with an average mapping rate of 89.3% to the pig reference genome. (3) Results: Transcriptional profiling revealed distinct expression patterns with 785 genes exclusively expressed in CX pigs and 457 genes unique to LAN pigs, while 7099 co-expressed genes were shared by both breeds. Differential expression analysis identified 2459 significantly different genes (|log2FC| ≥ 1, adjusted p-value < 0.05), with 1745 up-regulated and 714 down-regulated in CX pigs. Among the most significantly up-regulated genes in CX pigs were flavor-associated genes (ELOVL5/6, FASN, DGAT2, ALDH1A3, PPAR-γ) with log2FC values ranging from 1.21 to 3.88. GO and KEGG pathway analyses revealed that up-regulated genes in CX pigs were significantly enriched in immune response pathways (adjusted p-value < 0.01), while down-regulated genes were primarily associated with myosin complex formation and PPAR signaling pathway. PPI network analysis identified PPAR-γ as a central hub gene with 16 direct interactions to other flavor-related genes. (4) Conclusions: These findings demonstrate that the superior meat flavor characteristics of indigenous Chinese pigs are driven by enhanced expression of lipid metabolism genes and distinctive immune-related pathways, providing specific molecular targets for breeding programs aimed at improving meat quality while maintaining production efficiency in commercial breeds. Full article
Show Figures

Graphical abstract

15 pages, 1261 KiB  
Article
Functional Requirement of Niacinamide for Blood Profiles, Antioxidant Status, and Intestinal Health in Finishing Pigs Fed a Low-Protein Diet
by Yan Zhao, Fangli Tang, Yunlong Shi, Qinyu Tan, Qingxin Ju, Ziyi Yang, Guanqing Yang, Pengfei Gao, Sung Woo Kim, Lin Xi, Guoqing Cao and Bugao Li
Animals 2025, 15(12), 1813; https://doi.org/10.3390/ani15121813 - 19 Jun 2025
Viewed by 357
Abstract
This study investigated the effects of dietary niacinamide supplementation on blood parameters, antioxidant status, and intestinal health in finishing pigs fed low-protein diets. Sixty-four pigs (Duroc × Landrace × Yorkshire; 80.4 ± 0.1 kg) were randomly allocated to four dietary treatments supplemented with [...] Read more.
This study investigated the effects of dietary niacinamide supplementation on blood parameters, antioxidant status, and intestinal health in finishing pigs fed low-protein diets. Sixty-four pigs (Duroc × Landrace × Yorkshire; 80.4 ± 0.1 kg) were randomly allocated to four dietary treatments supplemented with 30 (NAM30), 130 (NAM130), 230 (NAM230), and 330 (NAM330) mg/kg niacinamide for 30 days. Each treatment had four replicate pens and four pigs per pen. Growth performance was not significantly affected. However, the NAM130 group showed higher (p < 0.05) hemoglobin levels, reduced (p < 0.05) serum malondialdehyde and interleukin-1β (IL-1β) concentrations, and altered intestinal microbiota composition, including lower Streptococcus abundance (p < 0.05). Serum alanine aminotransferase levels increased quadratically (p < 0.05) with niacinamide supplementation, with a breakpoint at approximately 221 mg/kg. These results suggest that dietary supplementation with 130 mg/kg niacinamide improves antioxidant status, modulates inflammation, and supports intestinal microbial balance, with a safety threshold to avoid hepatic stress. Full article
(This article belongs to the Section Animal Nutrition)
Show Figures

Figure 1

17 pages, 3149 KiB  
Article
Dietary Digestible Protein Requirement in Finishing Pigs: A Study for Experimental Determination and Verification
by Shengkai Li, Hui Ma, Jianliang Wu, Jihe Lu, Shiyan Qiao, Xiangfang Zeng and Junyan Zhou
Agriculture 2025, 15(12), 1306; https://doi.org/10.3390/agriculture15121306 - 17 Jun 2025
Viewed by 474
Abstract
Crude protein, as a traditional standard for characterizing dietary nitrogen content, fails to reflect protein bioavailability. Digestible protein (DP) emphasizes the importance of total available proteins and offers better adaptability in low-protein diversified diets. The objective of this study was to establish and [...] Read more.
Crude protein, as a traditional standard for characterizing dietary nitrogen content, fails to reflect protein bioavailability. Digestible protein (DP) emphasizes the importance of total available proteins and offers better adaptability in low-protein diversified diets. The objective of this study was to establish and validate the digestible protein (DP) requirement for 80–110 kg finishing pigs (Duroc × Yorkshire × Landrace). In Experiment 1, 450 pigs were fed diets with graded DP levels (8.82–11.26%). Linear and quadratic regression models identified 9.55% DP as the optimal level, optimizing average daily gain and feed efficiency (R2 ≥ 0.94). Experiment 2 validated this requirement using three diet treatments and 270 pigs: high-protein traditional, low-protein traditional, and low-protein diversified. No significant differences were observed in growth performance, carcass traits, or meat quality among diets, confirming the robustness of 9.55% DP across formulations. Plasma urea nitrogen and total amino acids increased linearly with DP (p < 0.05), while hepatic transcriptomics revealed immune and metabolic partial impairments in high-protein traditional diet pigs, which may be linked to nitrogen overload. Muscle tissues from different treatment groups showed minimal transcriptional differences, emphasizing efficient protein utilization when amino acid requirements are met. This study demonstrates that 9.55% DP, combined with balanced amino acids, supports productivity in both traditional and diversified diets, reducing reliance on resource-intensive feed ingredients. These findings advocate for DP as a precise metric in swine production, thereby promoting sustainable development. Full article
(This article belongs to the Section Farm Animal Production)
Show Figures

Figure 1

20 pages, 7033 KiB  
Article
Nano-Copper Supplementation Reduces Fecal Copper Excretion and Enhances Piglet Performance Under Heat Stress
by Xiarui Xiao, Duo Xu, Haixin Zhang, Qian Xing, Daiwen Chen, Xiangbing Mao, Quyuan Wang, Huifen Wang and Hui Yan
Agriculture 2025, 15(12), 1296; https://doi.org/10.3390/agriculture15121296 - 17 Jun 2025
Viewed by 401
Abstract
This study aimed to evaluate the effects of dietary nano-copper supplementation on growth performance, nutrient digestibility, antioxidant status, inflammatory response, and intestinal barrier function in weanling pigs under heat stress conditions. Forty 20-day-old weaned weanling pigs (Yorkshire × Landrace × Duroc) weighing 6.49 [...] Read more.
This study aimed to evaluate the effects of dietary nano-copper supplementation on growth performance, nutrient digestibility, antioxidant status, inflammatory response, and intestinal barrier function in weanling pigs under heat stress conditions. Forty 20-day-old weaned weanling pigs (Yorkshire × Landrace × Duroc) weighing 6.49 ± 0.08 kg were randomly divided into five treatments with eight replicates each. The pre-feeding period was 2 days, followed by a 22-day experimental period. All groups were exposed to high heat conditions at 35 ± 1 °C. The control group received a basal diet, while the low copper sulfate (LC) group received a diet with 50 mg/kg of copper sulfate, the high copper sulfate (HC) group received a diet with 150 mg/kg of copper sulfate, the low nano-copper (LNC) group received a diet with 50 mg/kg of nano-copper oxide, and the high nano-copper (HNC) group received a diet with 150 mg/kg of nano-copper oxide. Compared to the basal group, pigs supplemented with copper (either CuSO4 or nano-CuO) exhibited significantly higher average daily gain (ADG, p < 0.048) and feed intake (ADFI, p = 0.005), with the 50 mg/kg nano-copper group showing improved nutrient digestibility (p < 0.05) and intestinal morphology. Nano-copper supplementation significantly enhanced mucosal SOD activity (p < 0.05), reduced MDA levels (p < 0.05), and downregulated pro-inflammatory cytokines such as IL-1β and IL-6 (p < 0.05). Notably, 50 mg/kg of nano-copper increased the apparent total tract digestibility (ATTD) of copper to 30.29%, significantly higher than the 16.55% observed in the 150 mg/kg CuSO4 group (p < 0.05). Furthermore, fecal copper concentration was significantly reduced by 20.7% in the 50 mg/kg nano-copper group compared to copper sulfate (p < 0.001). In conclusion, nano-copper appears to be a promising alternative to copper sulfate for improving growth performance and reducing fecal copper concentrations in weanling pigs under heat stress conditions. Full article
(This article belongs to the Section Farm Animal Production)
Show Figures

Figure 1

13 pages, 428 KiB  
Article
Effects of a Capsaicin-Based Phytogenic Solution on Intestinal Permeability, Serum Amino Acid Concentrations, and Digestibility in Heat-Stressed Growing Pigs
by Miguel Cervantes, Panagiotis Sakkas, José A. Valle, Néstor Arce, Ernesto Avelar, Nicolas Quilichini and Adriana Morales
Animals 2025, 15(12), 1757; https://doi.org/10.3390/ani15121757 - 14 Jun 2025
Viewed by 511
Abstract
A Capsicum spp.-based phytogenic solution (PHY) improved the performance and thermal tolerance of heat-stressed (HS) growing pigs. Two trials were conducted to further evaluate the HS pig response to supplemental PHY. Trial 1: The effects on the serum concentrations of amino acids (AAs) [...] Read more.
A Capsicum spp.-based phytogenic solution (PHY) improved the performance and thermal tolerance of heat-stressed (HS) growing pigs. Two trials were conducted to further evaluate the HS pig response to supplemental PHY. Trial 1: The effects on the serum concentrations of amino acids (AAs) and the gene expression of tight junction proteins in the jejunum and ileum were assessed with 42 pigs (Landrace-Hampshire-Duroc; 27.0 ± 4.5 kg BW). There were three treatments (14 replicates): pigs under thermoneutral (TN) conditions fed control diet (TN-C); and HS pigs fed control diet without (HS-C) or with PHY (HS-PHY). Trial 2: Two-period digestion trial with eight ileal-cannulated pigs to analyze apparent ileal digestibility (AID) of AAs. Period 1: All TN pigs, fed the control (TN-C) or PHY-supplemented (TN-PHY) diet. Period 2: All HS pigs, fed the same diet as in period 1 (HS-C and HS-PHY). The control diet was based on wheat–soybean meal. In the jejunum, HS-C pigs had reduced occludin gene expression (p < 0.01) compared to TN-C pigs. HS-PHY pigs increased claudin-2 and tight-junction-protein-1 gene expression compared to HS-C (p < 0.05). In the ileum, HS-C and HS-PHY pigs had reduced occludin gene expression (p < 0.01). The serum concentrations of AAs decreased in HS-C compared to TN-C pigs (p < 0.05); except for arginine and isoleucine, HS-PHY pigs partially recovered serum AA levels. HS tended to reduce (p < 0.10; lysine and methionine) and reduced (p < 0.05) the AID of essential AAs. PHY did not mitigate the HS-associated reduced AA digestibility. In conclusion, these results support the concept that a phytogenic solution improves intestinal integrity and partially restores the post-absorption metabolism of amino acids, independent of the amino acid digestibility of heat-stressed pigs. Full article
(This article belongs to the Special Issue Plant Extracts as Feed Additives in Animal Nutrition and Health)
Show Figures

Figure 1

13 pages, 354 KiB  
Article
Effects of Feed Supplemented with Fermented Pine Needles (Pinus ponderosa) on Carcass Quality, Meat Quality, and Antioxidant Capacity of Growing–Finishing Pigs
by Wenfeng Ma, Zhuo Ma, Pei Mao, Xiaoli Zhang, Xiaohong Wu, Mengmeng Gao and Qiujue Wu
Foods 2025, 14(12), 2046; https://doi.org/10.3390/foods14122046 - 10 Jun 2025
Viewed by 585
Abstract
The purpose of this study was to investigate the effects of fermented pine needles on the carcass traits, meat quality, and antioxidant capacity of finishing pigs. In total, 80 Duroc × (Landrace × Large white) crossbred pigs of approximately 4 months of age, [...] Read more.
The purpose of this study was to investigate the effects of fermented pine needles on the carcass traits, meat quality, and antioxidant capacity of finishing pigs. In total, 80 Duroc × (Landrace × Large white) crossbred pigs of approximately 4 months of age, with an initial body weight of 60.5 ± 2.5 kg, were randomly assigned to four experimental treatments, which were then denoted as the control treatment (basal diet), the fermented pine needle (FR) 1 treatment, the FR2 treatment, and the FR3 treatment (the pigs were fed the basal diet supplemented with 1.0, 2.0, and 3.0% fermented pine needles, respectively) for 55 d. The obtained results showed that, compared with the CON group, the fermented pine needle treatments increased the lean meat percentage, total antioxidative capacity, and superoxide dismutase activity in the serum and longissimus dorsi muscle. In addition, the treatments increased the mRNA expression levels of SOD1, catalase, and Nrf2 in the muscle and decreased the malondialdehyde activity in the serum and longissimus dorsi muscle and the Keap1 mRNA expression level. Compared with the CON and FR1 treatment, the FR2 and FR3 treatments increased springiness, serum GSH-Px activity, and longissimus dorsi muscle CAT activity, and decreased hardness, chewiness, gumminess, and cohesiveness. Moreover, compared with the CON treatment and other fermented pine needle treatments, the FR2 treatment not only significantly elevated the carcass weight, dressing percentage, pH24h, a* value (redness), and marbling scores of the finishing pigs, but also remarkably reduced the L* value (lightness), b* value (yellowness), and shear force in the meat quality. In conclusion, the experiment indicated that the addition of fermented pine needles to the diet has no negative impact on the carcass characteristics of finishing pigs and could improve the tenderness and freshness of the meat, as evidenced by the modified antioxidant enzyme activity and mRNA expression levels of antioxidant genes in the muscles of finishing pigs. Full article
(This article belongs to the Section Meat)
Show Figures

Figure 1

16 pages, 1312 KiB  
Article
Effects of Dietary Fiber Fermentation and Protein Digestion Properties on Growth Performance and Microbial Metabolites in Weaned Pigs
by Jingyi Huang, Zhiqiang Sun, Qi Zhu, Fudong Zhang, Changhua Lai and Jinbiao Zhao
Animals 2025, 15(11), 1669; https://doi.org/10.3390/ani15111669 - 5 Jun 2025
Viewed by 511
Abstract
Dietary nutrient digestion and utilization patterns influence pig performance and intestinal health. This study aimed to evaluate the effects of protein digestion and fiber fermentation speed among different feed ingredients on growth performance and fecal short-chain fatty acid (SCFA) concentrations in weaned pigs. [...] Read more.
Dietary nutrient digestion and utilization patterns influence pig performance and intestinal health. This study aimed to evaluate the effects of protein digestion and fiber fermentation speed among different feed ingredients on growth performance and fecal short-chain fatty acid (SCFA) concentrations in weaned pigs. A total of 192 weaned pigs (Duroc × Landrace × Yorkshire [6.87 ± 0.14 kg]) were selected and randomly divided into four dietary groups: fast-digesting protein with fast-fermenting fiber, fast-digesting protein with slow-fermenting fiber, slow-digesting protein with fast-fermenting fiber, and slow-digesting protein with slow-fermenting fiber. The results showed that cottonseed and wheat protein powders exhibited faster protein digestion than potato protein powder (p < 0.05). In vitro microbial fermentation of hawthorn powder and orange pomace resulted in greater and faster gas production and SCFA concentrations than sugarcane bagasse (p < 0.05). Orange pomace increased the abundance of Klebsiella and Escherichia–Shigella, whereas sugarcane bagasse increased the abundance of Rikenellaceae_RC9_gut_group and norank_f__Muribaculaceae. In addition, the fast-fermentation fiber tended to increase the daily weight gain and feed intake of piglets (p < 0.10), and the slow-fermentation fiber significantly reduced diarrhea incidence in pigs (p < 0.05). Fast fermentation increased acetate and valerate concentrations, and slow-digestion protein increased branched-chain SCFA and valerate contents (p < 0.05). In conclusion, there were large variations in protein digestion and fiber fermentation speed among the different common feed ingredients. Dietary protein digestion and fiber fermentation speed would affect growth performance and diarrhea incidence in weaned pigs. Full article
(This article belongs to the Special Issue Use of Agro-Industrial Co-Products in Animal Nutrition)
Show Figures

Figure 1

17 pages, 3311 KiB  
Communication
Initial Screening of Extrachromosomal Circular DNA Candidates for Pork Meat Quality Traits Using Circle-Seq and RNA-Seq Analysis
by Liyao Bai, Jiahao Wu, Tengfei Dou, Donghui Chu, Xinjian Li, Xuelei Han, Ruimin Qiao, Kejun Wang, Feng Yang and Xiuling Li
Animals 2025, 15(11), 1590; https://doi.org/10.3390/ani15111590 - 29 May 2025
Viewed by 370
Abstract
Yunong Black (YN) pigs and Yunong Black × Landrace (YL) hybrid pigs exhibit significant differences in meat quality characteristics. Studies have suggested that extrachromosomal circular DNA (eccDNA) may play a regulatory role in muscle development. In order to study the differences in eccDNA [...] Read more.
Yunong Black (YN) pigs and Yunong Black × Landrace (YL) hybrid pigs exhibit significant differences in meat quality characteristics. Studies have suggested that extrachromosomal circular DNA (eccDNA) may play a regulatory role in muscle development. In order to study the differences in eccDNA between two groups with different meat quality traits and their potential biological significance, this study used the Circle-seq method to detect eccDNA in the longest dorsal muscle (LDM) of Yunong Black pigs (YN) (n = 3) and Yunong Black × Landrace hybrid pigs (YL) (n = 3). EccDNA-related differentially expressed genes (eccDEGs) were then analyzed in combination with RNA-seq to explore the mechanisms by which eccDNA affects meat quality. The results showed that 1325 and 1304 differentially expressed eccDNAs were identified in the YN and YL groups, varying in size and distributed across multiple genomic functional regions. These eccDNAs were also annotated according to several protein-coding genes. Combined analysis with RNA-seq results revealed 19 and 27 eccDEGs in the YN and YL groups. The Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analysis enriched many lipid-related pathways, such as chemokine signals and ADP metabolic processes. By constructing a regulatory network, several potential regulatory networks that might be related to pork quality, for example, ecc_sus_8665/ssc-miR-212/ADAMTS16, were identified. In summary, we identified several potential eccDNAs that may regulate pig muscle, offering insights into the regulation of pig muscle traits for breeding. Full article
(This article belongs to the Section Pigs)
Show Figures

Figure 1

Back to TopTop