Effects of Feed Supplemented with Fermented Pine Needles (Pinus ponderosa) on Carcass Quality, Meat Quality, and Antioxidant Capacity of Growing–Finishing Pigs
Abstract
1. Introduction
2. Materials and Methods
2.1. Production of Aspergillus niger-Fermented Pine Needles
2.2. Animals, Diets, and Experimental Design
2.3. Sample Collection
2.4. Analysis of Carcass Traits
2.5. Measurement of Meat Quality
2.6. Texture Profile Analysis
2.7. Serum and Longissimus Dorsi Muscle Antioxidant Enzyme Activity Analysis
2.8. Statistical Analysis
3. Results
3.1. Carcass Quality
3.2. Meat Traits
3.3. Muscles Texture Characteristics
3.4. Serum and Longissimus Dorsi Muscle Antioxidant Enzyme Activity
3.5. The mRNA Expression of Antioxidant Genes in the Muscle
4. Discussion
4.1. Effects of the Inclusion of Fermented Pine Needles on the Carcass and Meat Traits of Finishing Pigs
4.2. Effects of the Inclusion of Fermented Pine Needles on the Muscle Texture Characteristics of Finishing Pigs
4.3. Effects of the Inclusion of Fermented Pine Needles on the Antioxidant Enzyme Activity and the mRNA Expression of Antioxidant Genes of Finishing Pigs
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Faucitano, L.; Nannoni, E. Pig production systems and related effects on pre-slaughter animal welfare and meat quality. Ital. J. Anim. Sci. 2023, 22, 513–523. [Google Scholar] [CrossRef]
- Verbeke, W.; De Smet, S.; Vackier, I.; Van Oeckel, M.J.; Warnants, N.; Van Kenhove, P. Role of intrinsic search cues in the formation of consumer preferences and choice for pork chops. Meat Sci. 2005, 69, 343–354. [Google Scholar] [CrossRef]
- Iqbal, A.; Valous, N.A.; Mendoza, F.; Sun, D.W.; Allen, P. Classification of pre-sliced pork and Turkey ham qualities based on image colour and textural features and their relationships with consumer responses. Meat Sci. 2010, 84, 455–465. [Google Scholar] [CrossRef] [PubMed]
- Pogorzelska-Nowicka, E.; Godziszewska, J.; Horbanczuk, J.O.; Atanasov, A.G.; Wierzbicka, A. The effect of PUFA-rich plant oils and bioactive compounds supplementation in pig diet on color parameters and myoglobin status in long-frozen pork meat. Molecules 2018, 23, 1005. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J.Y.; Hur, S.J.; Yang, H.S.; Moon, S.H.; Hwang, Y.H.; Park, G.B.; Joo, S.T. Discoloration characteristics of 3 major muscles from cattle during cold storage. J. Food Sci. 2009, 74, C1–C5. [Google Scholar] [CrossRef]
- Karamucki, T.; Jakubowska, M.; Rybarczyk, A.; Gardzielewska, J. The influence of myoglobin on the colour of minced pork loin. Meat Sci. 2013, 94, 234–238. [Google Scholar] [CrossRef]
- Xu, Y.Y.; Li, Z.; Wen, Q.; He, H.; Shi, P.T.; Zhou, W.H. Integrated GC-MS and LC-MS-Based Untargeted Metabolomics Reveals Diverse Metabolites in Fermented Pine Needles. Phyton-Int. J. Exp. Bot. 2024, 93, 2367–2382. [Google Scholar] [CrossRef]
- Yen, G.C.; Duh, P.D.; Huang, D.W.; Hsu, C.L.; Fu, T.Y.C. Protective effect of pine (Pinus morrisonicola Hay.) needle on LDL oxidation and its anti-inflammatory action by modulation of iNOS and COX-2 expression in LPS-stimulated RAW 264.7 macrophages. Food Chem. Toxicol. 2008, 46, 175–185. [Google Scholar] [CrossRef]
- Chang, Y.Q.; Moon, S.K.; Wang, Y.Q.; Xie, L.M.; Cho, H.; Kim, S.K. Supplemental effects of different production methods of pine needle additives on growth performance, intestinal environment, meat quality and serum of broiler chickens. Anim. Biosci. 2024, 37, 1263–1276. [Google Scholar] [CrossRef]
- Wiseman, J.; Redshaw, M.S.; Jagger, S.; Nute, G.R.; Whittington, F.W.; Wood, J.D. Influence of type and dietary rate of inclusion of non-starch polysaccharides on skatole content and meat quality of finishing pigs. Anim. Sci. 1999, 69, 123–133. [Google Scholar] [CrossRef]
- Qiao, Y.Y.; Guo, Y.P.; Zhang, W.; Guo, W.B.; Oleksandr, K.; Bozhko, N.; Wang, Z.X.; Liu, C.Z. Effects of compound polysaccharides derived from Astragalus and Glycyrrhiza on growth performance, meat quality and antioxidant function of broilers based on serum metabolomics and cecal microbiota. Antioxidants 2022, 11, 1872. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.H.; Zhang, J.Z.; Jin, Y.; Chang, Y.D.; Shi, M.Y.; Miao, Z.G. Effects of Chinese yam Polysaccharides on the muscle tissues development-related genes expression in breast and thigh muscle of broilers. Genes 2023, 14, 6. [Google Scholar] [CrossRef] [PubMed]
- Mu, C.T.; Yang, W.J.; Wang, P.J.; Zhao, J.X.; Hao, X.Y.; Zhang, J.X. Effects of high-concentrate diet supplemented with grape seed proanthocyanidins on growth performance, liver function, meat quality, and antioxidant activity in finishing lambs. Anim. Feed Sci. Technol. 2020, 266, 114518. [Google Scholar] [CrossRef]
- Ornaghi, M.G.; Guerrero, A.; Vital, A.C.P.; De Souza, K.A.; Passetti, R.A.C.; Mottin, C.; Castilho, R.D.; Sañudo, C.; Do Prado, I.N. Improvements in the quality of meat from beef cattle fed natural additives. Meat Sci. 2020, 163, 108059. [Google Scholar] [CrossRef]
- Pfister, J.A.; Adams, D.C.; Wiedmeier, R.D.; Cates, R.G. Adverse effects of pine needles on aspects of digestive performance in cattle. J. Range Manag. 1992, 45, 528–533. [Google Scholar] [CrossRef]
- Villalba, J.J.; Provenza, F.D.; Han, G.D. Experience Influences Diet Mixing by Herbivores: Implications for Plant Biochemical Diversity. Oikos 2004, 107, 100–109. [Google Scholar] [CrossRef]
- Chiu, H.F.; Wang, H.M.; Shen, Y.C.; Venkatakrishnan, K.; Wang, C.K. Anti-inflammatory properties of fermented pine (Pinus morrisonicola Hay.) needle on lipopolysaccharide-induced inflammation in RAW 264.7 macrophage cells. J. Food Biochem. 2019, 43, e12994. [Google Scholar] [CrossRef]
- Lee, W.D.; Kothari, D.; Moon, S.G.; Kim, J.; Kim, K.I.; Ga, G.W.; Kim, Y.G.; Kim, S.K. Evaluation of non-fermented and fermented Chinese chive juice as an alternative to antibiotic growth promoters of broilers. Animals 2022, 12, 2742. [Google Scholar] [CrossRef]
- Park, G.; Hwang, I.; Paudyal, D.P.; Park, Y.; Lee, C.; Tripathi, G.R.; Cheong, H. Effects of pine needle extracts on plasma cholesterol, fibrinolysis and gastrointestinal motility. Biotechnol. Bioprocess Eng. 2008, 13, 262–268. [Google Scholar] [CrossRef]
- Wu, Q.J.; Wang, Z.B.; Wang, G.Y.; Li, Y.X.; Qi, Y.X. Effects of feed supplemented with fermented pine needles (Pinus ponderosa) on growth performance and antioxidant status in broilers. Poult. Sci. 2015, 94, 1138–1144. [Google Scholar] [CrossRef]
- National Research Council of the National Academies. Nutrient Requirements of Swine, Eleventh Revised Edition; National Academies Press: Washington, DC, USA, 2012. [Google Scholar]
- GB 12694-2016; Hygienic Specifications of Meat Packing Plant. Standards Press of China: Beijing, China, 2016. (In Chinese)
- Beltrán, J.A.; Roncalés, P. Determining texture. In Methodology for the Study Quality Carcass and Meat in Ruminants; Cañeque, V., Sañudo, C., Eds.; National Institute of Agricultural Research and Technology and Food: Madrid, Spain, 2000; pp. 168–174. (In Spanish) [Google Scholar]
- Gurunathan, K.; Aaliya, T. Modified atmosphere packaging (MAP) of meat and meat products: A review. J. Packag. Technol. Res. 2022, 6, 137–148. [Google Scholar] [CrossRef]
- NPPC. Pork Composition and Quality Assessment Procedures; Berg, E.P., Ed.; National Pork Producer’s Council: Des Moines, IA, USA, 2000. [Google Scholar]
- An, X.J.; Zhang, S.W.; Li, T.T.; Chen, N.N.; Wang, X.; Zhang, B.J.; Ma, Y.J. Transcriptomics analysis reveals the effect of Broussonetia papyrifera L. fermented feed on meat quality traits in fattening lamb. PeerJ 2021, 9, e11295. [Google Scholar] [CrossRef] [PubMed]
- Qiu, S.L.; Li, K.Y.; He, X.B.; Gu, M.M.; Jiang, X.H.; Lu, J.N.; Ma, Z.Y.; Liang, X.W.; Gan, Q.F. The effects of composite alkali-stored spent hypsizygus marmoreus substrate on carcass quality, rumen fermentation, and rumen microbial diversity in goats. Animals 2024, 14, 166. [Google Scholar] [CrossRef]
- Seo, B.B. Effect of pine (Pinus densiflora) needle and Korean mistletoe (Viscum album var. coloratum) powder on male broiler chicken growth, serum cholesterol profiles, and meat quality. Indian J. Anim. Sci. 2020, 90, 218–222. [Google Scholar] [CrossRef]
- Xu, Q.D.; Zhou, Z.Q.; Jing, Z.; He, Q.; Sun, Q.; Zeng, W.C. Pine needle extract from Cedrus deodara: Potential applications on hazardous chemicals and quality of smoked bacon and its mechanism. Food Control 2021, 130, 108368. [Google Scholar] [CrossRef]
- Kim, Y.J.; Kim, C.M.; Choi, J.H.; Choi, I.H. Effect of dietary mugwort (Artemisia vulgaris L.) and pine needle powder (Pinus densiflora) on growth performance, serum cholesterol levels, and meat quality in broilers. Afr. J. Biotechnol. 2012, 11, 11866–11873. [Google Scholar] [CrossRef]
- Kim, Y.J.; Choi, I.H. Comparison of the effects of supplemental Korean mistletoe (Viscum album var. coloratum) powder and antibiotic on growth performance, serum cholesterol profiles, and meat quality of broilers. Acta Agric. Scand. A—Anim. Sci. 2014, 64, 154–160. [Google Scholar] [CrossRef]
- Utrera, M.; Parra, V.; Estévez, M. Protein oxidation during frozen storage and subsequent processing of different beef muscles. Meat Sci. 2014, 96, 812–820. [Google Scholar] [CrossRef]
- Park, E.; Bae, Y.M.; Lee, K.H. The effect of pine needle powder on AOM-induced colon aberrant crypt formation and antioxidant system in fisher 344 male rats. Nutr. Sci. 2004, 7, 76–82. [Google Scholar]
- Luo, H.X.; Lin, S.H.; Ren, F.Z.; Wu, L.P.; Chen, L.S.; Sun, Y. Antioxidant and microbial capapcity of Chinsese medicinal herb extracts in raw sheep meat. J. Food Prot. 2007, 70, 14440–14445. [Google Scholar] [CrossRef]
- Higgins, F.M.; Kerry, J.P.; Buckley, D.J.; Morrisey, P.A. Effect of dietary α-tocopheryl acetate supplementation on α-tocopherol distribution in raw turkey muscles and its effect on the storage stability of cooked turkey meat. Meat Sci. 1998, 50, 373–383. [Google Scholar] [CrossRef] [PubMed]
- Marín, F.R.; Frutos, M.J.; Pérez-Alvarez, J.A.; Martinez-Sánchez, F.; Del Río, J.A. Flavonoids as nutraceuticals: Structural related antioxidant properties and their role on ascorbic acid preservation. Stud. Nat. Prod. Chem. 2002, 26, 741–778. [Google Scholar] [CrossRef]
- Fernández-López, J.; Zhi, N.; Aleson-Carbonell, L.; Pérez-Alvarez, J.A.; Kuri, V. Antioxidant and antibacterial activities of natural extracts: Application in beef meatballs. Meat Sci. 2005, 69, 371–380. [Google Scholar] [CrossRef]
- Chen, Y.J.; Kim, I.H.; Cho, J.H.; Yoo, J.S.; Wang, Q.; Wang, Y.; Huang, Y. Evaluation of dietary L-carnitine or garlic powder on growth performance, dry matter and nitrogen digestibilities, blood profiles and meat quality in finishing pigs. Anim. Feed Sci. Technol. 2008, 141, 141–152. [Google Scholar] [CrossRef]
- Wang, C.; Chen, Y.J.; Bi, Y.J.; Zhao, P.; Sun, H.Q.; Li, J.H.; Li, H.G.; Zhang, R.X.; Li, X.; Bao, J. Effects of long-term gentle handling on behavioral responses, production performance, and meat quality of pigs. Animals 2020, 10, 330. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.J.; Wang, Y.; Li, Y.Y.; Si, Q.; Bao, J.; Ge, G.T.; Wang, Z.J.; Jia, Y.S.; Du, S. Effects of alfalfa and oat supplementation in fermented total mixed rations on growth performances, carcass characteristics, and meat quality in lambs. Small Rumin Res. 2023, 218, 106877. [Google Scholar] [CrossRef]
- Luchak, G.L.; Miller, R.K.; Belk, K.E.; Hale, D.S.; Michaelsen, S.A.; Johnson, D.D.; West, R.L.; Leak, F.W.; Cross, H.R.; Savell, J.W. Determination of sensory, chemical and cooking characteristics of retail beef cuts differing in intramuscular and external fat. Meat Sci. 1998, 50, 55–72. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Chen, F.; Lin, X.; Wang, Y.; He, J.; Zhao, Y. Effect of excessive or restrictive energy on growth performance, meat quality, and intramuscular fat deposition in finishing ningxiang pigs. Animals 2021, 11, 27. [Google Scholar] [CrossRef]
- Dihal, A.A.; van der Woude, H.; Hendriksen, P.J.M.; Charif, H.; Dekker, L.J.; Ijsselstijn, L.; de Boer, V.C.J.; Alink, G.M.; Burgers, P.C.; Rietjens, I.M.C.M.; et al. Transcriptome and proteome profiling of colon mucosa from quercetin fed F344 rats point to tumor preventive mechanisms, increased mitochondrial fatty acid degradation and decreased glycolysis. Proteomics 2008, 8, 45–61. [Google Scholar] [CrossRef]
- Zeng, Z.; Jiang, J.J.; Yu, J.; Mao, X.B.; Yu, B.; Chen, D.W. Effect of dietary supplementation with mulberry (Morus alba L.) leaves on the growth performance, meat quality and antioxidative capacity of finishing pigs. J. Integr. Agric. 2018, 18, 143–151. [Google Scholar] [CrossRef]
- Katsube, T.; Yamasaki, M.; Shiwaku, K.; Ishijima, T.; Matsumoto, I.; Abe, K.; Yamasaki, Y. Effect of flavonol glycoside in mulberry (Morus alba L.) leaf on glucose metabolism and oxidative stress in liver in diet-induced obese mice. J. Sci. Food Agric. 2010, 90, 2386–2392. [Google Scholar] [CrossRef] [PubMed]
- Paudyal, D.P.; Park, G.Y.; Hwang, I.D.; Kim, D.W.; Cheong, H.S. Biological effect and chemical composition variation during self-fermentation of stored needle extracts from pinus densiflora siebold & zucc. J. Plant Biotechnol. 2007, 34, 313–322. [Google Scholar] [CrossRef]
- Bellés, M.; Campo, M.M.; Roncalés, P.; Beltrán, J.A. Supranutritional doses of vitamin E to improve lamb meat quality. Meat Sci. 2019, 149, 14–23. [Google Scholar] [CrossRef] [PubMed]
- Żochowska-Kujawska, J.; Lachowicz, K.; Sobczak, M. Effects of fibre type and kefir, wine lemon, and pineapple marinades on texture and sensory properties of wild boar and deer longissimus muscle. Meat Sci. 2012, 92, 675–680. [Google Scholar] [CrossRef]
Ingredients | Content (%) | Nutrient Level | Content (%) |
---|---|---|---|
Corn | 40.50 | Calculated chemical composition | |
Expanded corn | 12.30 | Digestible energy (MJ/kg) | 13.48 |
Wheat bran | 3.50 | Crude protein | 19.89 |
Soybean meal | 2.00 | Ca | 0.85 |
Expanded soybean | 9.50 | Total phosphorus | 0.55 |
Bean | 17.00 | Available phosphorus | 0.50 |
Fish meal | 4.50 | D-lysine | 1.28 |
Whey powder | 2.00 | D-methionine | 0.45 |
Sucrose | 2.50 | D-Met+D-Cys | 0.69 |
CaCO3 | 0.75 | D-threonine | 0.80 |
CaHPO4 | 1.70 | D-tryptophan | 0.25 |
NaHCO3 | 0.50 | ||
L-lysine-HCl | 0.35 | ||
DL-methionine | 0.05 | ||
L-threonine | 0.05 | ||
Soda | 0.50 | ||
Limestone | 0.90 | ||
NaCl | 0.35 | ||
Vitamin–mineral premix 1 | 0.90 | ||
Choline chloride | 0.15 | ||
Total | 100.00 |
Gene 1 | Primer Sequence (5′-3′) | Length (bp) |
---|---|---|
GAPDH | F:ACTCACTTCTACCTTTGATGCT | 100 |
R:TGTTGCTGTAGCCAAATTCA | ||
GSH-Px | F:GTGACTCACGCAAATGCTCC | 125 |
R:ATTGAGGCACTGGAGACA | ||
SOD1 | F:AGACCTGGGAAGTGTGACTG | 102 |
R:GTGCGGCCACTAATGGAATG | ||
Nrf2 | F:CCAGTCTTCATTGCTCCTAACCA | 129 |
R:CCTCCCAAACTTGCTCAATATCCT | ||
Keap1 | F:CAGCTTCGCGGAGCAGATTGG | 129 |
R:CTAGCAGTGGCACAAATTGAAGAA |
Items | Treatments 1 | p-Value 2 | |||
---|---|---|---|---|---|
CON | FR1 | FR2 | FR3 | ||
Body weight before slaughter/kg | 96.42 ± 3.26 | 96.58 ± 4.75 | 99.98 ± 2.43 | 98.97 ± 2.96 | 0.213 |
Dressed weight/kg | 89.32 ± 2.15 | 90.15 ± 1.02 | 91.77 ± 1.33 | 91.50 ± 1.64 | 0.125 |
Carcass weight/kg | 69.85 ± 1.08 a | 69.88 ± 2.11 a | 75.52 ± 1.42 b | 71.63 ± 1.19 a | 0.031 |
Dressing percentage/% | 72.44 ± 0.94 a | 72.35 ± 1.64 a | 75.54 ± 0.15 b | 72.38 ± 0.31 a | 0.034 |
Loin eye area/cm2 | 37.82 ± 4.12 | 38.95 ± 3.17 | 40.75 ± 2.36 | 40.38 ± 2.68 | 0.268 |
Backfat thickness/cm | 1.53 ± 0.16 | 1.63 ± 0.43 | 1.76 ± 0.33 | 1.65 ± 0.29 | 0.394 |
Lean meat percentage/% | 60.39 ± 0.10 a | 61.56 ± 0.21 b | 62.35 ± 0.19 b | 61.69 ± 0.15 b | 0.010 |
Fat percentage/% | 4.35 ± 0.31 | 4.32 ± 0.23 | 4.29 ± 0.15 | 4.30 ± 0.24 | 0.359 |
Skin percentage/% | 3.15 ± 0.20 | 3.08 ± 0.27 | 2.95 ± 0.31 | 3.04 ± 0.26 | 0.651 |
Bone percentage/% | 8.86 ± 0.41 | 8.69 ± 0.35 | 8.49 ± 0.24 | 8.53 ± 0.43 | 0.524 |
Plate oil percentage/% | 0.81 ± 0.08 | 0.74 ± 0.06 | 0.77 ± 0.12 | 0.73 ± 0.11 | 0.567 |
Items | Treatments 1 | p-Value 2 | |||
---|---|---|---|---|---|
CON | FR1 | FR2 | FR3 | ||
pH45min | 6.40 ± 0.10 | 6.43 ± 0.14 | 6.53 ± 0.16 | 6.48 ± 0.11 | 0.395 |
pH24h | 5.40 ± 0.01 a | 5.42 ± 0.05 a | 5.56 ± 0.03 b | 5.43 ± 0.02 a | 0.001 |
L* | 38.24 ± 0.53 b | 37.69 ± 0.61 b | 34.05 ± 0.28 a | 36.85 ± 0.34 b | 0.002 |
a* | 3.81 ± 0.10 a | 4.12 ± 0.14 a | 4.48 ± 0.09 b | 4.23 ± 0.11 a | 0.034 |
b* | 5.01 ± 0.08 b | 4.86 ± 0.11 b | 4.51 ± 0.12 a | 4.76 ± 0.10 b | 0.041 |
Dripping loss/% | 3.28 ± 0.20 | 3.26 ± 0.15 | 3.11 ± 0.13 | 3.08 ± 0.12 | 0.601 |
Cooking loss/% | 24.46 ± 1.35 | 23.67 ± 2.37 | 22.58 ± 3.51 | 23.04 ± 1.94 | 0.412 |
Shear force/N | 45.25 ± 4.35 b | 44.60 ± 4.82 b | 40.43 ± 5.21 a | 43.65 ± 4.26 b | 0.012 |
Marbling scores | 2.58 ± 0.16 a | 2.69 ± 0.21 a | 3.06 ± 0.23 b | 2.72 ± 0.19 a | 0.029 |
Items | Treatments 1 | p-Value 2 | |||
---|---|---|---|---|---|
CON | FR1 | FR2 | FR3 | ||
Hardness/N | 37.81 ± 2.25 b | 34.50 ± 1.28 b | 26.24 ± 1.39 a | 28.78 ± 1.64 a | 0.029 |
Springiness/mm | 3.91 ± 0.21 a | 4.32 ± 0.16 a | 5.31 ± 0.28 b | 4.96 ± 0.14 b | 0.041 |
Chewiness/N | 71.78 ± 1.92 b | 68.33 ± 2.04 b | 52.14 ± 3.01 a | 58.39 ± 2.73 a | 0.038 |
Gumminess/N | 20.13 ± 1.01 b | 19.05 ± 2.11 b | 12.53 ± 2.04 a | 13.29 ± 2.35 a | 0.024 |
Cohesiveness | 0.51 ± 0.03 b | 0.49 ± 0.06 b | 0.41 ± 0.04 a | 0.43 ± 0.02 a | 0.012 |
Items | Treatments 1 | p-Value 2 | ||||
---|---|---|---|---|---|---|
CON | FR1 | FR2 | FR3 | |||
Serum | T-AOC (u/mL) | 0.33 ± 0.01 a | 0.37 ± 0.02 b | 0.39 ± 0.02 b | 0.38 ± 0.03 b | 0.013 |
SOD (u/mL) | 63.04 ± 0.52 a | 68.31 ± 0.41 b | 69.35 ± 0.20 b | 68.48 ± 0.25 b | 0.024 | |
CAT (u/mL) | 6.25 ± 0.32 | 6.89 ± 0.19 | 7.15 ± 0.26 | 7.06 ± 0.41 | 0.053 | |
GSH-Px (u/mL) | 706.35 ± 24.15 a | 719.82 ± 20.53 a | 775.68 ± 22.61 b | 763.01 ± 25.18 b | 0.038 | |
MDA (nmol/mL) | 5.76 ± 0.19 b | 4.31 ± 0.12 a | 3.82 ± 0.16 a | 4.05 ± 0.17 a | 0.003 | |
Longissimus dorsi muscle | T-AOC (U/mg prot) | 0.13 ± 0.01 a | 0.18 ± 0.02 b | 0.20 ± 0.03 b | 0.19 ± 0.01 b | 0.012 |
SOD (U/mg prot) | 7.99 ± 0.21 a | 9.17 ± 0.24 b | 9.88 ± 0.30 b | 9.53 ± 0.22 b | 0.011 | |
CAT (U/mg prot) | 1.79 ± 0.31 a | 2.21 ± 0.40 a | 3.24 ± 0.38 b | 3.11 ± 0.29 b | 0.037 | |
GSH-Px (U/mg prot) | 1.54 ± 0.11 a | 1.73 ± 0.14 a | 1.81 ± 0.12 a | 1.79 ± 0.15 a | 0.020 | |
MDA (nmol/mg prot) | 0.28 ± 0.01 b | 0.11 ± 0.02 a | 0.09 ± 0.01 a | 0.10 ± 0.03 a | 0.011 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, W.; Ma, Z.; Mao, P.; Zhang, X.; Wu, X.; Gao, M.; Wu, Q. Effects of Feed Supplemented with Fermented Pine Needles (Pinus ponderosa) on Carcass Quality, Meat Quality, and Antioxidant Capacity of Growing–Finishing Pigs. Foods 2025, 14, 2046. https://doi.org/10.3390/foods14122046
Ma W, Ma Z, Mao P, Zhang X, Wu X, Gao M, Wu Q. Effects of Feed Supplemented with Fermented Pine Needles (Pinus ponderosa) on Carcass Quality, Meat Quality, and Antioxidant Capacity of Growing–Finishing Pigs. Foods. 2025; 14(12):2046. https://doi.org/10.3390/foods14122046
Chicago/Turabian StyleMa, Wenfeng, Zhuo Ma, Pei Mao, Xiaoli Zhang, Xiaohong Wu, Mengmeng Gao, and Qiujue Wu. 2025. "Effects of Feed Supplemented with Fermented Pine Needles (Pinus ponderosa) on Carcass Quality, Meat Quality, and Antioxidant Capacity of Growing–Finishing Pigs" Foods 14, no. 12: 2046. https://doi.org/10.3390/foods14122046
APA StyleMa, W., Ma, Z., Mao, P., Zhang, X., Wu, X., Gao, M., & Wu, Q. (2025). Effects of Feed Supplemented with Fermented Pine Needles (Pinus ponderosa) on Carcass Quality, Meat Quality, and Antioxidant Capacity of Growing–Finishing Pigs. Foods, 14(12), 2046. https://doi.org/10.3390/foods14122046