Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (37)

Search Parameters:
Keywords = Lactobacillus johnsonii (L. johnsonii)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 3492 KiB  
Article
Amelioration of Metabolic Syndrome by Co-Administration of Lactobacillus johnsonii CRL1231 and Wheat Bran in Mice via Gut Microbiota and Metabolites Modulation
by Matias Russo, Antonela Marquez, Estefanía Andrada, Sebastián Torres, Arlette Santacruz, Roxana Medina and Paola Gauffin-Cano
Metabolites 2025, 15(7), 466; https://doi.org/10.3390/metabo15070466 - 9 Jul 2025
Viewed by 394
Abstract
Background/Objectives: Lactobacillus johnsonii CRL1231 (Lj CRL1231) is a strain with feruloyl esterase (FE) activity that enhances ferulic acid (FA) release from wheat bran (WB) and has potential as a probiotic for metabolic syndrome (MS). Given the potential health benefits of FA and [...] Read more.
Background/Objectives: Lactobacillus johnsonii CRL1231 (Lj CRL1231) is a strain with feruloyl esterase (FE) activity that enhances ferulic acid (FA) release from wheat bran (WB) and has potential as a probiotic for metabolic syndrome (MS). Given the potential health benefits of FA and its microbial metabolites, this study aimed to evaluate the therapeutic effect of Lj CRL1231 co-administered with WB in a mouse model of metabolic syndrome (MS) induced by a high-fat diet (HFD). Methods: Mice were divided into three groups and fed for 14 weeks as follows: the Control group (standard diet), the MS group (HFD+WB), and the MS+Lj group (HFD+WB and Lj CRL1231-dose 108 cells/day). Specifically, we analyzed the changes in the intestinal microbiota (IM), colonic FE activity, generation of FA-derived and fermentation metabolites, and metabolic and inflammatory parameters. Results: Improvements in the MS+Lj group compared to the MS group included the following: a—a 38% increase in colonic FE activity, leading to elevated levels of FA-derived metabolites (e.g., dihydroferulic, dihydroxyphenylpropionic, and hydroxyphenylpropionic acids); b—a significant shift in the IM composition, with a 3.4-fold decrease in Firmicutes and a 2.9-fold increase in Bacteroidetes; c—a decrease in harmful bacteria (Desulfovibrio) by 93%, and beneficial bacteria like Bifidobacterium increased significantly (6.58 log cells/g); d—a 33% increase in total SCFAs; e—a 26% reduction in the adiposity index; f—a 12% increase in HDL cholesterol and a 19% reduction in triglycerides; g—normalized glucose and insulin resulting in a 2-fold lower HOMA-IR index; h—an improved inflammatory profile by decreasing TNF-α, IFN-γ, and IL-6 (3-, 5-, and 2-fold, respectively) and increasing IL-10 by 2-fold; i—alleviation of liver damage by normalizing of transaminases AST (19.70 ± 2.97 U/L) and ALT (13.12 ± 0.88 U/L); j—evidence of reduced oxidative damage. Conclusions: The co-administration of L. johnsonii CRL1231 and WB exerts a synergistic effect in mitigating the features of MS in HFD-fed mice. This effect is mediated by modulation of the gut microbiota, increased release of bioactive FA-derived compounds, and restoration of metabolic and inflammatory homeostasis. This strategy represents a promising dietary approach for MS management through targeted microbiota–metabolite interactions. Full article
Show Figures

Graphical abstract

21 pages, 506 KiB  
Article
Fermented Milk Supplemented with Sodium Butyrate and Inulin: Physicochemical Characterization and Probiotic Viability Under In Vitro Simulated Gastrointestinal Digestion
by Katarzyna Szajnar, Małgorzata Pawlos, Magdalena Kowalczyk, Julita Drobniak and Agata Znamirowska-Piotrowska
Nutrients 2025, 17(13), 2249; https://doi.org/10.3390/nu17132249 - 7 Jul 2025
Viewed by 614
Abstract
Background/Objectives: Probiotics are increasingly recognized for their role in managing gastrointestinal disorders through modulation of gut microbiota. Restoring microbial balance remains a therapeutic challenge. Recent strategies combine probiotics, inulin, and sodium butyrate as synergistic agents for gut health. This study aimed to evaluate [...] Read more.
Background/Objectives: Probiotics are increasingly recognized for their role in managing gastrointestinal disorders through modulation of gut microbiota. Restoring microbial balance remains a therapeutic challenge. Recent strategies combine probiotics, inulin, and sodium butyrate as synergistic agents for gut health. This study aimed to evaluate the effects of milk supplementation with inulin and sodium butyrate on physicochemical properties, sensory characteristics, and the survival of selected probiotic strains during in vitro simulated gastrointestinal digestion. Methods: Fermented milk samples were analyzed for color, pH, titratable acidity, and syneresis. A trained sensory panel evaluated aroma, texture, and acceptability. Samples underwent a standardized in vitro digestion simulating oral, gastric, and intestinal phases. Viable probiotic cells were counted before digestion and at each stage, and survival rates were calculated. Results: Physicochemical and sensory attributes varied depending on probiotic strain and supplementation. Inulin and the inulin–sodium butyrate combination influenced syneresis and acidity. Lacticaseibacillus casei 431 and Lactobacillus johnsonii LJ samples showed the highest viable counts before digestion. Two-way ANOVA confirmed that probiotic strain, supplementation type, and their interactions significantly affected bacterial survival during digestion (p < 0.05). Conclusions: The addition of inulin and sodium butyrate did not impair probiotic viability under simulated gastrointestinal conditions. The effects on product characteristics were strain-dependent (Bifidobacterium animalis subsp. lactis BB-12, L. casei 431, L. paracasei L26, L. acidophilus LA-5, L. johnsonii LJ). These findings support the use of inulin–butyrate fortification in dairy matrices to enhance the functional potential of probiotic foods targeting gut health. Full article
(This article belongs to the Special Issue Probiotics, Postbiotics, Gut Microbiota and Gastrointestinal Health)
Show Figures

Figure 1

14 pages, 1080 KiB  
Article
Vaginal Capsules: A Viable Alternative for the Delivery of Lactobacillus spp.
by Leandra Sá de Lima, Lívia Custódio Pereira, Rosane Mansan Almeida and Yanna Karla de Medeiros Nóbrega
Microorganisms 2025, 13(5), 1056; https://doi.org/10.3390/microorganisms13051056 - 1 May 2025
Viewed by 961
Abstract
Lactobacillus spp. and other beneficial bacteria are predominant in the vaginal microbiota and represent an opportunity to correct dysbiosis if administered intravaginally. Since no commercial formulations are available, developing magistral formulations is an option, provided that they ensure viability and therapeutic efficacy. To [...] Read more.
Lactobacillus spp. and other beneficial bacteria are predominant in the vaginal microbiota and represent an opportunity to correct dysbiosis if administered intravaginally. Since no commercial formulations are available, developing magistral formulations is an option, provided that they ensure viability and therapeutic efficacy. To evaluate their stability and culturability, four magistral formulations containing 109 microorganisms were tested: vaginal capsules, vaginal ointment, gelatinous ovules, and waxy ovules. Certified strains of L. crispatus, L. johnsonii, L. gasseri, Limosilactobacillus reuteri, and Lacticaseibacillus rhamnosus, as well as a combination of the five, were used. The formulations were tested for pharmaco-technical stability using average weight and disintegration tests, as well as evaluation organoleptic. In addition, microbial recovery was evaluated by counting Colony-Forming Units (CFUs). All forms, except the gelatinous ovules, allowed microbial recovery at concentrations from 107 to 109 CFUs, ensuring stability for 60 days. The recovery varied depending on the strains and dosage forms employed, with the most favorable outcomes for vaginal capsules. This highlights the need for standardized strains and excipients in magistral formulations. Further studies are needed to evaluate the viability of other strains of different excipients, vehicles, or different storage; however, capsules have demonstrated efficacy and are an excellent candidate for vaginal use formulations of Lactobacillus spp. Full article
(This article belongs to the Section Medical Microbiology)
Show Figures

Figure 1

14 pages, 295 KiB  
Review
The Potential of Lactic Acid Bacteria and Dairy By-Products in Controlling Campylobacter jejuni in Poultry
by Naga Pavan Kumar Reddy Jonnagiri, Gintare Zakariene, Naila Nawaz, Ausra Gabinaitiene and Artūras Stimbirys
Microorganisms 2025, 13(5), 996; https://doi.org/10.3390/microorganisms13050996 - 26 Apr 2025
Viewed by 554
Abstract
Campylobacter jejuni (C. jejuni) is the primary Campylobacter species and a major cause of foodborne illness associated with poultry products. This review focuses on lactic acid bacteria (LAB), especially Lactobacillus species, and acid whey as a dairy by-product for C. jejuni [...] Read more.
Campylobacter jejuni (C. jejuni) is the primary Campylobacter species and a major cause of foodborne illness associated with poultry products. This review focuses on lactic acid bacteria (LAB), especially Lactobacillus species, and acid whey as a dairy by-product for C. jejuni control in poultry as a sustainable method. LAB strains L. crispatus exhibit a cecal colonization reduction of >90% by competitive exclusion and bacteriocin activity, while L. johnsonii FI9785 decrease bacterial load 4–5 log10. Acid whey, which is abundant in organic acids (e.g., lactic acid) and bioactive peptides (e.g., lactoferrin), reduces C. jejuni viability, decreasing the food product contamination on the carcass for a short time by 40%. LAB antimicrobial function becomes more effective when used with acid whey, although specific farm-related variables require additional optimization. Some of the key strategies include co-encapsulating LAB with acid whey or plant-derived antimicrobials for improving survival, conducting in vivo trials in commercial farm conditions to evaluate scalability, and adding whey into feed (1–2% inclusion) or applying it as a pre-slaughter spray. These strategies enable the antibiotic-free production and circular economy goals through repurposing low-cost acid whey. Future studies should directly compare them with standard antimicrobials to confirm their scalability for poultry safety. Full article
(This article belongs to the Section Veterinary Microbiology)
16 pages, 2448 KiB  
Article
Lactobacillus johnsonii N6.2 Phospholipids Induce T Cell Anergy upon Cognate Dendritic Cell Interactions
by Alexandra E. Cuaycal, Monica F. Torrez Lamberti, Graciela L. Lorca and Claudio F. Gonzalez
Metabolites 2025, 15(5), 284; https://doi.org/10.3390/metabo15050284 - 22 Apr 2025
Cited by 1 | Viewed by 667
Abstract
Background/Objectives: Lactobacillus johnsonii N6.2 is a gut symbiont with probiotic properties. L. johnsonii N6.2 delayed the progression of type 1 diabetes (T1D) in diabetic-prone rats. The probiotic intake demonstrated immune cell modulation in healthy volunteers, leading to improved wellness and fewer reported [...] Read more.
Background/Objectives: Lactobacillus johnsonii N6.2 is a gut symbiont with probiotic properties. L. johnsonii N6.2 delayed the progression of type 1 diabetes (T1D) in diabetic-prone rats. The probiotic intake demonstrated immune cell modulation in healthy volunteers, leading to improved wellness and fewer reported symptoms like headaches and abdominal pain. These systemic immune-modulating benefits are attributed to L. johnsonii N6.2’s bioactive fractions, including extracellular vesicles (EVs) and purified phospholipids (PLs). We have previously shown that L. johnsonii N6.2 PLs modulate dendritic cell (DC) function towards a regulatory-like phenotype. Here, we further characterize the immune regulatory effects of L. johnsonii N6.2 PLs on adaptive immunity, specifically upon DC and T cell interactions. We hypothesized that PL-stimulated DCs suppress T cell-mediated responses to maintain tolerance in intra- and extra-intestinal sites. Methods: Bone marrow-derived dendritic cells (BMDCs) were generated from Sprague-Dawley rats and stimulated with L. johnsonii N6.2 PLs. Isogenic T cells were isolated from PBMCs obtained via terminal exsanguination. In vitro cellular assays, co-culture experiments, gene expression analysis by qRT-PCR, and flow cytometry assays were conducted to assess the immune regulatory effects of L. johnsonii N6.2 PLs. Results: The PL-stimulated BMDCs upregulated DC regulatory markers and exhibited an immature-like phenotype with reduced surface expression of maturation markers but increased surface migratory molecules (ICAM-1). These BMDCs presented immunosuppressive functions upon cognate T cell interactions and in the presence of TCR stimulation. Specifically, PL-stimulated BMCDs suppressed Th1 effector function and induced the expression of T cell anergy-related genes after co-culturing for 72 h. Conclusions: This study highlights the immune regulatory capacity of L. johnsonii N6.2’s bioactive components on adaptive immunity, specifically that of purified PLs on DC:T cell-mediated responses leading to immunosuppression. Our findings suggest that L. johnsonii N6.2-purified PLs play a role in regulating adaptive immunity, offering potential benefits for managing immune-related diseases like T1D. Full article
Show Figures

Figure 1

17 pages, 3061 KiB  
Article
Probiotic Lactobacillus johnsonii Reduces Intestinal Inflammation and Rebalances Splenic Treg/Th17 Responses in Dextran Sulfate Sodium-Induced Colitis
by Hao-Yu Liu, Shicheng Li, Kennedy Jerry Ogamune, Peng Yuan, Xinyu Shi, Wael Ennab, Abdelkareem A. Ahmed, In Ho Kim, Ping Hu and Demin Cai
Antioxidants 2025, 14(4), 433; https://doi.org/10.3390/antiox14040433 - 3 Apr 2025
Cited by 1 | Viewed by 1256
Abstract
Inflammatory bowel disease (IBD), a chronic inflammatory disorder of the gastrointestinal tract, is frequently complicated by extraintestinal manifestations such as functional hyposplenism. Increasing evidence highlights its pathogenesis as a multifactorial interplay of gut dysbiosis, intestinal barrier dysfunction, and dysregulated immune responses. While probiotics, [...] Read more.
Inflammatory bowel disease (IBD), a chronic inflammatory disorder of the gastrointestinal tract, is frequently complicated by extraintestinal manifestations such as functional hyposplenism. Increasing evidence highlights its pathogenesis as a multifactorial interplay of gut dysbiosis, intestinal barrier dysfunction, and dysregulated immune responses. While probiotics, particularly Lactobacillus spp., have emerged as potential therapeutics for IBD, restoring intestinal homeostasis, their systemic immunomodulatory effects remain underexplored. Here, we investigated the protective role of Lactobacillus johnsonii N5 in DSS-induced colitis, focusing on inflammation inhibition and splenic T cell regulation. Pretreatment with L. johnsonii N5 significantly attenuated colitis severity, as evidenced by preserved body weight, reduced disease activity index, and prevention of colon shortening. N5 suppressed colonic pro-inflammatory factors such as TNF-α, Il-1b, Il-6, and CXCL1, while elevating anti-inflammatory IL-10 at both mRNA and protein levels. Transcriptomic analysis of the spleen revealed that N5 mediated the downregulation of inflammatory pathways, including the IL-17 and TNF signaling pathways, as well as the HIF-1 signaling pathway, and modulated the metabolic pathway of oxidative phosphorylation. Flow cytometry analysis demonstrated that N5 rebalanced splenic Treg/Th17 responses by expanding the Treg population and reducing the production of IL-17A in Th17 cells. Notably, Th17-associated IL-17A positively correlated with intestinal pro-inflammatory mediators, emphasizing the role of Th17 cells in driving colitis. In contrast, splenic Treg abundance positively correlated with colonic IL-10 levels, suggesting a link between systemic immune regulation and intestinal anti-inflammatory responses. Our study underscores the therapeutic potential of targeting gut–immune crosstalk through probiotics, thereby offering valuable insights for developing live bacterial-based interventions for IBD and other inflammatory disorders. Full article
(This article belongs to the Special Issue Interplay of Microbiome and Oxidative Stress)
Show Figures

Figure 1

20 pages, 2827 KiB  
Article
Sheep-Derived Lactobacillus johnsonii M5 Enhances Immunity and Antioxidant Capacity, Alleviates Diarrhea, and Improves Intestinal Health in Early-Weaned Lambs
by Zhuo Wang, Yuwei Zhao, Dingkun Fan, Jixian Zhang, Qiyu Diao and Kai Cui
Microorganisms 2025, 13(2), 404; https://doi.org/10.3390/microorganisms13020404 - 13 Feb 2025
Viewed by 1153
Abstract
The early weaning of lambs frequently leads to weakened immunity, impaired intestinal function, and increased susceptibility to intestinal disease. Lactobacillus plays a role in regulating immunity, enhancing antioxidant capacity, and maintaining intestinal health. This study aims to isolate a strain of Lactobacillus with [...] Read more.
The early weaning of lambs frequently leads to weakened immunity, impaired intestinal function, and increased susceptibility to intestinal disease. Lactobacillus plays a role in regulating immunity, enhancing antioxidant capacity, and maintaining intestinal health. This study aims to isolate a strain of Lactobacillus with favorable probiotic properties from sheep feces and investigate its effects on the intestinal health of early-weaned lambs. In this study, the growth characteristics, acid production capacity, bacteriostatic capacity, bile salt tolerance, gastrointestinal fluid tolerance, self-coagulation capacity, and surface hydrophobicity of Lactobacillus isolated from sheep feces were analyzed for in vitro probiotic properties. Lactobacilli with strong probiotic properties were used for in vivo validation. A total of 72 Hu lambs were allocated into four groups: a ewe-reared group (ER), early-weaning group (EW), low-dose Lactobacillus group (LL), and high-dose Lactobacillus group (HL). Early weaning was performed in the EW, LL, and HL groups at the age of 28 days. Lactobacillus johnsonii M5 (L. johnsonii M5), isolated from sheep feces, exhibited strong probiotic properties in vitro. Feeding EW lambs with a low dose of L. johnsonii M5 significantly reduced their diarrhea rate (p < 0.05). Its supplementation increased the levels of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) and total antioxidant capacity (T-AOC) in serum and jejunal mucosa and decreased levels of malondialdehyde (MDA) (p < 0.05). Compared to the EW group, serum immunoglobulin G (IgG) levels were significantly increased in the LL group (p < 0.05). Compared to the EW group, feeding with L. johnsonii M5 increased the content of anti-inflammatory cytokines, while reducing the content of pro-inflammatory cytokines in serum and jejunal mucosa (p < 0.05). Feeding early-weaned lambs with L. johnsonii M5 also decreased jejunal crypt depth and increased occludin and claudin-1 in jejunal mucosa (p < 0.05). These findings indicate that feeding early-weaned lambs with L. johnsonii M5 enhances their immunity and antioxidant capacity, improving intestinal health, and mitigates diarrhea in early-weaned lambs. Full article
(This article belongs to the Section Veterinary Microbiology)
Show Figures

Figure 1

14 pages, 1287 KiB  
Article
Probiotic Milk Enriched with Protein Isolates: Physicochemical, Organoleptic, and Microbiological Properties
by Małgorzata Pawlos, Katarzyna Szajnar, Magdalena Kowalczyk and Agata Znamirowska-Piotrowska
Foods 2024, 13(19), 3160; https://doi.org/10.3390/foods13193160 - 3 Oct 2024
Viewed by 2277
Abstract
Incorporating plant protein isolates into milk can enhance probiotic culture growth by providing essential nutrients and altering the physicochemical properties of fermented milk. This study investigated the effects of adding 1.5% or 3.0% soy, pea, and whey protein isolates on the growth of [...] Read more.
Incorporating plant protein isolates into milk can enhance probiotic culture growth by providing essential nutrients and altering the physicochemical properties of fermented milk. This study investigated the effects of adding 1.5% or 3.0% soy, pea, and whey protein isolates on the growth of Lacticaseibacillus casei and Lactobacillus johnsonii monocultures, as well as the physicochemical (acidity, syneresis, color) and organoleptic properties of fermented milk during 21 days of refrigerated storage. The results showed that 1.5% SPI and WPI did not significantly alter milk acidity compared to controls. Still, pH increased with 1.5% and 3.0% PPI. Storage time significantly affected pH in L. casei fermented milk. The initial addition of WPI at 1.5% and 3.0% reduced syneresis in L. casei fermented milk compared to other samples. Color components were significantly influenced by isolates. Initial L. casei cell counts were lower with SPI (LCS1.5 and LCS3) and 1.5% PPI (LCP1.5) compared to controls. Increasing isolate concentration from 1.5% to 3% enhanced L. johnsonii growth in WPI-milk but reduced L. casei in LCW3 compared to LCW1.5. Only increased pea protein concentration significantly increased L. casei growth. Probiotic populations generally were reduced during extended storage. Moreover, isolates impacted milk organoleptic evaluation. This research demonstrates the potential of protein isolates in creating health-promoting and diverse fermented products and offers insights into their interaction with probiotic cultures to advance functional food technologies. Full article
(This article belongs to the Section Dairy)
Show Figures

Figure 1

11 pages, 883 KiB  
Article
Impact of Lactic Acid Fermentation on the Organic Acids and Sugars of Developed Oat and Buckwheat Beverages
by Kübra Küçükgöz, Anna Franczak, Wiszko Borysewicz, Klaudia Kamińska, Muhammad Salman, Wioletta Mosiej, Marcin Kruk, Danuta Kołożyn-Krajewska and Monika Trząskowska
Fermentation 2024, 10(7), 373; https://doi.org/10.3390/fermentation10070373 - 21 Jul 2024
Cited by 7 | Viewed by 2716
Abstract
In recent years, new plant-based foods and drinks have been developed to meet the growing demand for animal-derived alternatives, particularly dairy products. This study investigates the impact of lactic acid fermentation on the organic acids and sugars in oat and buckwheat beverages developed [...] Read more.
In recent years, new plant-based foods and drinks have been developed to meet the growing demand for animal-derived alternatives, particularly dairy products. This study investigates the impact of lactic acid fermentation on the organic acids and sugars in oat and buckwheat beverages developed using Lactobacillus johnsonii K4 and Lacticaseibacillus rhamnosus K3, which are potential probiotics. The fermented samples were analyzed for pH changes, bacterial viability, and the concentration of organic acids and sugars over 15 days. The results indicated significant variations in bacterial colony counts, with L. johnsonii K4 showing the highest initial growth. Over 15 days, pH levels decreased, with the most acidic conditions observed in buckwheat beverages. Notably, fermentation led to a significant increase in acetic acid concentration and a reduction in malic acid levels, particularly in buckwheat samples. These findings highlight the dynamic nature of fermentation in enhancing the nutritional profile and shelf-life of plant-based beverages. Full article
Show Figures

Figure 1

15 pages, 7715 KiB  
Article
Recombinant Bile Salt Hydrolase Enhances the Inhibition Efficiency of Taurodeoxycholic Acid against Clostridium perfringens Virulence
by Tahrir Alenezi, Bilal Alrubaye, Ying Fu, Janashrit Shrestha, Samar Algehani, Hong Wang, Rohana Liyanage and Xiaolun Sun
Pathogens 2024, 13(6), 464; https://doi.org/10.3390/pathogens13060464 - 31 May 2024
Cited by 3 | Viewed by 1702
Abstract
Clostridium perfringens is the main pathogen of chicken necrotic enteritis (NE) causing huge economic losses in the poultry industry. Although dietary secondary bile acid deoxycholic acid (DCA) reduced chicken NE, the accumulation of conjugated tauro-DCA (TDCA) raised concerns regarding DCA efficacy. In this [...] Read more.
Clostridium perfringens is the main pathogen of chicken necrotic enteritis (NE) causing huge economic losses in the poultry industry. Although dietary secondary bile acid deoxycholic acid (DCA) reduced chicken NE, the accumulation of conjugated tauro-DCA (TDCA) raised concerns regarding DCA efficacy. In this study, we aimed to deconjugate TDCA by bile salt hydrolase (BSH) to increase DCA efficacy against the NE pathogen C. perfringens. Assays were conducted to evaluate the inhibition of C. perfringens growth, hydrogen sulfide (H2S) production, and virulence gene expression by TDCA and DCA. BSH activity and sequence alignment were conducted to select the bsh gene for cloning. The bsh gene from Bifidobacterium longum was PCR-amplified and cloned into plasmids pET-28a (pET-BSH) and pDR111 (pDR-BSH) for expressing the BSH protein in E. coli BL21 and Bacillus subtilis 168 (B-sub-BSH), respectively. His-tag-purified BSH from BL21 cells was evaluated by SDS-PAGE, Coomassie blue staining, and a Western blot (WB) assays. Secretory BSH from B. subtilis was analyzed by a Dot-Blot. B-sub-BSH was evaluated for the inhibition of C. perfringens growth. C. perfringens growth reached 7.8 log10 CFU/mL after 24 h culture. C. perfringens growth was at 8 vs. 7.4, 7.8 vs. 2.6 and 6 vs. 0 log10 CFU/mL in 0.2, 0.5, and 1 mM TDCA vs. DCA, respectively. Compared to TDCA, DCA reduced C. perfringens H2S production and the virulence gene expression of asrA1, netB, colA, and virT. BSH activity was observed in Lactobacillus johnsonii and B. longum under anaerobe but not L. johnsonii under 10% CO2 air. After the sequence alignment of bsh from ten bacteria, bsh from B. longum was selected, cloned into pET-BSH, and sequenced at 951 bp. After pET-BSH was transformed in BL21, BSH expression was assessed around 35 kDa using Coomassie staining and verified for His-tag using WB. After the subcloned bsh and amylase signal peptide sequence was inserted into pDR-BSH, B. subtilis was transformed and named B-sub-BSH. The transformation was evaluated using PCR with B. subtilis around 3 kb and B-sub-BSH around 5 kb. Secretory BSH expressed from B-sub-BSH was determined for His-tag using Dot-Blot. Importantly, C. perfringens growth was reduced greater than 59% log10 CFU/mL in the B-sub-BSH media precultured with 1 vs. 0 mM TDCA. In conclusion, TDCA was less potent than DCA against C. perfringens virulence, and recombinant secretory BSH from B-sub-BSH reduced C. perfringens growth, suggesting a new potential intervention against the pathogen-induced chicken NE. Full article
Show Figures

Figure 1

15 pages, 2252 KiB  
Article
Characterization of Probiotic Properties and Whole-Genome Analysis of Lactobacillus johnsonii N5 and N7 Isolated from Swine
by Kun Wang, Yu Wang, Lifang Gu, Jinyan Yu, Qianwen Liu, Ruiqi Zhang, Guixin Liang, Huan Chen, Fang Gu, Haoyu Liu, Xin’an Jiao and Yunzeng Zhang
Microorganisms 2024, 12(4), 672; https://doi.org/10.3390/microorganisms12040672 - 28 Mar 2024
Cited by 9 | Viewed by 3194
Abstract
In our previous microbiome profiling analysis, Lactobacillus (L.) johnsonii was suggested to contribute to resistance against chronic heat stress-induced diarrhea in weaned piglets. Forty-nine L. johnsonii strains were isolated from these heat stress-resistant piglets, and their probiotic properties were assessed. Strains [...] Read more.
In our previous microbiome profiling analysis, Lactobacillus (L.) johnsonii was suggested to contribute to resistance against chronic heat stress-induced diarrhea in weaned piglets. Forty-nine L. johnsonii strains were isolated from these heat stress-resistant piglets, and their probiotic properties were assessed. Strains N5 and N7 exhibited a high survival rate in acidic and bile environments, along with an antagonistic effect against Salmonella. To identify genes potentially involved in these observed probiotic properties, the complete genome sequences of N5 and N7 were determined using a combination of Illumina and nanopore sequencing. The genomes of strains N5 and N7 were found to be highly conserved, with two N5-specific and four N7-specific genes identified. Multiple genes involved in gastrointestinal environment adaptation and probiotic properties, including acidic and bile stress tolerance, anti-inflammation, CAZymes, and utilization and biosynthesis of carbohydrate compounds, were identified in both genomes. Comparative genome analysis of the two genomes and 17 available complete L. johnsonii genomes revealed 101 genes specifically harbored by strains N5 and N7, several of which were implicated in potential probiotic properties. Overall, this study provides novel insights into the genetic basis of niche adaptation and probiotic properties, as well as the genome diversity of L. johnsonii. Full article
(This article belongs to the Special Issue Beneficial Microbes and Gastrointestinal Microbiota, 2nd Edition)
Show Figures

Figure 1

16 pages, 4045 KiB  
Article
Gut Microbiome Analysis and Screening of Lactic Acid Bacteria with Probiotic Potential in Anhui Swine
by Ying Shao, Xiaoyan Wu, Zhaorong Yu, Min Li, Tingting Sheng, Zhenyu Wang, Jian Tu, Xiangjun Song and Kezong Qi
Animals 2023, 13(24), 3812; https://doi.org/10.3390/ani13243812 - 11 Dec 2023
Cited by 4 | Viewed by 2480
Abstract
With the widespread promotion of the green feeding concept of “substitution and resistance”, there is a pressing need for alternative products in feed and breeding industries. Employing lactic acid bacteria represents one of the most promising antimicrobial strategies to combat infections caused by [...] Read more.
With the widespread promotion of the green feeding concept of “substitution and resistance”, there is a pressing need for alternative products in feed and breeding industries. Employing lactic acid bacteria represents one of the most promising antimicrobial strategies to combat infections caused by pathogenic bacteria. As such, we analyzed the intestinal tract of Anhui local pig breeds, including LiuBai Pig, YueHei Pig, and HuoShou Pig, to determine the composition and diversity of intestinal microbiota using 16S rRNA. Further, the functionality of the pigs’ intestinal microbiota was studied through metagenomic sequencing. This study revealed that lactic acid bacteria were the primary contributors to the functional composition, as determined through a species functional contribution analysis. More specifically, the functional contribution of lactic acid bacteria in the HuoShou Pig group was higher than that of the LiuBai Pig and YueHei Pig. Subsequently, the intestinal contents of the HuoShou Pig group were selected for the screening of the dominant lactic acid bacteria strains. Out of eight strains of lactic acid bacteria, the acid-production capacity, growth curve, and tolerance to a simulated intestinal environment were assessed. Additional assessments included surface hydrophobicity, the self-aggregation capability, co-agglutination of lactic acid bacteria with pathogenic bacteria, and an in vitro bacteriostatic activity assay. Lactobacillus johnsonii L5 and Lactobacillus reuteri L8 were identified as having a strong overall performance. These findings serve as a theoretical basis for the further development of pig-derived probiotics, thereby promoting the application of lactic acid bacteria to livestock production. Full article
(This article belongs to the Collection Gut Microbiota and Growth and Health of Monogastric Farm Animals)
Show Figures

Figure 1

19 pages, 3963 KiB  
Article
Gut–Joint Axis: Impact of Bifidobacterial Cell Wall Lipoproteins on Arthritis Development
by Frank Piva, Philippe Gervois, Youness Karrout, Famara Sané and Marie-Bénédicte Romond
Nutrients 2023, 15(23), 4861; https://doi.org/10.3390/nu15234861 - 21 Nov 2023
Cited by 3 | Viewed by 2832
Abstract
Gut microbiota affect progression of rheumatoid arthritis (RA). The present study aims at investigating the protective potential of Bifidobacterium longum cell wall lipoproteins (Lpps) shown to modulate the intestinal microbiome and prevent osteoarthritis. Arthritis was induced by collagen (CIA) or anti-collagen antibodies (CAIA) [...] Read more.
Gut microbiota affect progression of rheumatoid arthritis (RA). The present study aims at investigating the protective potential of Bifidobacterium longum cell wall lipoproteins (Lpps) shown to modulate the intestinal microbiome and prevent osteoarthritis. Arthritis was induced by collagen (CIA) or anti-collagen antibodies (CAIA) injection. Intake of 0.5 mg of Lpps/L, but not 0.25 and 1 mg of Lpps/L, significantly alleviated RA symptoms in CIA DBA/1OOaHsd mice. The arthritis index (AI) was also reduced in CAIA mice. In the CIA-protected group, colon Ligilactobacillus murinus, caecal Lactobacillus johnsonii and spleen weight correlated with AI, whereas the reverse was observed with splenic CD11c+ dendritic cells (cDCs). The unprotected CIA Lpps group harbored higher cecal and colon E. coli and lower caecal L. murinus. Lpps administration to CAIA mice after arthritis induction led to lower colon E. plexicaudatum counts. Splenocytes from CIA-protected mice triggered by LPS secreted higher Il-10 than control ones. However, a higher IL-10 response was not elicited in gnotobiotic RA mice splenocytes with lower cDCs’ recruitment. Labeled bacteria with the Lpps signal were detected in CIA mice bone marrow (BM) cDCs 5 and 16 h post-gavage but not in Peyer’s patches and the spleen. In vitro uptake of Lpps by primary BM and thymus cells was observed within 24 h. An FACS analysis detected the Lpps signal in the plasmacytoid cell compartment but not in cDCs. In conclusion, Lpps dosing is critical for preventing arthritis progression and appropriately modulating the microbiome. Our results also highlight the possible triggering of the immune system by Lpps. Full article
(This article belongs to the Special Issue Functional Foods and Sustainable Health)
Show Figures

Figure 1

20 pages, 3162 KiB  
Article
Lactobacillus plantarum Zhang-LL Inhibits Colitis-Related Tumorigenesis by Regulating Arachidonic Acid Metabolism and CD22-Mediated B-Cell Receptor Regulation
by Jingxin Zhu, Wenbo Liu, Zheng Bian, Yumeng Ma, Zixin Kang, Junhua Jin, Xiangyang Li, Shaoyang Ge, Yanling Hao, Hongxing Zhang and Yuanhong Xie
Nutrients 2023, 15(21), 4512; https://doi.org/10.3390/nu15214512 - 25 Oct 2023
Cited by 8 | Viewed by 4112
Abstract
Colorectal cancer (CRC) is a significant health concern and is the third most commonly diagnosed and second deadliest cancer worldwide. CRC has been steadily increasing in developing countries owing to factors such as aging and epidemics. Despite extensive research, the exact pathogenesis of [...] Read more.
Colorectal cancer (CRC) is a significant health concern and is the third most commonly diagnosed and second deadliest cancer worldwide. CRC has been steadily increasing in developing countries owing to factors such as aging and epidemics. Despite extensive research, the exact pathogenesis of CRC remains unclear, and its causes are complex and variable. Numerous in vitro, animal, and clinical trials have demonstrated the efficacy of probiotics such as Lactobacillus plantarum in reversing the adverse outcomes of CRC. These findings suggest that probiotics play vital roles in the prevention, adjuvant treatment, and prognosis of CRC. In this study, we constructed a mouse model of CRC using an intraperitoneal injection of azomethane combined with dextran sodium sulfate, while administering 5-fluorouracil as well as high- and low-doses of L. plantarum Zhang-LL live or heat-killed strains. Weight changes and disease activity indices were recorded during feeding, and the number of polyps and colon length were measured after euthanasia. HE staining was used to observe the histopathological changes in the colons of mice, and ELISA was used to detect the expression levels of IL-1β, TNF-α, and IFN-γ in serum. To investigate the specific mechanisms involved in alleviating CRC progression, gut microbial alterations were investigated using 16S rRNA amplicon sequencing and non-targeted metabolomics, and changes in genes related to CRC were assessed using eukaryotic transcriptomics. The results showed that both viable and heat-killed strains of L. plantarum Zhang-LL in high doses significantly inhibited tumorigenesis, colon shortening, adverse inflammatory reactions, intestinal tissue damage, and pro-inflammatory factor expression upregulation. Specifically, in the gut microbiota, the abundance of the dominant flora Acutalibacter muris and Lactobacillus johnsonii was regulated, PGE2 expression was significantly reduced, the arachidonic acid metabolism pathway was inhibited, and CD22-mediated B-cell receptor regulation-related gene expression was upregulated. This study showed that L. plantarum Zhang-LL live or heat-inactivated strains alleviated CRC progression by reducing the abundance of potentially pathogenic bacteria, increasing the abundance of beneficial commensal bacteria, mediating the arachidonic acid metabolism pathway, and improving host immunogenicity. Full article
(This article belongs to the Section Prebiotics and Probiotics)
Show Figures

Figure 1

16 pages, 1195 KiB  
Review
The Effects of Lactobacillus johnsonii on Diseases and Its Potential Applications
by Ziyi Zhang, Lanlan Zhao, Jiacheng Wu, Yingmiao Pan, Guoping Zhao, Ziyun Li and Lei Zhang
Microorganisms 2023, 11(10), 2580; https://doi.org/10.3390/microorganisms11102580 - 17 Oct 2023
Cited by 25 | Viewed by 6280
Abstract
Lactobacillus johnsonii has been used as a probiotic for decades to treat a wide range of illnesses, and has been found to have specific advantages in the treatment of a number of ailments. We reviewed the potential therapeutic effects and mechanisms of L. [...] Read more.
Lactobacillus johnsonii has been used as a probiotic for decades to treat a wide range of illnesses, and has been found to have specific advantages in the treatment of a number of ailments. We reviewed the potential therapeutic effects and mechanisms of L. johnsonii in various diseases based on PubMed and the Web of Science databases. We obtained the information of 149 L. johnsonii from NCBI (as of 14 February 2023), and reviewed their comprehensive metadata, including information about the plasmids they contain. This review provides a basic characterization of different L. johnsonii and some of their potential therapeutic properties for various ailments. Although the mechanisms are not fully understood yet, it is hoped that they may provide some evidence for future studies. Furthermore, the antibiotic resistance of the various strains of L. johnsonii is not clear, and more complete and in-depth studies are needed. In summary, L. johnsonii presents significant research potential for the treatment or prevention of disease; however, more proof is required to justify its therapeutic application. An additional study on the antibiotic resistance genes it contains is also needed to reduce the antimicrobial resistance dissemination. Full article
(This article belongs to the Special Issue Beneficial Microorganisms and Antimicrobials)
Show Figures

Figure 1

Back to TopTop