Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (357)

Search Parameters:
Keywords = LaNiO3

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 4848 KiB  
Article
Mineralogical and Geochemical Features of Soil Developed on Rhyolites in the Dry Tropical Area of Cameroon
by Aubin Nzeugang Nzeukou, Désiré Tsozué, Estelle Lionelle Tamto Mamdem, Merlin Gountié Dedzo and Nathalie Fagel
Standards 2025, 5(3), 20; https://doi.org/10.3390/standards5030020 - 6 Aug 2025
Abstract
Petrological knowledge on weathering processes controlling the mobility of chemical elements is still limited in the dry tropical zone of Cameroon. This study aims to investigate the mobility of major and trace elements during rhyolite weathering and soil formation in Mobono by understanding [...] Read more.
Petrological knowledge on weathering processes controlling the mobility of chemical elements is still limited in the dry tropical zone of Cameroon. This study aims to investigate the mobility of major and trace elements during rhyolite weathering and soil formation in Mobono by understanding the mineralogical and elemental vertical variation. The studied soil was classified as Cambisols containing mainly quartz, K-feldspar, plagioclase, smectite, kaolinite, illite, calcite, lepidocrocite, goethite, sepiolite, and interstratified clay minerals. pH values ranging between 6.11 and 8.77 indicated that hydrolysis, superimposed on oxidation and carbonation, is the main process responsible for the formation of secondary minerals, leading to the formation of iron oxides and calcite. The bedrock was mainly constituted of SiO2, Al2O3, Na2O, Fe2O3, Ba, Zr, Sr, Y, Ga, and Rb. Ce and Eu anomalies, and chondrite-normalized La/Yb ratios were 0.98, 0.67, and 2.86, respectively. SiO2, Al2O3, Fe2O3, Na2O, and K2O were major elements in soil horizons. Trace elements revealed high levels of Ba (385 to 1320 mg kg−1), Zr (158 to 429 mg kg−1), Zn (61 to 151 mg kg−1), Sr (62 to 243 mg kg−1), Y (55 to 81 mg kg−1), Rb (1102 to 58 mg kg−1), and Ga (17.70 to 35 mg kg−1). LREEs were more abundant than HREEs, with LREE/HREE ratio ranging between 2.60 and 6.24. Ce and Eu anomalies ranged from 1.08 to 1.21 and 0.58 to 1.24 respectively. The rhyolite-normalized La/Yb ratios varied between 0.56 and 0.96. Mass balance revealed the depletion of Si, Ca, Na, Mn, Sr, Ta, W, U, La, Ce, Pr, Nd, Sm, Gd and Lu, and the accumulation of Al, Fe, K, Mg, P, Sc, V, Co, Ni, Cu, Zn, Ga, Ge, Rb, Y, Zr, Nb, Cs, Ba, Hf, Pb, Th, Eu, Tb, Dy, Ho, Er, Tm and Yb during weathering along the soil profile. Full article
Show Figures

Figure 1

12 pages, 1916 KiB  
Article
Electrical Conductivity of High-Entropy Calcium-Doped Six- and Seven-Cation Perovskite Materials
by Geoffrey Swift, Sai Ram Gajjala and Rasit Koc
Crystals 2025, 15(8), 686; https://doi.org/10.3390/cryst15080686 - 28 Jul 2025
Viewed by 252
Abstract
Novel high-entropy perovskite oxide powders were synthesized using a sol-gel process. The B-site contained five cations: chromium, cobalt, iron, manganese, and nickel. The B-site cations were present on an equiatomic basis. The A-site cation was lanthanum, with calcium doping. The amount of A-site [...] Read more.
Novel high-entropy perovskite oxide powders were synthesized using a sol-gel process. The B-site contained five cations: chromium, cobalt, iron, manganese, and nickel. The B-site cations were present on an equiatomic basis. The A-site cation was lanthanum, with calcium doping. The amount of A-site doping varied from 0 to 30 at%, yielding a composition of La1−xCax(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)O3−δ. The resulting perovskite powders were pressurelessly sintered in air at 1400 °C for 2 h. Sintered densities were measured, and the grain structure was imaged via scanning electron microscopy to investigate the effect of doping. Samples were cut and polished, and their resistance was measured at varying temperatures in air to obtain the electrical conductivity and the mechanism that governs it. Plots of electrical conductivity as a function of composition and temperature indicate that the increased configurational entropy of the perovskite materials has a demonstrable effect. Full article
Show Figures

Figure 1

18 pages, 2233 KiB  
Article
Structure and Electrochemical Behavior of ZnLaFeO4 Alloy as a Negative Electrode in Ni-MH Batteries
by Houyem Gharbi, Wissem Zayani, Youssef Dabaki, Chokri Khaldi, Omar ElKedim, Nouredine Fenineche and Jilani Lamloumi
Energies 2025, 18(13), 3251; https://doi.org/10.3390/en18133251 - 21 Jun 2025
Viewed by 274
Abstract
This study focuses on the structural and electrochemical behavior of the compound ZnLaFeO4 as a negative electrode material for nickel–metal hydride (Ni-MH) batteries. The material was synthesized by a sol–gel hydrothermal method to assess the influence of lanthanum doping on the ZnFe [...] Read more.
This study focuses on the structural and electrochemical behavior of the compound ZnLaFeO4 as a negative electrode material for nickel–metal hydride (Ni-MH) batteries. The material was synthesized by a sol–gel hydrothermal method to assess the influence of lanthanum doping on the ZnFe2O4 spinel structure. X-ray diffraction revealed the formation of a dominant LaFeO3 perovskite phase, with ZnFe2O4 and La2O3 as secondary phases. SEM analysis showed agglomerated grains with an irregular morphology. Electrochemical characterization at room temperature and a discharge rate of C/10 (full charge in 10 h) revealed a maximum discharge capacity of 106 mAhg−1. Although La3+ doping modified the microstructure and slowed the activation process, the electrode exhibited stable cycling with moderate polarization behavior. The decrease in capacity during cycling is due mainly to higher internal resistance. These results highlight the potential and limitations of La-doped spinel ferrites as alternative negative electrodes for Ni-MH systems. Full article
Show Figures

Figure 1

16 pages, 2734 KiB  
Article
Achieving a High Energy Storage Performance in Grain Engineered (Ba,Sr)(Zr,Ti)O3 Ferroelectric Films Integrated on Si
by Fuyu Lv, Chao Liu, Hongbo Cheng and Jun Ouyang
Nanomaterials 2025, 15(12), 920; https://doi.org/10.3390/nano15120920 - 13 Jun 2025
Viewed by 380
Abstract
BaTiO3-based lead-free ferroelectric films with a large recoverable energy density (Wrec) and a high energy efficiency (η) are crucial components for next-generation dielectric capacitors, which are used in energy conditioning and storage applications in integrated circuits. [...] Read more.
BaTiO3-based lead-free ferroelectric films with a large recoverable energy density (Wrec) and a high energy efficiency (η) are crucial components for next-generation dielectric capacitors, which are used in energy conditioning and storage applications in integrated circuits. In this study, grain-engineered (Ba0.95,Sr0.05)(Zr0.2,Ti0.8)O3 (BSZT) ferroelectric thick films (~500 nm) were prepared on Si substrates. These films were deposited at 350 °C, 100 °C lower than the temperature at which the LaNiO3 buffer layer was deposited on Pt/Ti. This method reduced the (001) grain population due to a weakened interface growth mode, while promoting volume growth modes that produced (110) and (111) grains with a high polarizability. As a result, these films exhibited a maximum polarization of ~88.0 μC/cm2, a large Wrec of ~203.7 J/cm3, and a high energy efficiency η of 81.2% (@ 6.4 MV/cm). The small-field dielectric constant nearly tripled as compared with that of the same BSZT/LaNiO3 heterostructure deposited at the same temperature (350 °C or 450 °C). The enhanced linear dielectric response, delayed ferroelectric polarization saturation, and increased dielectric strength due to the nano-grain size, collectively contributed to the improved energy storage performance. This work provides a novel approach for fabricating high-performance dielectric capacitors for energy storage applications. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Graphical abstract

15 pages, 3994 KiB  
Article
Sintering and Electrical Conductivity of Medium- and High-Entropy Calcium-Doped Four B-Site Cation Perovskite Materials
by Geoffrey Swift, Sai Ram Gajjala and Rasit Koc
Crystals 2025, 15(6), 524; https://doi.org/10.3390/cryst15060524 - 29 May 2025
Cited by 1 | Viewed by 477
Abstract
La1−xCax(Co0.25Cr0.25Fe0.25Ni0.25)O3−δ perovskite powders were prepared via a sol-gel process. The A-site was doped with calcium, while four elements—cobalt, chromium, iron, and nickel—in equiatomic amounts made up the B-site. The configurational [...] Read more.
La1−xCax(Co0.25Cr0.25Fe0.25Ni0.25)O3−δ perovskite powders were prepared via a sol-gel process. The A-site was doped with calcium, while four elements—cobalt, chromium, iron, and nickel—in equiatomic amounts made up the B-site. The configurational entropy was calculated to increase with the addition of calcium from medium to high entropy. The synthesized powders were heated to 1400 °C in air for 2 h to sinter them. The effect of doping on the resulting sintered materials was observed via density measurements and electron microscopy. The electrical conductivity was measured in air as a function of temperature to 900 °C. Conductivity versus composition indicates that an increase in entropy has a marked effect on electrical conductivity, leading to two distinct relationships with temperature. Full article
(This article belongs to the Special Issue Ceramics: Processes, Microstructures, and Properties)
Show Figures

Figure 1

18 pages, 5504 KiB  
Article
Boosting Electrochemical Performances of Li-Rich Mn-Based Cathode Materials by La Doping via Enhanced Structural Stability
by Shumei Dou, Bo Li, Zhuolu Guo, Ruoxin Teng, Lijun Ren, Huiqin Li, Weiwei Zhao and Fenyan Wei
Coatings 2025, 15(6), 643; https://doi.org/10.3390/coatings15060643 - 26 May 2025
Viewed by 492
Abstract
La-doped Li1.2Ni0.13Mn0.54Co0.13O2 cathode materials were successfully synthesized by the sol-gel method. The structure, morphology, element valence states, cyclic voltammetry, and cyclic properties were characterized to investigate the properties of the synthesized materials. The as-prepared [...] Read more.
La-doped Li1.2Ni0.13Mn0.54Co0.13O2 cathode materials were successfully synthesized by the sol-gel method. The structure, morphology, element valence states, cyclic voltammetry, and cyclic properties were characterized to investigate the properties of the synthesized materials. The as-prepared La-doped Li1.2Ni0.13Mn0.54Co0.13O2 materials exhibit well the crystalline hexagonal layered structures with lamellar-like particles featuring a rough surface. The optimal sample, designated as LLRMO-2 with 1/100 La3+ doping, delivers an impressive discharge capacity of 271.2 mAh g−1 with a capacity retention of 87.8% after 100 cycles at the current density of 100 mA g−1 compared with that of 203.5 mAh g−1 with only 110.6 mAh g−1 after 100 cycles for the pristine sample. Furthermore, the LLRMO-2 cathode exhibits a superior rate capability compared to the pristine sample and shows excellent cyclic performances with the capacity retention of 48.1% after 400 cycles. The voltage decay per cycle is only 1.60 mV, which is less than 3.70 mV of the pristine one. The enhanced capacity, rate capability, and cyclic performance observed in the La-doped Li-rich layered cathode can be attributed to the improved structural stability as well as the higher diffusion coefficient of lithium ions. These results suggest that the strategy of introducing La3+ into the transition metal slabs is an efficient approach for boosting electrochemical performances of Li-rich Mn-based cathode materials via enhancing structural stability. Full article
Show Figures

Figure 1

16 pages, 1781 KiB  
Article
Sensitive Hydrogen Peroxide Sensor Based on Hexacyanoferrate Nickel–Carbon Nanodots
by Emiliano Martínez-Periñán, Juan Manuel Hernández-Gómez, Encarnación Lorenzo and Cristina Gutiérrez-Sánchez
Chemosensors 2025, 13(6), 195; https://doi.org/10.3390/chemosensors13060195 - 22 May 2025
Viewed by 731
Abstract
An electrochemical sensor was developed for the detection of hydrogen peroxide (H2O2) based on the in situ formation of a nickel hexacyanoferrate complex on the electrode surface. Screen-printed carbon electrodes were modified with nickel-doped carbon nanodots (Ni-CNDs), and a [...] Read more.
An electrochemical sensor was developed for the detection of hydrogen peroxide (H2O2) based on the in situ formation of a nickel hexacyanoferrate complex on the electrode surface. Screen-printed carbon electrodes were modified with nickel-doped carbon nanodots (Ni-CNDs), and a nickel hexacyanoferrate complex was electrogenerated over the nickel carbon nanodots. Ni-CNDs were synthetized “a la carte” in one step by including nickel (II) acetate as precursor and characterized using different techniques: transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy, atomic force microscopy (AFM), and infrared spectroscopy (FTIR). The electrocatalytic activity toward H2O2 reduction and the oxidation of the resulting modified electrodes was studied. The developed sensor had a strong electrocatalytic effect on the oxidation and reduction of H2O2, yielding detection limits of 3.22 and 0.49 μM, respectively. The H2O2 content of a tap water sample was determined, confirming the viability of the developed electrochemical sensor. Full article
(This article belongs to the Special Issue Electrochemical Sensor for Food Analysis)
Show Figures

Graphical abstract

15 pages, 1813 KiB  
Article
Research on Catalysts for Online Ammonia Hydrogen Production in Marine Engines: Performance Evaluation and Reaction Kinetic Modeling
by Jin Wu, Liang Yang, Chuang Xiang, Junjie Liang, He Yang, Dilong Li, Ying Sun, Lin Lv and Neng Zhu
Catalysts 2025, 15(5), 488; https://doi.org/10.3390/catal15050488 - 17 May 2025
Viewed by 521
Abstract
One viable technical approach for achieving hydrogen-blended combustion in marine ammonia-fueled engines is to utilize online ammonia decomposition to produce hydrogen, which is then introduced into the engine for combustion. This work carried out ammonia decomposition experiments using various catalysts, examining the effects [...] Read more.
One viable technical approach for achieving hydrogen-blended combustion in marine ammonia-fueled engines is to utilize online ammonia decomposition to produce hydrogen, which is then introduced into the engine for combustion. This work carried out ammonia decomposition experiments using various catalysts, examining the effects of temperature and space velocity on Ru/Ce0.33Zr0.58La0.03Nd0.03Pr0.03O2.09 and Ni/Ce0.36Zr0.64O2 catalysts. Based on the experimental data obtained, the kinetic parameters of ammonia decomposition were fitted using four different models: mass action law, first-order reaction, Langmuir, and Temkin–Pyzhev kinetics across two catalysts, with the subsequent mechanistic analysis of catalytic reaction processes within the reactor. The results revealed that the NH3 conversion rate of the Ru/Ce0.33Zr0.58La0.03Nd0.03Pr0.03O2.09 catalyst was superior to that of the Ni/Ce0.36Zr0.64O2 catalyst, with temperature activity windows of 250–450 °C and 400–600 °C, respectively. Within the range of 2000–32,000 mL·g−1·h−1), an increase in space velocity led to a decrease in NH3 conversion rate by approximately half. All four models were able to predict NH3 conversion rates for the different catalysts with reasonable accuracy. The activation energies for Ru/Ce0.33Zr0.58La0.03Nd0.03Pr0.03O2.09 and Ni/Ce0.36Zr0.64O2 catalysts were found to be 37.7 kJ·mol−1 and 66 kJ·mol−1, respectively. Targeting hydrogen requirements of 10–40% vol for ammonia engines, the corresponding catalytic temperatures for Ru/Ce0.33Zr0.58La0.03Nd0.03Pr0.03O2.09 and Ni/Ce0.36Zr0.64O2 were above 267 °C and 500 °C, respectively. Full article
(This article belongs to the Section Catalytic Reaction Engineering)
Show Figures

Graphical abstract

15 pages, 5870 KiB  
Article
High Dielectric Tunability and Figure of Merit at Low Voltage in (001)-Oriented Epitaxial Tetragonal Pb0.52Zr0.48TiO3 Thin Films
by Hongwang Li, Chao Liu and Jun Ouyang
Nanomaterials 2025, 15(9), 695; https://doi.org/10.3390/nano15090695 - 5 May 2025
Viewed by 483
Abstract
Ferroelectric thin films with a high dielectric tunability (η) have great potential in electrically tunable applications, including microwave tunable devices such as phase shifters, filters, delay lines, etc. Using a modified Landau–Devonshire type thermodynamic potential, we show that the dielectric tunability [...] Read more.
Ferroelectric thin films with a high dielectric tunability (η) have great potential in electrically tunable applications, including microwave tunable devices such as phase shifters, filters, delay lines, etc. Using a modified Landau–Devonshire type thermodynamic potential, we show that the dielectric tunability η of a (001) tetragonal ferroelectric film can be analytically solved. After a survey of materials, a large η value above 60% was predicted to be achievable in a (001)-oriented tetragonal Pb(Zr0.52Ti0.48)O3 (PZT) film. Experimentally, (001)-oriented PZT thin films were prepared on LaNiO3-coated (100) SrTiO3 substrates by using pulsed laser deposition (PLD). These films exhibited good dielectric tunability (η ~ 67.6%) measured at a small electric field E of ~250 kV/cm (corresponding to 5 volts for a 200 nm thick film). It only dropped down to ~54.2% when E was further reduced to 125 kV/cm (2.5 volts for 200 nm film). The measured dielectric tunability η as functions of the applied electric field E and measuring frequency f are discussed for a 500 nm thick PZT film, with the former well described by the theoretical η(E) curves and the latter showing a weak frequency dependence. These observations validate our integrated approach rooted in a theoretical understanding. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

26 pages, 6113 KiB  
Article
Geochemical Characteristics of Organic-Enriched Shales in the Upper Ordovician–Lower Silurian in Southeast Chongqing
by Changqing Fu, Zixiang Feng, Chang Xu, Xiaochen Zhao and Yi Du
Minerals 2025, 15(5), 447; https://doi.org/10.3390/min15050447 - 26 Apr 2025
Cited by 1 | Viewed by 353
Abstract
A variety of variables, such as organic matter input, redox conditions, depositional rates, and terrigenous input, affect the deposition of black shale. Furthermore, because of the significant regional variations in paleodepositional environments, these factors have a complex role in organic matter enrichment. Global [...] Read more.
A variety of variables, such as organic matter input, redox conditions, depositional rates, and terrigenous input, affect the deposition of black shale. Furthermore, because of the significant regional variations in paleodepositional environments, these factors have a complex role in organic matter enrichment. Global geological events influenced sedimentary conditions, organic enrichment, and the development of organic-enriched shales during the Late Ordovician to Early Silurian. The Wufeng–Longmaxi Formation black shales in Southeastern Chongqing were analyzed for X-ray diffraction (XRD), major and trace element geochemistry, and total organic carbon (TOC) data; this led to further analysis of the relationship between the depositional environment and organic matter aggregation and rock type evolution. The primary minerals found in the Wufeng–Longmaxi shale are quartz, feldspar, carbonatite (calcite and dolomite), and clay. The high index of compositional variability (ICV) values (>1) and the comparatively low chemical index of alteration (CIA) values (52.6–72.8) suggest that the sediment source rocks are juvenile and are probably experiencing weak to moderate chemical weathering. The selected samples all show negative Eu anomalies, flat heavy rare earth elements, and mildly enriched light rare earth elements. The ratios of La/Th, La/Sc, Th/Sc, ΣREE-La/Yb, TiO2-Ni, and La/Th-Hf suggest that acidic igneous rocks were the main source of sediment, with minor inputs from ancient sedimentary rocks. The correlations of paleoclimate proxies (Sr/Cu, CIA), redox proxies (V/Cr, V/Ni, V/(V + Ni), Ni/Co, U/Th), paleoproductivity proxies (Baxs, CuEF, NiEF), and water mass restriction proxies (Mo/TOC, UEF, MoEF) suggest a humid–semiarid, anoxic, moderate–high paleoproductivity, and moderate–strongly restricted environment. On the basis of the aforementioned interpretations, the paleoenvironment of the Wufeng–Longmaxi Formations was established, with paleoredox conditions and restricted water masses likely being the primary factors contributing to organic matter enrichment. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

15 pages, 15766 KiB  
Article
Identification of Sarin Simulant DMMP Based on a Laminated MOS Sensor Using Article Swarm Optimization-Backpropagation Neural Network
by Ting Liang, Yelin Qi, Shuya Cao, Rui Yan, Jin Gu and Yadong Liu
Sensors 2025, 25(9), 2734; https://doi.org/10.3390/s25092734 - 25 Apr 2025
Viewed by 400
Abstract
A Pt@CeLaCoNiOx/Co@SnO2 laminated MOS sensor was prepared using Co@SnO2 as the gas-sensitive film material and Pt@CeLaCoNiOx as the catalytic film material. The sensor was verified to exhibit good sensing performances for dimethyl methylphosphonate, a simulant of Sarin, under a temperature modulation, [...] Read more.
A Pt@CeLaCoNiOx/Co@SnO2 laminated MOS sensor was prepared using Co@SnO2 as the gas-sensitive film material and Pt@CeLaCoNiOx as the catalytic film material. The sensor was verified to exhibit good sensing performances for dimethyl methylphosphonate, a simulant of Sarin, under a temperature modulation, and characteristic peaks appeared in the resistance response curves only for dimethyl methylphosphonate. The Article Swarm Optimization-Backpropagation Neural Network had a good ability to identify the resistance response data of dimethyl methylphosphonate. The identification accuracy increased as the concentration of dimethyl methylphosphonate increased. This scheme can effectively identify whether the test gas contained dimethyl methylphosphonate or not, which provided a reference for achieving the high selectivity of the MOS sensor for Sarin. Full article
(This article belongs to the Special Issue Advanced Sensors in Atomic Level)
Show Figures

Figure 1

23 pages, 8291 KiB  
Article
Cu1Ni2/Al2O3 Catalyst from Its Hydrotalcite Precusor with Highly Active Sites for Efficient Hydrogenation of Levulinic Acid Toward 2-Methyltetrahydrofuran
by Jie Qin, Guohong Chen, Kaiqi Zheng, Jiajun Wu, Fanan Wang, Xueping Liu and Rengui Weng
Catalysts 2025, 15(5), 416; https://doi.org/10.3390/catal15050416 - 23 Apr 2025
Viewed by 447
Abstract
2-Methyltetrahydrofuran (2-MTHF), a hydrogenated derivative of levulinic acid (LA), is a biomass-derived platform compound with diverse and significant applications as a biofuel, gasoline additive, green solvent, and pharmaceutical synthesis intermediate. This study investigates the preparation of a Cu1Ni2/Al2 [...] Read more.
2-Methyltetrahydrofuran (2-MTHF), a hydrogenated derivative of levulinic acid (LA), is a biomass-derived platform compound with diverse and significant applications as a biofuel, gasoline additive, green solvent, and pharmaceutical synthesis intermediate. This study investigates the preparation of a Cu1Ni2/Al2O3 catalyst through the calcination–reduction of CuNiAl hydrotalcite as a precursor, which was subsequently utilized in the hydrogenation of LA to produce 2-MTHF. The calcination–reduction process applied to CuNiAl hydrotalcite results in a lattice confinement effect. This method not only disperses the active metal sites but also alters the bonding patterns of the active metals, thereby enhancing the activity and stability of the Cu1Ni2/Al2O3 catalyst. The results indicate that complete conversion of LA and a 2-MTHF yield of 87.6% can be achieved under optimal conditions of 190 °C, 5 MPa hydrogen, and a reaction time of 5 h, demonstrating an efficient one-step conversion process. Additionally, the catalyst’s recyclability was assessed through multiple reuse tests, with a loss of activity of only 9.2% after six cycle experiments, suggesting its feasibility and reliability for industrial applications. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Graphical abstract

22 pages, 4447 KiB  
Article
Geochronological and Geochemical Characterization of Triassic Felsic Volcanics in the Youjiang Basin, Southwest China: Implications for Tectonic Evolution of Eastern Tethyan Geodynamics
by Kai Dong, Zhuoyang Li, Xiaoli Fei, Yongqing Wang and Xiaohu Deng
Minerals 2025, 15(4), 398; https://doi.org/10.3390/min15040398 - 9 Apr 2025
Viewed by 331
Abstract
The Youjiang Basin is situated at the junction between the Tethyan and Pacific tectonic domains, and its Permian–Triassic volcanic rocks provide important geological archives recording the tectonic evolution and collisional interactions between the South China and Indochina blocks. This study employed LA-ICP-MS zircon [...] Read more.
The Youjiang Basin is situated at the junction between the Tethyan and Pacific tectonic domains, and its Permian–Triassic volcanic rocks provide important geological archives recording the tectonic evolution and collisional interactions between the South China and Indochina blocks. This study employed LA-ICP-MS zircon U-Pb geochronology and whole-rock geochemistry to investigate interbedded Triassic felsic volcanics. Felsic volcanic rocks in Youjiang Basin were erupted during the Early–Middle Triassic period (ca. 241~251 Ma) and are situated within the strata of the Beisi, Baifeng, and Banba Formations. These rocks in the Daqingshan area are rich in SiO2 (66.8~72.7 wt%), K2O (1.4~5.1 wt%), U (5.2~6.7 ppm), and Th (26~32.1 ppm). Conversely, they are depleted in MgO (0.6~1.4 wt%), TiO2 (0.5~0.9 wt%), Cr (13.1~19.7 ppm), Ni (7.3~10.1 ppm), and negative Eu anomalies (Eu/Eu* = 0.41~0.52), and they also exhibit negative zircon εHf(t) values. It is inferred that these Triassic felsic volcanics originated from the partial melting of crustal rocks in high-pressure environments such as the garnet stability zone within the deep mantle. These felsic volcanic rocks were likely generated during the transitional stage from island arc subduction to syn-collisional settings. Notably, the syn-collisional interaction between South China and Indochina blocks exerted significantly greater tectonic control on the Youjiang Basin than oceanic subduction. Full article
Show Figures

Figure 1

17 pages, 16145 KiB  
Article
Conversion of Levulinic Acid to γ-Valerolactone Using Hydrotalcite-Derived Cu-Ni Bimetallic Catalyst
by Shikang Zhao, Guohong Chen, Kaiqi Zheng, Shaojie Li, Jiaqi Xu, Fanan Wang, Xueping Liu and Rengui Weng
Processes 2025, 13(4), 1110; https://doi.org/10.3390/pr13041110 - 7 Apr 2025
Viewed by 608
Abstract
γ-Valerolactone (GVL) is a promising bio-based platform molecule with significant potential for energy applications. The production of GVL via biomass-based levulinic acid (LA) is an important reaction. To enhance the conversion and selectivity of non-precious-metal catalysts in the LA-to-GVL process and to better [...] Read more.
γ-Valerolactone (GVL) is a promising bio-based platform molecule with significant potential for energy applications. The production of GVL via biomass-based levulinic acid (LA) is an important reaction. To enhance the conversion and selectivity of non-precious-metal catalysts in the LA-to-GVL process and to better understand the key factors influencing this conversion, we conducted a series of experiments. In this study, supported Cu-Ni bimetallic catalysts (Cu-Ni2/Al2O3) were prepared using layered double hydroxides (LDHs) as a precursor. Compared with Cu-Ni catalysts synthesized via the conventional impregnation method, the Cu-Ni2/Al2O3 catalysts exhibit higher catalytic activity and stability. The results demonstrated that efficient conversion was achieved with isopropanol as the hydrogen donor solvent, a reaction temperature of 180 °C, and a reaction time of 1 h. The yield of GVL reached nearly 90%, with a decrease of approximately only 6% after six consecutive cycles. The Cu-Ni2/Al2O3 catalyst proved to be effective for converting biomass-derived LA to GVL, offering a route that not only reduces production costs and environmental impact but also enables efficient biomass-to-energy conversion. Full article
(This article belongs to the Section Catalysis Enhanced Processes)
Show Figures

Graphical abstract

24 pages, 15632 KiB  
Article
Mineral Chemistry and Iron Isotope Characteristics of Magnetites in Pertek Fe-Skarn Deposit (Türkiye)
by Hatice Kara, Cihan Yalçın, Mehmet Ali Ertürk and Leyla Kalender
Minerals 2025, 15(4), 369; https://doi.org/10.3390/min15040369 - 1 Apr 2025
Cited by 2 | Viewed by 558
Abstract
This study investigates the mineral chemistry and iron isotope composition of the Pertek Fe-skarn deposit in the Eastern Taurides, Turkey, to elucidate skarn formation and ore genesis through chemical and isotopic parameters. The deposit consists of substantial and dispersed magnetite ores formed by [...] Read more.
This study investigates the mineral chemistry and iron isotope composition of the Pertek Fe-skarn deposit in the Eastern Taurides, Turkey, to elucidate skarn formation and ore genesis through chemical and isotopic parameters. The deposit consists of substantial and dispersed magnetite ores formed by the intrusion of a dioritic suite into marbles. Mineral assemblages, including hematite, goethite, andradite garnet, hedenbergite pyroxene, calcite, and quartz, exhibit compositional variations at different depths within the ore body. Magnetite is commonly associated with hematite, goethite, garnet, pyroxene, calcite, and quartz. Extensive LA–ICP–MS analysis of magnetite chemistry reveals elevated trace element concentrations of titanium (Ti), aluminum (Al), vanadium (V), and magnesium (Mg), distinguishing Pertek magnetite from low-temperature hydrothermal deposits. The enrichment of Ti (>300 ppm) and V (>200 ppm), along with the presence of Al and Mg, suggests formation from high-temperature hydrothermal fluids exceeding 300 °C. Discriminant diagrams, such as Al+Mn versus Ti+V, classify Pertek magnetite within the skarn deposit domain, affirming its medium- to high-temperature hydrothermal origin (200–500 °C), characteristic of skarn-type deposits. Magnetite thermometry calculations yield an average formation temperature of 414.53 °C. Geochemical classification diagrams, including Ni/(Cr+Mn) versus Ti+V and TiO2-Al2O3-MgO+MnO, further support the skarn-type genesis of the deposit, distinguishing Pertek magnetite from other iron oxide deposits. The Fe-skarn ore samples display low total REE concentrations, variable Eu anomalies, enrichment in LREEs, and depletion in HREEs, consistent with fluid–rock interactions in a magmatic–hydrothermal system. The δ56Fe values of magnetite range from 0.272‰ to 0.361‰, while the calculated δ56Fe_aq values (0.479‰ to 0.568‰) suggest a magmatic–hydrothermal origin. The δ57Fe values (0.419‰ to 0.530‰) and the calculated 103lnβ value of 0.006397 indicate re-equilibration of the magmatic–hydrothermal fluid during ore formation. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

Back to TopTop