Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (62)

Search Parameters:
Keywords = LOHCs

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 6029 KiB  
Article
Exploring Perhydro-Benzyltoluene Dehydrogenation Using Sulfur-Doped PtMo/Al2O3 Catalysts
by Kevin Alconada, Fatima Mariño, Ion Agirre and Victoria Laura Barrio
Catalysts 2025, 15(5), 485; https://doi.org/10.3390/catal15050485 - 16 May 2025
Viewed by 651
Abstract
This study investigates the dehydrogenation of perhydrobenzyltoluene, a Liquid Organic Hydrogen Carrier (LOHC), using sulfur-doped bimetallic PtMo/Al2O3 catalysts. Based on previous research that highlighted the superior performance of PtMo catalysts over monometallic Pt catalysts, this work focuses on minimizing byproduct [...] Read more.
This study investigates the dehydrogenation of perhydrobenzyltoluene, a Liquid Organic Hydrogen Carrier (LOHC), using sulfur-doped bimetallic PtMo/Al2O3 catalysts. Based on previous research that highlighted the superior performance of PtMo catalysts over monometallic Pt catalysts, this work focuses on minimizing byproduct formation, specifically methylfluorene, through sulfur doping. Catalysts with low platinum content (<0.3 wt.%) were synthesized using the wet impregnation method by varying sulfur concentrations to study their impact on catalytic activity. Characterization techniques, including CO–DRIFT and CO–TPD, revealed the role of sulfur in selectively blocking low-coordinated Pt sites, thus improving selectivity and maintaining high dispersion. Catalytic tests revealed that samples with ≥0.1 wt.% sulfur achieved up to a threefold reduction in methylfluorene formation compared to the unpromoted PtMo/Al2O3 sample, with a molar fraction below 2% at 240 min. In parallel, these samples reached a degree of dehydrogenation (DoD) above 85% within 240 min, demonstrating that improved selectivity can be achieved without compromising catalytic performance. Full article
(This article belongs to the Special Issue Catalysts for Energy Storage)
Show Figures

Graphical abstract

44 pages, 2201 KiB  
Review
Comparative Study of Hydrogen Storage and Metal Hydride Systems: Future Energy Storage Solutions
by Nesrin İlgin Beyazit
Processes 2025, 13(5), 1506; https://doi.org/10.3390/pr13051506 - 14 May 2025
Cited by 1 | Viewed by 2481
Abstract
Hydrogen is a key energy carrier, playing a vital role in sustainable energy systems. This review provides a comparative analysis of physical, chemical, and innovative hydrogen storage methods from technical, environmental, and economic perspectives. It has been identified that compressed and liquefied hydrogen [...] Read more.
Hydrogen is a key energy carrier, playing a vital role in sustainable energy systems. This review provides a comparative analysis of physical, chemical, and innovative hydrogen storage methods from technical, environmental, and economic perspectives. It has been identified that compressed and liquefied hydrogen are predominantly utilized in transportation applications, while chemical transport is mainly supported by liquid organic hydrogen carriers (LOHC) and ammonia-based systems. Although metal hydrides and nanomaterials offer high hydrogen storage capacities, they face limitations related to cost and thermal management. Furthermore, artificial intelligence (AI)- and machine learning (ML)-based optimization techniques are highlighted for their potential to enhance energy efficiency and improve system performance. In conclusion, for hydrogen storage systems to achieve broader applicability, it is recommended that integrated approaches be adopted—focusing on innovative material development, economic feasibility, and environmental sustainability. Full article
(This article belongs to the Special Issue Sustainable Hydrogen Technologies and Their Value Chains)
Show Figures

Figure 1

32 pages, 4374 KiB  
Review
Catalytic Aspects of Liquid Organic Hydrogen Carrier Technology
by Róbert Barthos, Ferenc Lónyi, Yuting Shi, Ágnes Szegedi, Anna Vikár, Hanna E. Solt and Gyula Novodárszki
Catalysts 2025, 15(5), 427; https://doi.org/10.3390/catal15050427 - 27 Apr 2025
Cited by 1 | Viewed by 1351
Abstract
The surge in photovoltaic (PV) power generation has made it increasingly difficult to integrate the intermittent PV industry into the power grid while maintaining grid stability. The solution is to use the seasonal surplus of PV electricity to produce “green” hydrogen through water [...] Read more.
The surge in photovoltaic (PV) power generation has made it increasingly difficult to integrate the intermittent PV industry into the power grid while maintaining grid stability. The solution is to use the seasonal surplus of PV electricity to produce “green” hydrogen through water electrolysis and then use the hydrogen as an energy source or as a reactant in chemical processes in the chemical industry to produce value-added products. However, the development of advanced hydrogen storage technologies to ensure the safe handling, transportation, and distribution of H2 is a major issue. The use of stable liquid organic hydrogen carriers (LOHCs) has emerged as a suitable technology for hydrogen storage. This review highlights prospective LOHC technologies based on reversible catalytic hydrogenation–dehydrogenation cycles of liquid organic molecules for hydrogen storage and release under mild temperature and pressure conditions. The state-of-the-art LOHC systems are critically reviewed, highlighting the most effective heterogeneous catalytic systems. Full article
(This article belongs to the Special Issue Sustainable Catalysis for Green Chemistry and Energy Transition)
Show Figures

Graphical abstract

26 pages, 3320 KiB  
Article
Techno-Economic Analysis of Hydrogen Transport via Truck Using Liquid Organic Hydrogen Carriers
by Carmine Cava, Gabriele Guglielmo Gagliardi, Enrica Piscolla and Domenico Borello
Processes 2025, 13(4), 1081; https://doi.org/10.3390/pr13041081 - 3 Apr 2025
Cited by 2 | Viewed by 1530
Abstract
This study presents a techno-economic analysis of hydrogen transportation via liquid organic hydrogen carriers by road, comparing this option with compressed hydrogen (350 bar) and liquefied hydrogen. The analysis includes the simulation of hydrogenation and dehydrogenation reactors for the dibenzyltoluene/perhydro-dibenzyltoluene system using ASPEN [...] Read more.
This study presents a techno-economic analysis of hydrogen transportation via liquid organic hydrogen carriers by road, comparing this option with compressed hydrogen (350 bar) and liquefied hydrogen. The analysis includes the simulation of hydrogenation and dehydrogenation reactors for the dibenzyltoluene/perhydro-dibenzyltoluene system using ASPEN Plus, along with a cost assessment of compression, liquefaction, and trucking. A sensitivity analysis is also carried out, evaluating hydrogen transport at varying daily demand levels (1, 2, and 4 t/d) and transport distances (50, 150, and 300 km), with varying electricity prices and capital expenditures for hydrogenation and dehydrogenation units. Results indicate that compressed hydrogen is the most cost-effective solution for short distances up to 150 km, with a levelized cost of transported hydrogen ranging from 1.10 to 1.61 EUR/kg. However, LOHC technology becomes more competitive at longer distances, with LCOTH values between 1.49 and 1.90 EUR/kg at 300 km across all demand levels. Liquefied hydrogen remains the least competitive option, reaching costs up to 5.35 EUR/kg, although it requires fewer annual trips due to higher trailer capacity. Notably, at 150 km, LOHC transport becomes more cost-effective than compressed hydrogen when electricity prices exceed 0.22 EUR/kWh or when the capital costs for hydrogenation and dehydrogenation units are minimized. From an environmental perspective, switching from compressed to liquid hydrogen carriers significantly reduces CO2 emissions—by 56% for LOHCs and 78% for liquid hydrogen—highlighting the potential of these technologies to support the decarbonization of hydrogen logistics. Full article
(This article belongs to the Special Issue Sustainable Hydrogen Production Processes)
Show Figures

Figure 1

10 pages, 1489 KiB  
Article
Pd Catalysts Based on C3N4-Modified Activated Carbon Derived from Biomass Residues for the Dehydrogenation of Formic Acid
by María Bernal-Vela, Miriam Navlani-García and Diego Cazorla-Amorós
Catalysts 2025, 15(4), 305; https://doi.org/10.3390/catal15040305 - 24 Mar 2025
Viewed by 532
Abstract
Formic acid has recently been considered one of the most promising liquid organic hydrogen carriers (LOHCs). Its decomposition to obtain H2 has been fruitfully investigated during recent years using catalysts of a very diverse nature. Most of these catalysts lack stability, so [...] Read more.
Formic acid has recently been considered one of the most promising liquid organic hydrogen carriers (LOHCs). Its decomposition to obtain H2 has been fruitfully investigated during recent years using catalysts of a very diverse nature. Most of these catalysts lack stability, so finding stable materials under reaction conditions is highly desirable but challenging. In the present study, catalysts based on Pd nanoparticles supported on C3N4-modified activated carbon derived from biomass residues were developed, characterized, and assessed in the decomposition of formic acid in the liquid phase. These catalysts were prepared using a straightforward method that allowed different nitrogen contents to be achieved in the support and avoided the ex situ reduction in the Pd precursor. The results of the catalytic tests indicated the positive role of incorporating C3N4, leading to catalysts that displayed much better performance than the C3N4-free counterpart. The incorporation of C3N4 resulted in catalysts with small and well-distributed Pd nanoparticles, leaching resistance and modified electronic properties of the Pd species. As a result, promising catalytic activity was observed in the developed materials. Pd/AC_C3N4(19) attained an initial TOF of 2893 h−1, and it preserved most of its catalytic activity for at least six consecutive reaction cycles, which is a remarkable characteristic of the developed catalytic system. Full article
(This article belongs to the Special Issue Carbon-Based Catalysts to Address Environmental Challenges)
Show Figures

Graphical abstract

10 pages, 5309 KiB  
Article
Photo-Induced Hydrogen Production from Formic Acid Using a Palladium Catalyst
by Tarek M. Abdel-Fattah, Erik Biehler, Michelle A. Smeaton, Thomas Gennett and Noemi Leick
Catalysts 2025, 15(3), 213; https://doi.org/10.3390/catal15030213 - 24 Feb 2025
Viewed by 965
Abstract
Liquid organic hydrogen carriers (LOHCs) are recognized as promising sustainable hydrogen (H2) carriers due to their high volumetric capacity and ability to store H2 at ambient conditions, eliminating the need for energy-intensive liquefaction or compression processes associated with H2 [...] Read more.
Liquid organic hydrogen carriers (LOHCs) are recognized as promising sustainable hydrogen (H2) carriers due to their high volumetric capacity and ability to store H2 at ambient conditions, eliminating the need for energy-intensive liquefaction or compression processes associated with H2 or ammonia gas. One of the main current drawbacks, however, is LOHCs’ high energy demand for H2 release. This work presents the photo-induced liberation of H2 from formic acid (FA) as a liquid H2 carrier, using visible light and well-established 5 wt% palladium nanoparticles supported over carbon (Pd/C). We show that low-power light-emitting diodes (LEDs) produced higher gas flow than their thermal baseline (35 °C), with 27.2 mL/min and 7.72 mL/min, respectively. Further, the rate of gas evolved with light intensity, catalyst loading, and the concentration of FA. Light-induced dehydrogenation shows similar deactivation as the known thermal mechanisms, such as the decreased Pd2+/Pd0 ratio and Pd nanoparticle agglomeration. Hence, these observations suggest a photothermal mechanism, whereby the LED provides heat efficiently absorbed by the Pd/C catalyst and enhanced by Pd’s ability to absorb light, thereby driving the FA dehydrogenation reaction at ambient conditions. Full article
(This article belongs to the Special Issue Novel Catalytic Materials for Hydrogen Storage and Generation)
Show Figures

Graphical abstract

41 pages, 1629 KiB  
Review
Production and Storage of Hydrogen from Biomass and Other Sources: Technologies and Policies
by Georgios Giakoumakis and Dimitrios Sidiras
Energies 2025, 18(3), 650; https://doi.org/10.3390/en18030650 - 30 Jan 2025
Cited by 2 | Viewed by 2989
Abstract
Hydrogen has emerged as a critical energy carrier for achieving global decarbonization and supporting a sustainable energy future. This review explores key advancements in hydrogen production technologies, including electrolysis, biomass gasification, and thermochemical processes, alongside innovations in storage methods like metal hydrides and [...] Read more.
Hydrogen has emerged as a critical energy carrier for achieving global decarbonization and supporting a sustainable energy future. This review explores key advancements in hydrogen production technologies, including electrolysis, biomass gasification, and thermochemical processes, alongside innovations in storage methods like metal hydrides and liquid organic hydrogen carriers (LOHCs). Despite its promise, challenges such as high production costs, scalability issues, and safety concerns persist. Biomass gasification stands out for its dual benefits of waste management and carbon neutrality yet hurdles like feedstock variability and energy efficiency need further attention. This review also identifies opportunities for improvement, such as developing cost-effective catalysts and hybrid storage systems, while emphasizing future research on improving storage efficiency and tackling production bottlenecks. By addressing these challenges, hydrogen can play a central role in the global transition to cleaner energy systems. Full article
(This article belongs to the Section A4: Bio-Energy)
Show Figures

Figure 1

23 pages, 3935 KiB  
Article
Metal Foam as Surface-Extended Catalyst Support Structure for Process Intensification in the Dehydrogenation of Perhydro-Dibenzyltoluene on a Pt/Al2O3 Catalyst
by Kyatsinge Cedric Musavuli, Phillimon Modisha, Raymond Cecil Everson, Alexander Malakhov and Dmitri Bessarabov
Catalysts 2025, 15(1), 44; https://doi.org/10.3390/catal15010044 - 6 Jan 2025
Cited by 2 | Viewed by 1094
Abstract
Dibenzyltoluene/perhydro-dibenzyltoluene (H0DBT/H18DBT) is considered a promising liquid organic hydrogen carrier (LOHC) pair for the storage and transportation of green hydrogen (H2). However, at the point of use, the catalytic dehydrogenation of H18DBT is still limited [...] Read more.
Dibenzyltoluene/perhydro-dibenzyltoluene (H0DBT/H18DBT) is considered a promising liquid organic hydrogen carrier (LOHC) pair for the storage and transportation of green hydrogen (H2). However, at the point of use, the catalytic dehydrogenation of H18DBT is still limited by mass transport limitations. To address this issue, the dehydrogenation of H18DBT was successfully conducted on Pt/Al2O3-coated foams in both an unstirred tank reactor and a fixed-bed reactor (FBR). A performance comparison between coated foams and pellets in the tank reactor revealed that H2 productivities were 12–59% higher in the foam-based reactor than in the pellet-based reactor. Since the textural properties of the foam-supported and pellet-based catalysts were similar, the higher degree of dehydrogenation (DoD) and H2 productivity achieved by the former were attributed to the geometric properties of the foam structure. Long-term tests performed in the FBR demonstrated the ability of the coated foams to maintain steady activity for >16 h on stream. However, the single-pass DoDs achieved were 34–38%. By recycling the partially dehydrogenated products three times into the FBR, the DoD improved to 63%. The results of this study demonstrated the capabilities of the coated foams in the process intensification of LOHC dehydrogenation reactors. Full article
(This article belongs to the Section Catalysis for Sustainable Energy)
Show Figures

Figure 1

17 pages, 3430 KiB  
Systematic Review
Liquid Organic Hydrogen Carrier Concepts and Catalysts for Hydrogenation and Dehydrogenation Reactions
by Gerardo Cabrera, Malka Mora, Juan P. Gil-Burgos, Renso Visbal, Fiderman Machuca-Martínez and Edgar Mosquera-Vargas
Molecules 2024, 29(20), 4938; https://doi.org/10.3390/molecules29204938 - 18 Oct 2024
Cited by 6 | Viewed by 4328
Abstract
Background: The issue of renewable energy (RE) source intermittency, such as wind and solar, along with the geographically uneven distribution of the global RE potential, makes it imperative to establish an energy transport medium to balance the energy demand and supply areas. A [...] Read more.
Background: The issue of renewable energy (RE) source intermittency, such as wind and solar, along with the geographically uneven distribution of the global RE potential, makes it imperative to establish an energy transport medium to balance the energy demand and supply areas. A promising energy vector to address this situation is hydrogen, which is considered a clean energy carrier for various mobile and portable applications. Unfortunately, at standard pressure and temperature, its energy content per volume is very low (0.01 kJ/L). This necessitates alternative storage technologies to achieve reasonable capacities and enable economically viable long-distance transportation. Among the hydrogen storage technologies using chemical methods, liquid organic hydrogen carrier (LOHC) systems are considered a promising solution. They can be easily managed under ambient conditions, the H2 storage/release processes are carbon-free, and the carrier liquid is reusable. However, the evolution of the proposals from the carrier liquid type and catalyst elemental composition point of view is scarcely studied, considering that both are critical in the performance of the system (operational parameters, kinetic of the reactions, gravimetric hydrogen content, and others) and impact in the final cost of the technology deployed. The latter is due to the use of the Pt group elements (PGEs) in the catalyst that, for example, have a high demand in the hydrogen production sector, particularly for polymer electrolyte membrane (PEM) water electrolysis. With that in mind, our objective was to examine the evolution and the focus of the research in recent years related to proposals of LOHCs and catalysts for hydrogenation and dehydrogenation reactions in LOHC systems which can be useful in defining routes/strategies for new participants interested in becoming involved in the development of this technology. Data sources: For this systematic review, we searched the SCOPUS database and forward and backward citations for studies published in the database between January 2011 and December 2022. Eligibility criteria: The criteria include articles which assessed or studied the effect of the type of catalyst, type of organic liquid, reactor design(s)/configuration(s), and modification of the reactor operational parameters, among others, over the performance of the LOHC system (de/hydrogenation reaction(s)). Data extraction and analysis: The relevant data from each reviewed study were collected and organized into a pre-designed table on an Excel spreadsheet, categorized by reference, year, carrier organic liquid, reaction (hydrogenation and/or dehydrogenation), investigated catalyst, and primary catalyst element. For processing the data obtained from the selected scientific publications, the data analysis software Orbit Intellixir was employed. Results: For the study, 233 studies were included. For the liquid carrier side, benzyltoluene and carbazole dominate the research strategies. Meanwhile, platinum (Pt) and palladium (Pd) are the most employed catalysts for dehydrogenation reactions, while ruthenium (Ru) is preferred for hydrogenation reactions. Conclusions: From the investigated liquid carrier, those based on benzyltoluene and carbazole together account for over 50% of the total scientific publications. Proposals based on indole, biphenyl, cyclohexane, and cyclohexyl could be considered to be emerging within the time considered in this review, and, therefore, should be monitored for their evolution. A great activity was detected in the development of catalysts oriented toward the dehydrogenation reaction, because this reaction requires high temperatures and presents slow H2 release kinetics, conditioning the success of the implementation of the technology. Finally, from the perspective of the catalyst composition (monometallic and/or bimetallic), it was identified that, for the dehydrogenation reaction, the most used elements are platinum (Pt) and palladium (Pd), while, for the hydrogenation reaction, ruthenium (Ru) widely leads its use in the different catalyst designs. Therefore, the near-term initiatives driving progress in this field are expected to focus on the development of new or improved catalysts for the dehydrogenation reaction of organic liquids based on benzyltoluene and carbazole. Full article
Show Figures

Figure 1

25 pages, 23425 KiB  
Article
Liquid Organic Hydrogen Carriers: Hydrogenation Thermodynamics of Aromatic Esters
by Sergey P. Verevkin, Artemiy A. Samarov, Sergey V. Vostrikov and Oleg S. Rakhmanin
Hydrogen 2024, 5(3), 644-668; https://doi.org/10.3390/hydrogen5030034 - 23 Sep 2024
Cited by 2 | Viewed by 1910
Abstract
Aromatic esters such as phenyl acetates are of interest as promising liquid organic hydrogen carriers (LOHCs) due to the presence of double bonds. However, the key factor for the development of green hydrogen fuel is the production of LOHCs from renewable sources. Since [...] Read more.
Aromatic esters such as phenyl acetates are of interest as promising liquid organic hydrogen carriers (LOHCs) due to the presence of double bonds. However, the key factor for the development of green hydrogen fuel is the production of LOHCs from renewable sources. Since the synthesis and isolation of such esters is a complex task, understanding the relationship between the chemical structures of aromatic esters and their thermodynamic properties is of great importance for their further practical use as LOHCs. Obtaining reliable thermodynamic and thermochemical properties of phenyl and benzyl phenyl acetates formed the basis of this work. Vapour pressures, enthalpies of vaporisation, and enthalpies of formation were systematically studied. An approach based on the structure–property correlation was used to confirm these quantities. Additionally, the high-level quantum-chemical method G4 was used to estimate the enthalpy of formation in the gas phase. The final stage was the assessment of the energetics of chemical reactions based on aromatic esters and their partially and fully hydrogenated analogues. Full article
Show Figures

Figure 1

16 pages, 6081 KiB  
Article
Feasibility Study on Production of Slush Hydrogen Based on Liquid and Solid Phase for Long Term Storage
by Sungho Park, Changhyeong Lee, Sohmyung Chung, Seonghyeon Hwang, Jongwoong Lim and DaeJun Chang
Energies 2024, 17(17), 4415; https://doi.org/10.3390/en17174415 - 3 Sep 2024
Cited by 2 | Viewed by 1902
Abstract
To achieve net-zero objectives, the expansion of renewable energy sources is anticipated to be accompanied by an increased use of carbon-free fuels, such as hydrogen. Internationally, there are proposals for transporting hydrogen by synthesizing it into carriers like ammonia or Liquid Organic Hydrogen [...] Read more.
To achieve net-zero objectives, the expansion of renewable energy sources is anticipated to be accompanied by an increased use of carbon-free fuels, such as hydrogen. Internationally, there are proposals for transporting hydrogen by synthesizing it into carriers like ammonia or Liquid Organic Hydrogen Carriers (LOHCs). However, considering the energy consumption required for hydrogenation and dehydrogenation processes and the need for high-purity hydrogen production, the development of liquid hydrogen transportation technologies is becoming increasingly important. Liquid hydrogen, with a density approximately one-sixth that of liquid natural gas and a boiling point roughly 90 K lower, poses significant challenges in suppressing and managing boil-off gas during transportation. Slush hydrogen, a mixture of liquid and solid phases, offers potential benefits. with an approximate 15% increase in density and an 18% increase in thermal capacity compared to liquid hydrogen. The latent heat of fusion of solid hydrogen effectively suppresses boil-off gas (BOG), and the increased density can reduce transportation costs. This study experimentally validated the long-duration storage and transportation concept of slush hydrogen by adapting NASA’s (National Aeronautics and Space Administration) proposed IRAS (Integrated Refrigeration and Storage) technology for compact and mobile tanks. Slush hydrogen was successfully produced by reaching the triple point of hydrogen, resulting in a composition of 47% solid and 53% liquid, with a density of approximately 80.9 kg/m3. Most importantly, methodologies were presented to observe and measure whether the hydrogen was indeed in the slush state and to determine its density. Additionally, CFD (Computational Fluid Dynamics) analysis was performed using solid hydrogen properties, and the results were compared with experimental values. Notably, this analytical technique can be utilized in designing large-capacity tanks for storing slush hydrogen. Full article
(This article belongs to the Section A5: Hydrogen Energy)
Show Figures

Figure 1

23 pages, 18172 KiB  
Article
Opportunities and Challenges of Hydrogen Ports: An Empirical Study in Australia and Japan
by Peggy Shu-Ling Chen, Hongjun Fan, Hossein Enshaei, Wei Zhang, Wenming Shi, Nagi Abdussamie, Takashi Miwa, Zhuohua Qu and Zaili Yang
Hydrogen 2024, 5(3), 436-458; https://doi.org/10.3390/hydrogen5030025 - 11 Jul 2024
Cited by 9 | Viewed by 3459
Abstract
This paper investigated the opportunities and challenges of integrating ports into hydrogen (H2) supply chains in the context of Australia and Japan because they are leading countries in the field and are potential leaders in the upcoming large-scale H2 trade. [...] Read more.
This paper investigated the opportunities and challenges of integrating ports into hydrogen (H2) supply chains in the context of Australia and Japan because they are leading countries in the field and are potential leaders in the upcoming large-scale H2 trade. Qualitative interviews were conducted in the two countries to identify opportunities for H2 ports, necessary infrastructure and facilities, key factors for operations, and challenges associated with the ports’ development, followed by an online survey investigating the readiness levels of H2 export and import ports. The findings reveal that there are significant opportunities for both countries’ H2 ports and their respective regions, which encompass business transition processes and decarbonisation. However, the ports face challenges in areas including infrastructure, training, standards, and social licence, and the sufficiency and readiness levels of port infrastructure and other critical factors are low. Recommendations were proposed to address the challenges and barriers encountered by H2 ports. To optimise logistics operations within H2 ports and facilitate effective integration of H2 applications, this paper developed a user-oriented working process framework to provide guidance to ports seeking to engage in the H2 economy. Its findings and recommendations contribute to filling the existing knowledge gap pertaining to H2 ports. Full article
Show Figures

Figure 1

15 pages, 5659 KiB  
Article
Development of Dehydrogenation System for Liquid Organic Hydrogen Carrier with Enhanced Reaction Rate
by Juhan Lee, Muhammad Usman, Sanghyoun Park, Sangyong Lee and Myung Ho Song
Appl. Sci. 2024, 14(13), 5803; https://doi.org/10.3390/app14135803 - 3 Jul 2024
Viewed by 2336
Abstract
Owing to the massive expansion and intermittent nature of renewable power, green hydrogen production, storage, and transportation technologies with improved economic returns need to be developed. Moreover, the slowness of the dehydrogenation reaction is a primary barrier to the commercialization of liquid organic [...] Read more.
Owing to the massive expansion and intermittent nature of renewable power, green hydrogen production, storage, and transportation technologies with improved economic returns need to be developed. Moreover, the slowness of the dehydrogenation reaction is a primary barrier to the commercialization of liquid organic hydrogen carrier (LOHC) technology. The present study focused on increasing the speed of dehydrogenation, resulting in the proposal of a triple-loop dehydrogenation system comprising reaction, heating, and chilling loops. The reactor has a rotating cage containing a packed bed of catalyst pellets, which is designed to enhance both heat and mass transfer by helping to detach precipitated hydrogen bubbles from the catalyst surface. In addition, the centrifugal force aids in isolating the gas phase from the LOHC liquid. A dehydrogenation experiment was conducted using the reaction and chilling loops, which revealed that the average hydrogen production rate during the first hour was 52.6 LPM (liter per minute) from 26.3 L of perhydro-dibenzyl-toluene with 1.5 kg of 0.5 wt% Pt/Al2O3 catalyst. This was approximately 48% more than the value predicted with the reaction kinetics measured with a small-scale plug flow dehydrogenation reactor with less than 1.0 g of 5.0 wt% Pt/Al2O3 catalyst. The concept, construction methods, and results of the preliminary gas infiltration, flow visualization, and reactor pumping experiments are also described in this paper. Full article
Show Figures

Figure 1

19 pages, 1012 KiB  
Article
Does the Oxygen Functionality Really Improve the Thermodynamics of Reversible Hydrogen Storage with Liquid Organic Hydrogen Carriers?
by Sergey P. Verevkin, Artemiy A. Samarov and Sergey V. Vostrikov
Oxygen 2024, 4(3), 266-284; https://doi.org/10.3390/oxygen4030015 - 2 Jul 2024
Cited by 4 | Viewed by 1337
Abstract
Liquid organic hydrogen carriers (LOHCs) are aromatic molecules that are being considered for the safe storage and release of hydrogen. The thermodynamic properties of a range of aromatic ethers were investigated using various experimental and theoretical methods to assess their suitability as LOHC [...] Read more.
Liquid organic hydrogen carriers (LOHCs) are aromatic molecules that are being considered for the safe storage and release of hydrogen. The thermodynamic properties of a range of aromatic ethers were investigated using various experimental and theoretical methods to assess their suitability as LOHC materials. The absolute vapour pressures were measured for benzyl phenyl ether, dibenzyl ether and 2-methoxynaphthalene using the transpiration method. The standard molar enthalpies and entropies of vaporisation/sublimation were derived from the temperature dependence of the vapour pressures. The combustion energies of benzyl phenyl ether and dibenzyl ether were measured using high-precision combustion calorimetry, and their standard molar enthalpies of formation were derived from these data. High-level quantum chemical calculations were used to calculate the standard molar enthalpies of formation in the gas phase for benzyl phenyl ether, dibenzyl ether and 2-methoxynaphthalene. The latter values agreed very well with the experimental results obtained in this work. The thermodynamic properties of the hydrogenation/dehydrogenation reactions in liquid phase in LOHC systems based on methoxy–benzene, diphenyl ether, benzyl phenyl ether, dibenzyl ether and 2-methoxynaphthalene were derived and compared with the data for similarly structured hydrogen carriers based on benzene, diphenylmethane, 1,2-diphenylethane, 1,3-diphenylpropane and naphthalene. The influence of the oxygen functionality on the thermodynamic properties of the hydrogenation/dehydrogenation reactions was evaluated. Full article
Show Figures

Figure 1

25 pages, 1941 KiB  
Article
Risk-Based Fault Detection Using Bayesian Networks Based on Failure Mode and Effect Analysis
by Bálint Levente Tarcsay, Ágnes Bárkányi, Sándor Németh, Tibor Chován, László Lovas and Attila Egedy
Sensors 2024, 24(11), 3511; https://doi.org/10.3390/s24113511 - 29 May 2024
Cited by 5 | Viewed by 1717
Abstract
In this article, the authors focus on the introduction of a hybrid method for risk-based fault detection (FD) using dynamic principal component analysis (DPCA) and failure method and effect analysis (FMEA) based Bayesian networks (BNs). The FD problem has garnered great interest in [...] Read more.
In this article, the authors focus on the introduction of a hybrid method for risk-based fault detection (FD) using dynamic principal component analysis (DPCA) and failure method and effect analysis (FMEA) based Bayesian networks (BNs). The FD problem has garnered great interest in industrial application, yet methods for integrating process risk into the detection procedure are still scarce. It is, however, critical to assess the risk each possible process fault holds to differentiate between non-safety-critical and safety-critical abnormalities and thus minimize alarm rates. The proposed method utilizes a BN established through FMEA analysis of the supervised process and the results of dynamical principal component analysis to estimate a modified risk priority number (RPN) of different process states. The RPN is used parallel to the FD procedure, incorporating the results of both to differentiate between process abnormalities and highlight critical issues. The method is showcased using an industrial benchmark problem as well as the model of a reactor utilized in the emerging liquid organic hydrogen carrier (LOHC) technology. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

Back to TopTop