Pd Catalysts Based on C3N4-Modified Activated Carbon Derived from Biomass Residues for the Dehydrogenation of Formic Acid
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Synthesis of Pd/AC_C3N4 Catalysts
3.2. Characterization of the Materials
3.3. Catalytic Tests
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Navlani-García, M.; Salinas-Torres, D.; Cazorla-Amorós, D. Hydrogen Production from Formic Acid Attained by Bimetallic Heterogeneous PdAg Catalytic Systems. Energies 2019, 12, 4027. [Google Scholar] [CrossRef]
- Sordakis, K.; Tang, C.; Vogt, L.K.; Junge, H.; Dyson, P.J.; Beller, M.; Laurenczy, G. Homogeneous Catalysis for Sustainable Hydrogen Storage in Formic Acid and Alcohols. Chem. Rev. 2018, 118, 372–433. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.; He, P.; Wu, J.; Chen, N.; Pan, C.; Shi, E.; Jia, H.; Hu, T.; He, K.; Cai, Q.; et al. Reviews on Homogeneous and Heterogeneous Catalysts for Dehydrogenation and Recycling of Formic Acid: Progress and Perspectives. Energy Fuels 2023, 37, 17075–17093. [Google Scholar] [CrossRef]
- Navlani-García, M.; Mori, K.; Kuwahara, Y.; Yamashita, H. Recent Strategies Targeting Efficient Hydrogen Production from Chemical Hydrogen Storage Materials over Carbon-Supported Catalysts. NPG Asia Mater. 2018, 10, 277–292. [Google Scholar] [CrossRef]
- Salinas-Torres, D.; Navlani-García, M.; Mori, K.; Kuwahara, Y.; Cazorla-Amorós, D.; Yamashita, H. Recent Advances in Catalytic Hydrogen Generation from Formic Acid Using Carbon-Based Catalysts. In Advanced Nanomaterials and Their Applications in Renewable Energy, 2nd ed.; Louise-Liu, J., Yan, T., Bashir, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 273–301. [Google Scholar] [CrossRef]
- Martin, C.; Quintanilla, A.; Vega, G.; Casas, J.A. Formic Acid-to-Hydrogen on Pd/AC Catalysts: Kinetic Study with Catalytic Deactivation. Appl. Catal. B 2022, 317, 121802. [Google Scholar] [CrossRef]
- Ortega-Murcia, A.; Navlani-García, M.; Morallón, E.; Cazorla-Amorós, D. MWCNT-Supported PVP-Capped Pd Nanoparticles as Efficient Catalysts for the Dehydrogenation of Formic Acid. Front. Chem. 2020, 8, 359. [Google Scholar] [CrossRef]
- Navlani-García, M.; Mori, K.; Nozaki, A.; Kuwahara, Y.; Yamashita, H. Screening of Carbon-Supported PdAg Nanoparticles in the Hydrogen Production from Formic Acid. Ind. Eng. Chem. Res. 2016, 55, 7612–7620. [Google Scholar] [CrossRef]
- Navlani-García, M.; Mori, K.; Nozaki, A.; Kuwahara, Y.; Yamashita, H. Investigation of Size Sensitivity in the Hydrogen Production from Formic Acid over Carbon-Supported Pd Nanoparticles. Chem. Sel. 2016, 1, 1879–1886. [Google Scholar] [CrossRef]
- Poldorn, P.; Wongnongwa, Y.; Zhang, R.-Q.; Nutanong, S.; Tao, L.; Rungrotmongkol, T.; Jungsuttiwong, S. Mechanistic Insights into Hydrogen Production from Formic Acid Catalyzed by Pd@N-Doped Graphene: The Role of the Nitrogen Dopant. Int. J. Hydrogen Energy 2023, 48, 16341–16357. [Google Scholar] [CrossRef]
- Kim, Y.; Kim, D.H. Hydrogen Production from Formic Acid Dehydrogenation over a Pd Supported on N-Doped Mesoporous Carbon Catalyst: A Role of Nitrogen Dopant. Appl. Catal. A Gen. 2020, 608, 117887. [Google Scholar] [CrossRef]
- Bi, Q.-Y.; Lin, J.-D.; Liu, Y.-M.; He, H.-Y.; Huang, F.-Q.; Cao, Y. Dehydrogenation of Formic Acid at Room Temperature: Boosting Palladium Nanoparticle Efficiency by Coupling with Pyridinic-Nitrogen-Doped Carbon. Angew. Chem. Inter. Ed. 2016, 55, 11849–11853. [Google Scholar] [CrossRef]
- Navlani-García, M.; Salinas-Torres, D.; Mori, K.; Léonard, A.F.; Kuwahara, Y.; Job, N.; Yamashita, H. Insights on Palladium Decorated Nitrogen-Doped Carbon Xerogels for the Hydrogen Production from Formic Acid. Catal. Today 2019, 324, 90–96. [Google Scholar] [CrossRef]
- Salinas-Torres, D.; Navlani-García, M.; Mori, K.; Kuwahara, Y.; Yamashita, H. Nitrogen-Doped Carbon Materials as a Promising Platform toward the Efficient Catalysis for Hydrogen Generation. Appl. Catal. Gen. A 2019, 571, 25–41. [Google Scholar] [CrossRef]
- Navlani-García, M.; Salinas-Torres, D.; Vázquez-Álvarez, F.D.; Cazorla-Amorós, D. Formic Acid Dehydrogenation Attained by Pd Nanoparticles-Based Catalysts Supported on MWCNT-C3N4 Composites. Catal. Today 2022, 397–399, 428–435. [Google Scholar] [CrossRef]
- Jeon, H.; Chung, Y.-M. Hydrogen Production from Formic Acid Dehydrogenation over Pd/C Catalysts: Effect of Metal and Support Properties on the Catalytic Performance. Appl. Catal. B 2017, 210, 212–222. [Google Scholar] [CrossRef]
- Chen, Z.; Stein, C.A.M.; Qu, R.; Rockstroh, N.; Bartling, S.; Weiß, J.; Kubis, C.; Junge, K.; Junge, H.; Beller, M. Designing a Robust Palladium Catalyst for Formic Acid Dehydrogenation. ACS Catal. 2023, 13, 4835–4841. [Google Scholar] [CrossRef]
- Li, Z.; Xu, Q. Metal-Nanoparticle-Catalyzed Hydrogen Generation from Formic Acid. Acc. Chem. Res. 2017, 50, 1449–1458. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.; Zhao, Y.; Liu, J.; Chen, G.; Yan, B.; Cheng, Z.; Qi, J.; Wang, L. Pd Nanoparticles on Functionalized Carbon Nanotubes for Enhanced Formic Acid Hydrogen Production under Ambient Conditions. Surfaces Interfaces 2024, 51, 104833. [Google Scholar] [CrossRef]
- Deng, M.; Yang, A.; Ma, J.; Yang, C.; Cao, T.; Yang, S.; Yao, M.; Liu, F.; Wang, X.; Cao, J. Enhanced Catalytic Performance of N-Doped Carbon Sphere-Supported Pd Nanoparticles by Secondary Nitrogen Source Regulation for Formic Acid Dehydrogenation. ACS Appl. Mater. Interfaces 2022, 14, 18550–18560. [Google Scholar] [CrossRef]
- Lv, Q.; Meng, Q.; Liu, W.; Sun, N.; Jiang, K.; Ma, L.; Peng, Z.; Cai, W.; Liu, C.; Ge, J.; et al. Pd–PdO Interface as Active Site for HCOOH Selective Dehydrogenation at Ambient Condition. J. Phys. Chem. C 2018, 122, 2081–2088. [Google Scholar] [CrossRef]
- Chaparro-Garnica, J.; Navlani-García, M.; Salinas-Torres, D.; Morallón, E.; Cazorla-Amorós, D. Highly Stable N-Doped Carbon-Supported Pd-Based Catalysts Prepared from Biomass Waste for H2 Production from Formic Acid. ACS Sustain. Chem. Eng. 2020, 8, 15030–15043. [Google Scholar] [CrossRef]
- Xu, L.; Yao, F.; Luo, J.; Wan, C.; Ye, M.; Cui, P.; An, Y. Facile Synthesis of Amine-Functionalized SBA-15-Supported Bimetallic Au-Pd Nanoparticles as an Efficient Catalyst for Hydrogen Generation from Formic Acid. RSC Adv. 2017, 7, 4746–4752. [Google Scholar] [CrossRef]
- Li, S.-J.; Zhou, Y.-T.; Kang, X.; Liu, D.-X.; Gu, L.; Zhang, Q.-H.; Yan, J.-M.; Jiang, Q. A Simple and Effective Principle for a Rational Design of Heterogeneous Catalysts for Dehydrogenation of Formic Acid. Adv. Mater. 2019, 31, 1806781. [Google Scholar] [CrossRef]
- Abdullah, M.; Aziz, I.; Noshear Arshad, S.; Zaheer, M. Development of Functionalized Carbon Nanofibers with Integrated Palladium Nanoparticles for Catalytic Hydrogen Generation. Results Chem. 2022, 4, 100554. [Google Scholar] [CrossRef]
- Bulushev, D.A.; Zacharska, M.; Shlyakhova, E.V.; Chuvilin, A.L.; Guo, Y.; Beloshapkin, S.; Okotrub, A.V.; Bulusheva, L.G. Single Isolated Pd2+ Cations Supported on N-Doped Carbon as Active Sites for Hydrogen Production from Formic Acid Decomposition. ACS Catal. 2016, 6, 681–691. [Google Scholar] [CrossRef]
- Mori, K.; Dojo, M.; Yamashita, H. Pd and Pd–Ag Nanoparticles within a Macroreticular Basic Resin: An Efficient Catalyst for Hydrogen Production from Formic Acid Decomposition. ACS Catal. 2013, 3, 1114–1119. [Google Scholar] [CrossRef]
- Riquelme-García, P.; Chaparro-Garnica, J.; Navlani-García, M.; Cazorla-Amorós, D. Exploring the Effects Behind the Outstanding Catalytic Performance of PdAg Catalysts Supported on Almond Shell-Derived Activated Carbon Towards the Dehydrogenation of Formic Acid. ChemCatChem 2024, 16, e202400160. [Google Scholar] [CrossRef]
- Chaparro-Garnica, J.; Navlani-García, M.; Salinas-Torres, D.; Berenguer-Murcia, Á.; Morallón, E.; Cazorla-Amorós, D. Efficient Production of Hydrogen from a Valuable CO2-Derived Molecule: Formic Acid Dehydrogenation Boosted by Biomass Waste-Derived Catalysts. Fuel 2022, 320, 123900. [Google Scholar] [CrossRef]
- Wu, Y.; Wen, M.; Navlani-García, M.; Kuwahara, Y.; Mori, K.; Yamashita, H. Palladium Nanoparticles Supported on Titanium-Doped Graphitic Carbon Nitride for Formic Acid Dehydrogenation. Chem. Asian J. 2017, 12, 860–867. [Google Scholar] [CrossRef]
- Navlani-García, M.; Verma, P.; Kuwahara, Y.; Kamegawa, T.; Mori, K.; Yamashita, H. Visible-Light-Enhanced Catalytic Activity of Ru Nanoparticles over Carbon Modified g-C3N4. J. Photochem. Photobiol. A Chem. 2018, 358, 327–333. [Google Scholar] [CrossRef]
Support | SBET (m2/g) | wt % N | wt % C3N4 |
---|---|---|---|
AC | 1675 | ||
AC_C3N4(3) | 1600 | 1.6 | 2.6 |
AC_C3N4(10) | 1235 | 6.1 | 10.0 |
AC_C3N4(19) | 1050 | 11.3 | 18.6 |
AC_C3N4(22) | 700 | 13.4 | 22.0 |
g-C3N4 | 15 | 60.8 |
Samples | Fresh (wt % Pd) | Used (wt % Pd) |
---|---|---|
Pd/AC | 0.9 | 0.7 |
Pd/C3N4 | 0.3 | 0.3 |
Pd/AC_C3N4(3) | 0.8 | 0.7 |
Pd/AC_C3N4(10) | 0.7 | 0.7 |
Pd/AC_C3N4(19) | 0.7 | 0.6 |
Pd/AC_C3N4(22) | 0.7 | 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bernal-Vela, M.; Navlani-García, M.; Cazorla-Amorós, D. Pd Catalysts Based on C3N4-Modified Activated Carbon Derived from Biomass Residues for the Dehydrogenation of Formic Acid. Catalysts 2025, 15, 305. https://doi.org/10.3390/catal15040305
Bernal-Vela M, Navlani-García M, Cazorla-Amorós D. Pd Catalysts Based on C3N4-Modified Activated Carbon Derived from Biomass Residues for the Dehydrogenation of Formic Acid. Catalysts. 2025; 15(4):305. https://doi.org/10.3390/catal15040305
Chicago/Turabian StyleBernal-Vela, María, Miriam Navlani-García, and Diego Cazorla-Amorós. 2025. "Pd Catalysts Based on C3N4-Modified Activated Carbon Derived from Biomass Residues for the Dehydrogenation of Formic Acid" Catalysts 15, no. 4: 305. https://doi.org/10.3390/catal15040305
APA StyleBernal-Vela, M., Navlani-García, M., & Cazorla-Amorós, D. (2025). Pd Catalysts Based on C3N4-Modified Activated Carbon Derived from Biomass Residues for the Dehydrogenation of Formic Acid. Catalysts, 15(4), 305. https://doi.org/10.3390/catal15040305