Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (53)

Search Parameters:
Keywords = LNG-fueled vessel

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2549 KiB  
Article
An Engine Load Monitoring Approach for Quantifying Yearly Methane Slip Emissions from an LNG-Powered RoPax Vessel
by Benoit Sagot, Raphael Defossez, Ridha Mahi, Audrey Villot and Aurélie Joubert
J. Mar. Sci. Eng. 2025, 13(7), 1379; https://doi.org/10.3390/jmse13071379 - 21 Jul 2025
Viewed by 507
Abstract
Liquefied natural gas (LNG) is increasingly used as a marine fuel due to its capacity to significantly reduce emissions of particulate matter, sulfur oxides (SOx), and nitrogen oxides (NOx), compared to conventional fuels. In addition, LNG combustion produces less [...] Read more.
Liquefied natural gas (LNG) is increasingly used as a marine fuel due to its capacity to significantly reduce emissions of particulate matter, sulfur oxides (SOx), and nitrogen oxides (NOx), compared to conventional fuels. In addition, LNG combustion produces less carbon dioxide (CO2) than conventional marine fuels, and the use of non-fossil LNG offers further potential for reducing greenhouse gas emissions. However, this benefit can be partially offset by methane slip—the release of unburned methane in engine exhaust—which has a much higher global warming potential than CO2. This study presents an experimental evaluation of methane emissions from a RoPax vessel powered by low-pressure dual-fuel four-stroke engines with a direct mechanical propulsion system. Methane slip was measured directly during onboard testing and combined with a year-long analysis of engine operation using an Engine Load Monitoring (ELM) method. The yearly average methane slip coefficient (Cslip) obtained was 1.57%, slightly lower than values reported in previous studies on cruise ships (1.7%), and significantly lower than the default values specified by the FuelEU (3.1%) Maritime regulation and IMO (3.5%) LCA guidelines. This result reflects the ship’s operational profile, characterized by long crossings at high and stable engine loads. This study provides results that could support more representative emission assessments and can contribute to ongoing regulatory discussions. Full article
(This article belongs to the Special Issue Performance and Emission Characteristics of Marine Engines)
Show Figures

Figure 1

31 pages, 6172 KiB  
Article
Shipping Decarbonisation: Financial and Business Strategies for UK Shipowners
by Eleni I. Avaritsioti
J. Risk Financial Manag. 2025, 18(7), 391; https://doi.org/10.3390/jrfm18070391 - 16 Jul 2025
Viewed by 330
Abstract
The maritime sector faces urgent decarbonisation pressures due to regulatory instruments, such as the International Maritime Organization’s (IMO) Carbon Intensity Indicator (CII), which mandates reductions in greenhouse gas emissions per transport work. This paper investigates the challenge of identifying CII-compliant strategies that are [...] Read more.
The maritime sector faces urgent decarbonisation pressures due to regulatory instruments, such as the International Maritime Organization’s (IMO) Carbon Intensity Indicator (CII), which mandates reductions in greenhouse gas emissions per transport work. This paper investigates the challenge of identifying CII-compliant strategies that are also financially viable for UK shipowners. To address this, operational and technical data from UK-flagged vessels over 5000 GT are analysed using a capital budgeting framework. This includes scenario-based evaluation of speed reduction, payload limitation, and retrofitting with dual-fuel LNG and methanol engines. The analysis integrates carbon taxation, and pilot fuel use to assess impacts on emissions and profitability. The findings reveal that while the short-term operational measures examined offer modest gains, long-term compliance and financial performance are best achieved through targeted retrofitting supported by carbon taxes and favourable market conditions. The study provides actionable insights for shipowners and policymakers seeking to align commercial viability with regulatory obligations under the evolving CII framework. Full article
(This article belongs to the Special Issue Featured Papers in Climate Finance)
Show Figures

Figure 1

19 pages, 2349 KiB  
Article
Comparative Analysis of CO2 Emissions and Transport Efficiency in 174k CBM LNG Carriers with X-DF and ME-GI Propulsion
by Aleksandar Vorkapić, Martin Juretić and Radoslav Radonja
Sustainability 2025, 17(11), 5140; https://doi.org/10.3390/su17115140 - 3 Jun 2025
Viewed by 535
Abstract
This study investigates the environmental and operational performance of X-DF and ME-GI propulsion systems in large LNG carriers, focusing on key emission and transport efficiency metrics—CO2, the EEOI, and the CII—and their relationship with operational factors such as shaft power, vessel [...] Read more.
This study investigates the environmental and operational performance of X-DF and ME-GI propulsion systems in large LNG carriers, focusing on key emission and transport efficiency metrics—CO2, the EEOI, and the CII—and their relationship with operational factors such as shaft power, vessel speed, propeller slip, and specific fuel oil consumption. Statistical methods including correlation analysis, regression modeling, outlier detection, and clustering are employed to evaluate engine behavior across the ship’s fuel gas steaming envelope and to identify critical efficiency trends. The results show that ME-GI engines deliver lower CO2 emissions and consistent efficiency under steady-load conditions, due to their higher thermal efficiency and precise control characteristics. In contrast, X-DF engines demonstrate greater adaptability, leveraging LNG combustion to achieve cleaner emissions and optimal performance in specific operational clusters. Clustering analysis highlights distinct patterns: ME-GI engines excel with optimized shaft power and RPM, while X-DF engines achieve peak efficiency through adaptive load and fuel management. These findings provide actionable insights for integrating performance indicators into SEEMP strategies, enabling targeted emission reductions and fuel optimization across diverse operating scenarios—thus supporting more sustainable maritime transport. Full article
Show Figures

Figure 1

31 pages, 14978 KiB  
Article
Numerical Dynamic Response Analysis of a Ship Engine Room Explosion Simulation Using OpenFOAM
by Zeya Miao, Yuechao Zhao, Baoyang Ye and Wanzhou Chen
J. Mar. Sci. Eng. 2025, 13(6), 1051; https://doi.org/10.3390/jmse13061051 - 27 May 2025
Viewed by 718
Abstract
Maritime safety is crucial as vessels underpin global trade, but engine room explosions threaten crew safety, the environment, and assets. With modern ship designs growing more complex, numerical simulation has become vital for analyzing and preventing such events. This study examines safety risks [...] Read more.
Maritime safety is crucial as vessels underpin global trade, but engine room explosions threaten crew safety, the environment, and assets. With modern ship designs growing more complex, numerical simulation has become vital for analyzing and preventing such events. This study examines safety risks from alternative fuel explosions in ship engine rooms, using the Trinitrotoluene (TNT)-equivalent method. A finite element model of a double-layer cabin explosion is developed, and simulations using blastFOAM in OpenFOAM v9 analyze shock wave propagation and stress distribution. Four explosion locations and five scales were tested, revealing that explosion scale is the most influential factor on shock wave intensity and structural stress, followed by equipment layout, with location having the least—though still notable—impact. Near the control room, an initial explosion caused a peak overpressure of 2.4 × 106 Pa. Increasing the charge mass from 10 kg to 50 kg raised overpressure to 3.9 × 106 Pa, showing strong dependence of blast intensity on explosive mass. Equipment absorbs and reflects shock waves, amplifying localized stresses. The findings aid in optimizing engine room layouts and improving explosion resistance, particularly for alternative fuels like liquefied natural gas (LNG), enhancing maritime safety and sustainability. Full article
(This article belongs to the Special Issue Marine Technology: Latest Advancements and Prospects)
Show Figures

Figure 1

22 pages, 7406 KiB  
Article
Decarbonation Effects of Mainstream Dual-Fuel Power Schemes Focus on IMO Mandatory Regulation and LCA Method
by Zhanwei Wang, Shidong Fan and Zhiqiang Han
J. Mar. Sci. Eng. 2025, 13(5), 847; https://doi.org/10.3390/jmse13050847 - 24 Apr 2025
Viewed by 756
Abstract
Recently, the IMO has completed the guidelines on the life cycle greenhouse gas intensity of marine fuels to accelerate the application of alternative fuels. Low-carbon fuels may persist for decades and have become a key transitional phase in replacing marine fuels. A more [...] Read more.
Recently, the IMO has completed the guidelines on the life cycle greenhouse gas intensity of marine fuels to accelerate the application of alternative fuels. Low-carbon fuels may persist for decades and have become a key transitional phase in replacing marine fuels. A more comprehensive methodology for evaluating the carbon emission levels of marine fuels was explored, and the carbon emissions and environmental impacts of a 150,000-ton shuttle tanker under 19 dual-fuel power scenarios were evaluated using the Energy Efficiency Design Index (EEDI) and life cycle assessment (LCA) method. The results show that liquefied natural gas (LNG) has a higher carbon control potential level compared to liquefied petroleum gas (LPG) and methanol (MeOH), while LPG is superior to MeOH based on EEDI evaluation. LCA analysis results show that MeOH (biomass) has the best carbon control potential considering the carbon emissions of the well-to-tank phase of the fuel, followed by LNG, LPG, MeOH (natural gas, NG), and MeOH (coal). However, MeOH (NG) and MeOH (coal) had greater negative environmental impacts. This study provides method support and a direction toward improvement for revising related technical specifications and regulations for dual-fuel vessel performance evaluation, considering the limitations of various maritime regulations. Full article
(This article belongs to the Special Issue Sustainable and Efficient Maritime Operations)
Show Figures

Figure 1

29 pages, 5530 KiB  
Article
Insights into Small-Scale LNG Supply Chains for Cost-Efficient Power Generation in Indonesia
by Mujammil Asdhiyoga Rahmanta, Anna Maria Sri Asih, Bertha Maya Sopha, Bennaron Sulancana, Prasetyo Adi Wibowo, Eko Hariyostanto, Ibnu Jourga Septiangga and Bangkit Tsani Annur Saputra
Energies 2025, 18(8), 2079; https://doi.org/10.3390/en18082079 - 17 Apr 2025
Cited by 1 | Viewed by 1581
Abstract
This study demonstrates that small-scale liquefied natural gas (SS LNG) is a viable and cost-effective alternative to High-Speed Diesel (HSD) for power generation in remote areas of Indonesia. An integrated supply chain model is developed to optimize total costs based on LNG inventory [...] Read more.
This study demonstrates that small-scale liquefied natural gas (SS LNG) is a viable and cost-effective alternative to High-Speed Diesel (HSD) for power generation in remote areas of Indonesia. An integrated supply chain model is developed to optimize total costs based on LNG inventory levels. The model minimizes transportation costs from supply depots to demand points and handling costs at receiving terminals, which utilize Floating Storage Regasification Units (FSRUs). LNG distribution is optimized using a Multi-Depot Capacitated Vehicle Routing Problem (MDCVRP), formulated as a Mixed Integer Linear Programming (MILP) problem to reduce fuel consumption, CO2 emissions, and vessel rental expenses. The novelty of this research lies in its integrated cost optimization, combining transportation and handling within a model specifically adapted to Indonesia’s complex geography and infrastructure. The simulation involves four LNG plant supply nodes and 50 demand locations, serving a total demand of 15,528 m3/day across four clusters. The analysis estimates a total investment of USD 685.3 million, with a plant-gate LNG price of 10.35 to 11.28 USD/MMBTU at a 10 percent discount rate, representing a 55 to 60 percent cost reduction compared to HSD. These findings support the strategic deployment of SS LNG to expand affordable electricity access in remote and underserved regions. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

28 pages, 3315 KiB  
Article
Optimizing Maritime Energy Efficiency: A Machine Learning Approach Using Deep Reinforcement Learning for EEXI and CII Compliance
by Mohammed H. Alshareef and Ayman F. Alghanmi
Sustainability 2024, 16(23), 10534; https://doi.org/10.3390/su162310534 - 30 Nov 2024
Cited by 2 | Viewed by 2779
Abstract
The International Maritime Organization (IMO) has set stringent regulations to reduce the carbon footprint of maritime transport, using metrics such as the Energy Efficiency Existing Ship Index (EEXI) and Carbon Intensity Indicator (CII) to track progress. This study introduces a novel approach using [...] Read more.
The International Maritime Organization (IMO) has set stringent regulations to reduce the carbon footprint of maritime transport, using metrics such as the Energy Efficiency Existing Ship Index (EEXI) and Carbon Intensity Indicator (CII) to track progress. This study introduces a novel approach using deep reinforcement learning (DRL) to optimize energy efficiency across five types of vessels: cruise ships, car carriers, oil tankers, bulk carriers, and container ships, under six different operational scenarios, such as varying cargo loads and weather conditions. Traditional fuels, like marine gas oil (MGO) and intermediate fuel oil (IFO), challenge compliance with these standards unless engine power restrictions are applied. This approach combines DRL with alternative fuels—bio-LNG and hydrogen—to address these challenges. The DRL algorithm, which dynamically adjusts engine parameters, demonstrated substantial improvements in optimizing fuel consumption and performance. Results revealed that while using DRL, fuel efficiency increased by up to 10%, while EEXI values decreased by 8% to 15%, and CII ratings improved by 10% to 30% across different scenarios. Specifically, under heavy cargo loads, the DRL-optimized system achieved a fuel efficiency of 7.2 nmi/ton compared to 6.5 nmi/ton with traditional methods and reduced the EEXI value from 4.2 to 3.86. Additionally, the DRL approach consistently outperformed traditional optimization methods, demonstrating superior efficiency and lower emissions across all tested scenarios. This study highlights the potential of DRL in advancing maritime energy efficiency and suggests that further research could explore DRL applications to other vessel types and alternative fuels, integrating additional machine learning techniques to enhance optimization. Full article
(This article belongs to the Special Issue Sustainable Maritime Logistics and Low-Carbon Transportation)
Show Figures

Figure 1

24 pages, 8807 KiB  
Article
A Study on Welding Sensitivity Assessment and Deformation Control of International Maritime Organization Type C Liquefied Natural Gas Fuel Tank Support Structures Using the Direct Inherent Strain Method
by Dong-Hee Park, Jin-Hyuk Yang, Sung-Hoon Kim, Jeong-Hyeon Kim and Jae-Myung Lee
J. Mar. Sci. Eng. 2024, 12(12), 2161; https://doi.org/10.3390/jmse12122161 - 26 Nov 2024
Cited by 1 | Viewed by 1076
Abstract
The increasing burden on shipowners and shipping companies due to environmental regulations imposed by the International Maritime Organization (IMO) has led to the adoption of various compliance strategies, including the use of low-sulfur fuel, installation of scrubbers, and the use of liquefied natural [...] Read more.
The increasing burden on shipowners and shipping companies due to environmental regulations imposed by the International Maritime Organization (IMO) has led to the adoption of various compliance strategies, including the use of low-sulfur fuel, installation of scrubbers, and the use of liquefied natural gas (LNG) as an alternative fuel. LNG is particularly prevalent in dual-fuel propulsion ships, with the IMO Type C tank being the most commonly used storage facility. The structure of the IMO Type C tank comprises a pressure vessel and supporting saddles, which can be integrated or separate systems. Despite being manufactured within specified tolerances, welding-induced deformation of the tank and saddle is inevitable since the saddle is welded directly onto the hull. In integrated tank–saddle systems, this deformation can lead to cracks in the epoxy resin, which has lower strength and stiffness, as well as burn damage to the resin and wooden blocks from welding heat. In separate tank–saddle systems, installation difficulties can arise due to interference between the fuel tank system and adjacent structures, such as insulation or the fuel preparation room (FPR), resulting from saddle deformation caused by welding. This study analyzes the sensitivity of all weld lines involved in saddle installation using the direct inherent strain (DIS) method. Based on this analysis, the initial welding deformations are evaluated in relation to the welding direction and sequence. Finally, an optimized method for saddle installation is proposed to minimize deformation. Full article
(This article belongs to the Special Issue Green Shipping Corridors and GHG Emissions)
Show Figures

Figure 1

35 pages, 7080 KiB  
Article
The Possibility of Using Hydrogen as a Green Alternative to Traditional Marine Fuels on an Offshore Vessel Serving Wind Farms
by Monika Bortnowska and Arkadiusz Zmuda
Energies 2024, 17(23), 5915; https://doi.org/10.3390/en17235915 - 25 Nov 2024
Cited by 5 | Viewed by 1193
Abstract
Achieving the required decarbonisation targets by the shipping industry requires a transition to technologies with zero or near-zero greenhouse gas (GHG) emissions. One promising shipping fuel with zero emission of exhaust gases (including CO2) is green hydrogen. This type of fuel, [...] Read more.
Achieving the required decarbonisation targets by the shipping industry requires a transition to technologies with zero or near-zero greenhouse gas (GHG) emissions. One promising shipping fuel with zero emission of exhaust gases (including CO2) is green hydrogen. This type of fuel, recognised as a 100% clean solution, is being investigated for feasible use on a service offshore vessel (SOV) working for offshore wind farms. This study aims to examine whether hydrogen may be used on an SOV in terms of the technical and economic challenges associated with the design process and other factors. In the analyses, a reference has been made to the current International Maritime Organization (IMO) guidelines and regulations. In this study, it was assumed that hydrogen would be directly combusted in a reciprocating internal combustion engine. This engine type was reviewed. In further research, hydrogen fuel cell propulsion systems will also be considered. The hydrogen demand was calculated for the assumed data of the SOV, and then the volume and number of high-pressure tanks were estimated. The analyses revealed that the SOV cannot undertake 14-day missions using hydrogen fuel stored in cylinders on board. These cylinders occupy 66% of the ship’s current volume, and their weight, including the modular system, accounts for 62% of its deadweight. The costs are over 100% higher compared to MDO and LNG fuels and 30% higher than methanol. The actual autonomy of the SOV with hydrogen fuel is 3 days. Full article
(This article belongs to the Special Issue CO2 Emissions from Vehicles (Volume II))
Show Figures

Figure 1

27 pages, 4732 KiB  
Article
Environmental and Cost Assessments of Marine Alternative Fuels for Fully Autonomous Short-Sea Shipping Vessels Based on the Global Warming Potential Approach
by Harriet Laryea and Andrea Schiffauerova
J. Mar. Sci. Eng. 2024, 12(11), 2026; https://doi.org/10.3390/jmse12112026 - 9 Nov 2024
Cited by 2 | Viewed by 1719
Abstract
This research paper presents an effective approach to reducing marine pollution and costs by determining the optimal marine alternative fuels framework for short-sea shipping vessels, with a focus on energy efficiency. Employing mathematical models in a Python environment, the analyses are tailored specifically [...] Read more.
This research paper presents an effective approach to reducing marine pollution and costs by determining the optimal marine alternative fuels framework for short-sea shipping vessels, with a focus on energy efficiency. Employing mathematical models in a Python environment, the analyses are tailored specifically for conventional and fully autonomous high-speed passenger ferries (HSPFs) and tugboats, utilizing bottom-up methodologies, ship operating phases, and the global warming potential approach. The study aims to identify the optimal marine fuel that offers the highest Net Present Value (NPV) and minimal emissions, aligning with International Maritime Organization (IMO) regulations and environmental objectives. Data from the ship’s Automatic Identification System (AIS), along with specifications and port information, were integrated to assess power, energy, and fuel consumption, incorporating parameters of proposed marine alternative fuels. This study examines key performance indicators (KPIs) for marine alternative fuels used in both conventional and autonomous vessels, specifically analyzing total mass emission rate (TMER), total global warming potential (TGWP), total environmental impact (TEI), total environmental damage cost (TEDC), and NPV. The results show that hydrogen (H2-Ren, H2-F) fuels and electric options produce zero emissions, while traditional fuels like HFO and MDO exhibit the highest TMER. Sensitivity and stochastic analyses identify critical input variables affecting NPV, such as fuel costs, emission costs, and vessel speed. Findings indicate that LNG consistently yields the highest NPV, particularly for autonomous vessels, suggesting economic advantages and reduced emissions. These insights are crucial for optimizing fuel selection and operational strategies in marine transportation and offer valuable guidance for decision-making and investment in the marine sector, ensuring regulatory compliance and environmental sustainability. Full article
(This article belongs to the Special Issue Performance and Emission Characteristics of Marine Engines)
Show Figures

Figure 1

33 pages, 5435 KiB  
Article
Scheduling of Mixed Fleet Passing Through River Bottleneck in Multiple Ways
by De-Chang Li and Hua-Long Yang
J. Mar. Sci. Eng. 2024, 12(10), 1860; https://doi.org/10.3390/jmse12101860 - 17 Oct 2024
Viewed by 1095
Abstract
This paper addresses the scheduling problem of a mixed fleet passing through a river bottleneck in multiple ways, considering the impact of streamflow velocity, the fuel cost with different sailing speeds, and the potential opportunity cost of various types and sizes of vessels. [...] Read more.
This paper addresses the scheduling problem of a mixed fleet passing through a river bottleneck in multiple ways, considering the impact of streamflow velocity, the fuel cost with different sailing speeds, and the potential opportunity cost of various types and sizes of vessels. From the perspective of centralized management by river bottleneck authorities, a unified scheduling approach is proposed, and a nonlinear model is constructed, where the total fuel cost and potential opportunity cost of the fleet are minimized. To handle the nonlinear terms in the model, an outer approximation technique is applied to linearize the model while ensuring the approximation error remains controlled. The optimal value range of the nonlinear variables is also proven to ensure solution speed. Furthermore, the applicability and effectiveness of the model and solution method are validated through a real-world case study on the Yangtze River. The results show the following: (1) Unified collaborative scheduling by bottleneck authorities can ensure the optimal total cost of the fleet is effectively met and that the vessels passing through the river bottleneck are arranged under rational ways. (2) When fuel consumption is the same as that of traditional oil-fuelled vessels, giving priority to liquefied natural gas (LNG)-fuelled vessels to pass through the river bottleneck can reduce the potential opportunity cost and the total cost of the fleet reasonably. (3) In accordance with changes in the fuel price, streamflow velocity, and proportion of LNG-fuelled vessels, timely adjusting the opportunity cost expectations, vessel arrival time, and service times of bottleneck passing ways is crucial for shipowners and authorities to reduce fleet waiting times at the bottleneck, delay time, and the total cost. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

23 pages, 4645 KiB  
Article
Determination of Demand for LNG in Poland
by Ewelina Orysiak and Mykhaylo Shuper
Energies 2024, 17(17), 4414; https://doi.org/10.3390/en17174414 - 3 Sep 2024
Cited by 1 | Viewed by 2254
Abstract
This study was aimed at improving the energy efficiency of the distribution of liquefied natural gas (LNG) as shipping fuel in the southern Baltic Sea. The objective of this study was to determine the demand for LNG for maritime shipping by analyzing the [...] Read more.
This study was aimed at improving the energy efficiency of the distribution of liquefied natural gas (LNG) as shipping fuel in the southern Baltic Sea. The objective of this study was to determine the demand for LNG for maritime shipping by analyzing the distribution of the resource from the water side (ship-to-ship). LNG was chosen due to the location of the LNG terminal in Świnoujście within the analyzed water area, where a problem has arisen in the southern part of the Baltic Sea regarding fuel supply for vessels due to the lack of developed infrastructure along the coast. An analysis was conducted to optimize the size of the LNG fleet and infrastructure facilities. Seeking compliance with Annex VI to the MARPOL 73/78 Convention, adopted by the International Maritime Organization (IMO), shipowners see potential in the switch from conventional fuels to LNG. As one of the alternative solutions, it will contribute to reducing harmful emissions. Determination of the LNG distribution volume requires the identification of LNG storage facility locations, specifying the number of LNG-powered ships (broken down by type) and the number of LNG bunkering ships. The first part of this study contains a detailed analysis of the number of sea-going ships that provide services in the southern part of the Baltic Sea and the world’s number of LNG bunkering ships. The database contains a set of the characteristics required to determine the optimal demand for LNG, where LNG bunkering vessels are capable of supplying fuel within the shortest possible time and covering the shortest possible distance to LNG-powered ships. The characteristics include the type of ship, requested LNG volume, the speed of LNG bunkering ships, the distance between LNG facilities, and the loading rate (the volume of fuel received per time unit). Based on the collected data, the volume of LNG distribution was determined using MATLAB R2019a software. The remainder of this study contains a description of the conducted research and results of an analysis of the traffic density in the Baltic Sea. The results were obtained on the basis of data from the Statistical Yearbook of Maritime Economy and IALA IWRAP Mk2 2020 software. The number of LNG-powered ships and number of LNG bunkering ships were specified, and the demand for LNG for the area under analysis was determined. Full article
Show Figures

Figure 1

21 pages, 6524 KiB  
Article
Optimization of Fuel Consumption by Controlling the Load Distribution between Engines in an LNG Ship Electric Propulsion Plant
by Siniša Martinić-Cezar, Zdeslav Jurić, Nur Assani and Branko Lalić
Energies 2024, 17(15), 3718; https://doi.org/10.3390/en17153718 - 28 Jul 2024
Cited by 2 | Viewed by 2231
Abstract
Due to growing environmental concerns and stringent emissions regulations, optimizing the fuel consumption of marine propulsion systems is crucial. This work deals with the potential in an LNG ship propulsion system to reduce fuel consumption through controlled load distribution between engines in Dual-Fuel [...] Read more.
Due to growing environmental concerns and stringent emissions regulations, optimizing the fuel consumption of marine propulsion systems is crucial. This work deals with the potential in an LNG ship propulsion system to reduce fuel consumption through controlled load distribution between engines in Dual-Fuel Diesel Electric (DFDE) plant. Based on cyclical data acquisition measured onboard and using an optimization model, this study evaluates different load distribution strategies between setups according to the optimization model results and automatic (equal) operation to determine their effectiveness in improving fuel efficiency. The analysis includes scenarios with different fuel types, including LNG, MDO and HFO, at different engine loads. The results indicate that load distribution adjustment based on the optimization model results significantly improves fuel efficiency compared to conventional methods of uniform load distribution controlled by power management systems in almost all load intervals. This research contributes to the maritime industry by demonstrating that strategic load management can achieve significant fuel savings and reduce environmental impact, which is in line with global sustainability goals. This work not only provides a framework for the implementation of more efficient energy management systems on LNG vessels, but also sets a benchmark for future innovations in maritime energy optimization as well as in the view of exhaust emission reduction. Full article
Show Figures

Figure 1

22 pages, 4071 KiB  
Article
LNG Logistics Model to Meet Demand for Bunker Fuel
by Ewelina Orysiak, Hubert Zielski and Mateusz Gawle
Energies 2024, 17(7), 1758; https://doi.org/10.3390/en17071758 - 6 Apr 2024
Cited by 1 | Viewed by 2596
Abstract
The main objective of this manuscript is to build a model for the distribution of LNG as a marine fuel in the southern Baltic Sea based on a genetic algorithm in terms of cost. In order to achieve this, it was necessary to [...] Read more.
The main objective of this manuscript is to build a model for the distribution of LNG as a marine fuel in the southern Baltic Sea based on a genetic algorithm in terms of cost. In order to achieve this, it was necessary to develop, in detail, research sub-objectives like analysis of the intensity of ship traffic in the indicated area and analysis of LNG demand in maritime transport. In the first part of this study, the authors use data from the IALA IWRAP Mk2 and the Statistical Office in Szczecin to analyse the marine traffic density (by type of vessel) in the southern part of the Baltic Sea. LNG used as marine fuel reduces toxic emissions into the atmosphere. The authors specify the LNG fleet size and locations of LNG storage facilities in a way to ensure that the defined LNG bunker vessels can supply fuel to LNG-powered vessels within the shortest possible time period. The database contains a set of traits necessary to determine the optimal demand for LNG. The traits were developed based on an existing LNG fleet and appropriately selected infrastructure, and they represent existing LNG-powered vessels as well as LNG bunker vessels and their specifications. Based on the created LNG distribution model, were performed in Matlab R2019a software. An LNG distribution model was developed, which uses a genetic algorithm to solve the task. The demand for LNG for the sea area under analysis was determined based on data on the capacity of LNG-powered vessels (by type of vessel) and their distance from the specified port. Full article
Show Figures

Figure 1

15 pages, 451 KiB  
Systematic Review
Measurement Techniques, Calculation Methods, and Reduction Measures for Greenhouse Gas Emissions in Inland Navigation—A Preliminary Study
by Laura Hörandner, Bianca Duldner-Borca, Denise Beil and Lisa-Maria Putz-Egger
Sustainability 2024, 16(7), 3007; https://doi.org/10.3390/su16073007 - 4 Apr 2024
Cited by 1 | Viewed by 2138
Abstract
Emissions originating from inland navigation should be reduced to achieve climate targets. This paper aims to identify (1) onboard GHG emission measurement systems, (2) calculation methods for GHG emissions of inland vessels and (3) reduction measures. A systematic literature review, examining 6 databases, [...] Read more.
Emissions originating from inland navigation should be reduced to achieve climate targets. This paper aims to identify (1) onboard GHG emission measurement systems, (2) calculation methods for GHG emissions of inland vessels and (3) reduction measures. A systematic literature review, examining 6 databases, yielded 105 initial outcomes, with 17 relevant references. The review reveals a scarcity of studies, with the majority concentrated in Europe and Asia, while North America, Africa, Australia, and South America remain largely unexplored. Four of the seventeen relevant studies focused on real-world GHG emissions measurement. Future research should explore more efficient and calibrated approaches for real-time CO2 insights in inland vessels. In the section on calculating GHG emissions, most papers attempt to adapt the EEDI or EEXI to inland navigation. Reduction measures for GHG emissions concentrate on alternative fuels, like LNG, methanol, hydrogen, or alternative power sources. As the research in this area is limited, prioritizing it in academic discourse is not only essential for advancing our understanding but also imperative for shaping a resilient and environmentally conscious future for inland navigation. Full article
(This article belongs to the Special Issue Sustainable Transport Using Inland Waterways)
Show Figures

Figure 1

Back to TopTop