Determination of Demand for LNG in Poland
Abstract
:1. Introduction
- Lower CO2 emissions compared to traditional marine fuels;
- The efficiency of LNG in trapping heat in the atmosphere compared to CO2, which is a very potent greenhouse gas;
- Alternative technologies and fuels—their ongoing development aims to eliminate CO2 (e.g., ammonia, hydrogen, biofuels, and hybrid propulsion technologies utilizing electricity from renewable sources);
- Legal regulations.
- Sulfur oxide emissions by ca. 90–95%;
- Carbon dioxide emissions by ca. 20–25%.
- Infrastructure facilities, such as LNG terminals;
- LNG-powered ships;
- LNG carriers;
- LNG bunkering ships.
- Extraction and transfer from deposits to liquefaction facilities through a pipeline system in the gas exporting country;
- Liquefaction, storage, and loading at the loading terminal;
- Delivery to end users through a pipeline system or in tank containers (by rail or road) [40].
- Extraction. The price of natural gas varies depending on the geological conditions, characteristics of deposits, distance to the terminal, and labor costs. This factor has a significant impact on the global costs of natural gas extraction [41].
- Liquefaction. The costs of liquefaction depend on the costs of investments in LNG terminals, the technologies used, and the logistics of natural gas [42].
- Regasification and storage. The costs of regasification depend on the technologies applied at LNG terminals and the costs of LNG logistics. The storage process, including, without limitation, the location of infrastructure facilities (either offshore or on land) and the manner of storage, has a significant impact on the costs of LNG distribution [43,44].
- The costs of transportation are a considerable component of the LNG purchase price [45,46,47] as they constitute 10–30% of the end user price. The costs of transportation are determined by many factors, including, inter alia, the costs of chartering a sea-going ship (which depend on the situation on the natural gas market and are closely linked to economic fluctuations), fuel costs, and charter fees, which constitute 80–90% of the costs of LNG transportation. Hence, crude oil prices indirectly influence the prices of LNG through harbor fees, freight charges, canal tolls, and insurance premiums [48].
- Strengthen the reliability of supplies in an emergency, such as in the blockage of trade or the outbreak of a conflict;
- Operate the sea-going fleet depending on the current demand regardless of the destination;
- Increase the national energy security through reducing the dependency of supplies on foreign shipping companies;
- Make savings on freight charges.
- Port-to-Ship—the process of loading fuel on to a ship directly from port facilities, such as bunkering in ports, port basins, or on the roads, at favorable weather conditions;
- Ship-to-Ship—the supply of fuel during the ship’s voyage at sea (which can be used if port facilities are not available);
- Truck-to-Ship—one of the advantages of this fuel transfer method is mobility since a lorry can access any location within a port, but a downside is that several lorries may be required to fill up a tank;
- Onshore facility—an inconvenience of this type of fuel transfer lies in the fact that LNG facilities are situated in ports that may not be located at the main fairways where LNG-powered ships operate;
- Container–ship—the container is connected directly to the ship, and fuel loading method entails using a specially designed container or fuel tank.
- Solutions related to the LNG distribution model;
- The size of the LNG fleet in SECAs and other sea areas;
- Demand for LNG as marine fuel in SECAs and other sea areas;
- Optimization of LNG distribution in terms of time frames and costs in SECAs and other sea areas;
- Optimization of the LNG distribution network.
2. Materials and Methods
- The price of LNG in 2023 (Figure 2);
- A period of 12 × 30 days;
- The distances from LNG-powered vessels were determined with the anchorage boundary every 0.5 Nm;
- Distribution was by waterway.
2.1. Study Area
2.2. LNG Fleet
3. Results
- The number of sea-going ships calling at the ports;
- The size of ships calling at the ports;
- The surface area of the overlapping ranges of service.
- Świnoujście;
- Kołobrzeg;
- Darłowo;
- Gdynia;
- Krynica Morska.
- Location of seaports;
- Technical parameters of the LNG-powered ships classified by type (tankers, bulk carriers, container ships, specialized vessels, general cargo carriers, RO-RO/passenger ships, cruise ships, and other) and fuel tank capacity.
- Świnoujście—up to 11 Nm;
- Darłowo—up to 2 Nm;
- Kołobrzeg—up to 1.5 Nm;
- Gdynia—up to 2.5 Nm;
- Krynica Morska—up to 1 Nm.
- The number of LNG-powered ships and their types;
- The requested volume of LNG;
- The distance of LNG-powered ships from the LNG terminal (storage facility) under analysis.
- A bulk carrier requesting 200 m3 of LNG at a distance of 9.5 Nm from the port;
- A tanker requesting 619 m3 of LNG at a distance of 7.5 Nm from the port.
- The type of LNG-powered ship;
- The requested amount of LNG [m3];
- The loading rate [m3/h] (amount of fuel received in a time unit);
- The distance between facilities [Nm];
- The speed of the LNG bunkering ship [kn].
4. Discussion
- Gdynia;
- Świnoujście;
- Darłowo;
- Krynica Morska;
- Kołobrzeg.
- The number of LNG bunkering ships used;
- The demand for LNG as shipping fuel;
- The distance covered by an LNG bunkering ship;
- The LNG bunkering lead time.
- Temporal;
- Individual LNG bunkers, which are assigned a specific LNG bunker;
- Each LNG-fueled unit, which are assigned to exactly one LNG bunker;
- The existence of only one start and end point;
- The capacity of individual LNG bunkering units cannot be exceeded.
- Gdynia;
- Świnoujście;
- Darłowo;
- Kołobrzeg.
5. Conclusions
- LNG distribution issues in the southern part of the Baltic Sea;
- The projected size of the LNG fleet in the Baltic Sea;
- The lack of research results determining the real demand for LNG as bunker fuel in the Baltic Sea;
- The lack of LNG infrastructure in the southern part of the Baltic Sea.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fitzmaurice, M. International Convention for the Prevention of Pollution from Ships (MARPOL). In Research Handbook on Ocean Governance Law; Edward Elgar Publishing: Cheltenham, UK, 2023. [Google Scholar]
- Directive 2012/33/EU of the European Parliament and of the Council of November 21 Amending Council Directive 1999/32/EC as Regards the Sulfur Content of Marine Fuels. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32012L0033 (accessed on 1 June 2024).
- Directive (EU) 2018/2001 on the Promotion of the Use of Energy from Renewable Sources. Renewable Energy Directive II. Available online: https://eur-lex.europa.eu/eli/dir/2018/2001/oj (accessed on 1 June 2024).
- Regulation on the Use of Renewable and Low-Carbon Fuels in Maritime Transport and Amending Directive 2009/16/EC. FuelEU Maritime Regulation. Available online: https://eur-lex.europa.eu/eli/reg/2023/1805/oj (accessed on 5 June 2024).
- Directive 2003/87/EC of the European Parliament and of the Council Establishing a Scheme for Greenhouse Gas Emission Allowance Trading within the Community and Amending Council Directive 96/61/EC. European Union’s Emissions Trading System. Available online: https://eur-lex.europa.eu/eli/dir/2003/87/oj (accessed on 5 June 2024).
- Lindstad, E.; Eskeland, G.S.; Rialland, A.; Valland, A. Decarbonizing Maritime Trans-port: The Importance of Engine Technology and Regulations for LNG to Serve as a Transition Fuel. Sustainability 2020, 12, 8793. [Google Scholar] [CrossRef]
- Koziński, M.H. Maritime safety—Legislation problems. Prace Wydziału Nawigacyjnego Akademii Morskiej w Gdyni 2015, 30, 7–22. [Google Scholar] [CrossRef]
- Kitada, M.; Ölçer, A. Analyzing the Impact of Low-Sulphur Fuel Regulations on the Maritime Industry. J. Mar. Sci. Eng. 2020, 8, 514. [Google Scholar] [CrossRef]
- Luo, M.; Yip, T.L. Economic Assessment of Switching to Low-Sulphur Marine Fuels for Shipping Companies. Marit. Econ. Logist. 2020, 22, 453–472. [Google Scholar]
- Hussain, M.; Dincer, I.; Naterer, G.F. Assessment of SOx Scrubber Systems for the Marine Industry. J. Mar. Sci. Eng. 2020, 8, 193. [Google Scholar] [CrossRef]
- Cariou, P.; Wolff, F.-C. Environmental and Economic Impacts of Maritime Shipping in the European Union: The Role of Scrubber Systems. Mar. Policy 2019, 100, 59–67. [Google Scholar] [CrossRef]
- Autorzy: Pavlenko, N.; Comer, B.; Zhou, Y.; Clark, N.; Rutherford, D. Assessing the Potential of LNG as a Ship Fuel in International Shipping. Transp. Res. Part D Transp. Environ. 2020, 65, 1–13. [Google Scholar]
- Dnv, G.L. Decarbonization of Maritime Transport: The Role of LNG and Hydrogen. Energy Policy 2020. Available online: https://www.connaissancedesenergies.org/sites/connaissancedesenergies.org/files/pdf-actualites/DNV_GL_Energy_Transition_Outlook_2020_Executive_Summary.pdf (accessed on 10 June 2024).
- Dnv, G.L. Maritime decarbonization efforts propelled as orders for alternative-fueled vessels grow. Energy Policy 2023. Available online: https://www.connaissancedesenergies.org/sites/connaissancedesenergies.org/files/pdf-actualites/DNV_ETO_Main_Report_2023_highres_comp.pdf (accessed on 10 June 2024).
- MAN Diesel & Turbo. Costs and Benefits of LNG as Ship Fuel for Container Vessels; MAN Diesel & Turbo: Augsburg, Germany, 2011. [Google Scholar]
- Skarżyński, M. Śródlądowe punkty tankowania LNG w polityce energetycznej Unii Europejskiej. Przegląd Polit. 2022, 1, 73–81. [Google Scholar] [CrossRef]
- IGU. World LNG Report, 2020 Edition; IGU: Oslo, Norway, 2020. [Google Scholar]
- He, T.B.; Ju, Y.L. Design and optimization of natural gas liquefaction process by utilizing gas pipeline pressure Energy. Appl. Therm. Eng. 2013, 57, 1–6. [Google Scholar] [CrossRef]
- Zhang, J.; Meerman, H.; Benders, R.; Faaij, A. Comprehensive review of current natural gas liquefaction processes on technical and economic performance. Appl. Therm. Eng. 2020, 166, 114736. [Google Scholar] [CrossRef]
- Berle, Ø.; Norstad, I.; Asbjørnslett, B.E. Optimization, risk assessment and resilience in LNG transportation systems. Supply Chain. Manag. 2013, 18, 253–264. [Google Scholar] [CrossRef]
- Chenghao, L.; Siyang, Z.; Yufeng, C.; Zhiyong, Z. Proposal and parametric analysis of an innovative natural gas pressure reduction and liquefaction system for efficient exergy recovery and LNG storage. Energy 2021, 223, 120022. [Google Scholar] [CrossRef]
- Riaz, A.; Qyyum, M.A.; Min, S.; Lee, S.; Lee, M. Performance improvement potential of harnessing LNG regasification for hydrogen liquefaction process: Energy and exergy perspectives. Appl. Energy 2021, 301, 117471. [Google Scholar] [CrossRef]
- Frailey, M. Using LNG as a Fuel in Heavy-Duty Tractors; NREL/SR-540-24146; NREL: Golden, CO, USA, 1999; Available online: https://scholar.google.com/scholar_lookup?title=Using+LNG+as+a+Fuel+in+Heavy-Duty+Tractors&author=Frailey,+M.&publication_year=1999 (accessed on 17 July 2024).
- Semaskaite, V.; Bogdevicius, M.; Paulauskiene, T.; Uebe, J.; Filina-Dawidowicz, L. Improvement of Regasification Process Efficiency for Floating Storage Regasification Unit. J. Mar. Sci. Eng. 2022, 10, 897. [Google Scholar] [CrossRef]
- Grzegorzewska, J.; Grządzielski, W.; Mróz, T.M. Planning of liquefied natural gas (LNG) supply to urban areas. Źródła Ciepła i Energii Elektrycznej 2014, 6, 10–15. [Google Scholar]
- Klimczak, D. Globalny handel LNG. Energetyka 2015, 2, 97–100. [Google Scholar]
- World LNG Report—2023 Edition. News, Views and Knowledge on Gas—Worldwide. 2023. Available online: https://www.igu.org/resources/lng2023-world-lng-report/ (accessed on 5 June 2024).
- Foss, M.M. LNG Safety and Security; Center for Energy Economics: Houston, TX, USA, 2012. [Google Scholar]
- IFC. Environmental, Health, and Safety Guidelines for Liquefied Natural Gas (LNG) Facilities; IFC: Washington, DC, USA, 2017. [Google Scholar]
- Tan, R.; Duru, O.; Thepsithar, P.; Stathopoulou, M. Alternative Sources of Energy as Marine Fuels; The Effect on the Environment and the Financial Perspectives for a More Sustainable Future in the Shipping Industry. Master’s Thesis, University of Piraeus, Pireas, Greece, 2021. [Google Scholar] [CrossRef]
- Hwang, S.; Jeong, B.; Jung, K.; Kim, M.; Zhou, P. Life Cycle Assessment of LNG Fueled Vessel in Domestic Services. J. Marne Sci. Eng. 2019, 7, 359. [Google Scholar] [CrossRef]
- Salarkia, M.; Golabi, S. Liquefied Natural Gas (LNG): Alternative Marine Fuel Restriction and Regulation Considerations, Environmental and Economic Assessment. Energy Eng. Manag. 2021, 10, 44–59. [Google Scholar] [CrossRef]
- Pavlenko, N.; Comer, B.; Zhou, Y.; Clark, N.; Rutherford, D. The Climate Implications of Using LNG as a Marine Fuel; Swedish Environmental Protection Agency: Stockholm, Sweden, 2020; Available online: https://scholar.google.com/scholar_lookup?title=The%20climate%20implications%20of%20using%20LNG%20as%20a%20marine%20fuel&publication_year=2020&author=N.%20Pavlenko&author=B.%20Comer&author=Y.%20Zhou&author=N.%20Clark&author=D.%20Rutherford (accessed on 15 June 2024).
- Montwidlak, U. Transport LNG drogą morską jako jeden z elementów łańcucha dostaw gazu. Logistyka 2014, 6, 950–954. [Google Scholar]
- Dahmani, L. Thermomechanical response of LNG concrete tank to cryogenic temperatures. Strength Mater. 2011, 43, 526–531. [Google Scholar] [CrossRef]
- Hanshaw, G.; Pope, G. Liquefied Natural Gas Criteria/Comparative Values for Use as an Automotive Fuel; SAE Technical Paper 0148-7191; SAE: Warrendale, PA, USA, 1996; Available online: https://scholar.google.com/scholar_lookup?title=Liquefied+Natural+Gas+Criteria/Comparative+Values+for+Use+as+an+Automotive+Fuel&author=Hanshaw,+G.&author=Pope,+G.&publication_year=1996 (accessed on 1 August 2024).
- Maxwell, D.; Zhu, Z. Natural gas prices, LNG transport costs, and the dynamics of LNG imports. Energy Econ. 2011, 33, 217–226. [Google Scholar] [CrossRef]
- Xu, K.; Hu, J.; Dong, S.; Feng, L. Causal Relationship Extraction of LNG Unloading System Under Abnormal Conditions Based on Bidirectional LSTM Network. In Pressure Vessels and Piping Conference; American Society of Mechanical Engineer: New York, NY, USA, 2021; Volume PVP2021-61321, p. V005T07A017. [Google Scholar] [CrossRef]
- Łaciak, M.; Sztekler, K.; Szurlej, A.; Włodek, T. Possibilities of Liquefied Natural Gas (LNG) use for power generation. In IOP Conference Series: Earth and Environmental Science, Proceedings of the International Conference on the Sustainable Energy and Environmental Development, Krakow, Poland, 14–17 November 2017; IOP Publishing: Bristol, UK, 2017; Volume 214. [Google Scholar] [CrossRef]
- Yang, Z.; Li, X.; Xiang, Q.; He, Q.; Faber, M.F.; Zio, E.; Su, H.; Zhang, J. A resilience evaluation method of natural gas pipeline system based on uncertainty analysis. Process Saf. Environ. Prot. 2023, 177, 891–908. [Google Scholar] [CrossRef]
- Park, J.; Lee, I.; You, F.; Moon, I.I. Economic Process Selection of Liquefied Natural Gas Regasification: Power Generation and Energy Storage Applications. Ind. Eng. Chem. Res. 2019, 58, 4946–4956. [Google Scholar] [CrossRef]
- Qyyum, M.A.; Qadeer, K.; Lee, M. Comprehensive Review of the Design Optimization of Natural Gas Liquefaction Processes: Current Status and Perspectives. Ind. Eng. Chem. Res. 2018, 57, 5819–5844. [Google Scholar] [CrossRef]
- Łaciak, M. Liquefied natural gas storage of variable composition. Arch. Min. Sci. 2015, 60, 225–238. [Google Scholar] [CrossRef]
- Fahmy, M.F.M.; Nabih, H.I.; El-Rasoul, T.A. Optimization and comparative analysis of LNG regasification processes. Energy 2015, 91, 371–385. [Google Scholar] [CrossRef]
- Langshaw, L.; Ainalis, D.; Acha, S.; Shah, N.; Stettler, M.E.J. Environmental and economic analysis of liquefied natural gas (LNG) for heavy goods vehicles in the UK: A Well-to-Wheel and total cost of ownership evaluation. Energy Policy 2020, 137, 111161. [Google Scholar] [CrossRef]
- Wang, C.; Ju, Y.; Fu, Y. Comparative life cycle cost analysis of low pressure fuel gas supply systems for LNG fueled ships. Energy 2021, 218, 119541. [Google Scholar] [CrossRef]
- Tan, R.; Duru, O.; Thepsithar, P. Assessment of relative fuel cost for dual fuel marine engines along major Asian container shipping routes. Transp. Res. Part E Logist. Transp. Rev. 2020, 140, 102004. [Google Scholar] [CrossRef]
- Navas-Anguita, Z.; García-Gusano, D.; Iribarren, D. A review of techno-economic data for road transportation fuels. Renew. Sustain. Energy Rev. 2019, 112, 11–26. [Google Scholar] [CrossRef]
- Matyszczak, M. Nowe rozwiązania techniczne zastosowane w systemach ładunkowych statków do przewozu skroplonego gazu ziemnego (LNG). Nafta Gaz 2012, 18, 123–132. [Google Scholar]
- Zajdler, R.; Gałczyński, M. Model wspólnego systemu bezpieczeństwa dostaw gazu ziemnego w Unii Europejskiej. Polityka Społeczeństwo 2014, 12, 35–45. [Google Scholar]
- Goela, V.; Sluskyb, M.; van Hoevec, W.J.; Furmand, K.C.; Shaoa, Y. Constraint programming for LNG ship scheduling and inventory management. Eur. J. Oper. Res. 2013, 3, 662–673. [Google Scholar] [CrossRef]
- Bittantea, A.; Jokinenb, R.; Krooksc, J.; Petterssona, F. Mixed integer optimization of an LNG supply chain in the Baltic Sea region. In Proceedings of the ECOS 2016-The 29th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, Portorož, Slovenia, 19–23 June 2016. [Google Scholar]
- Park, J.; You, F.; Mun, H.; Lee, I. Liquefied natural gas supply chain using liquid air as a cold carrier: Novel method for energy recovery. Energy Convers. Manag. 2021, 227, 113611. [Google Scholar] [CrossRef]
- Gucma, S. Wybór optymalnej lokalizacji terminalu LNG na wybrzeżu polskim. Inżynieria Morska Geotech. 2008, 2, 98–104. [Google Scholar]
- Chłopińska, E.; Gucma, M. Impact of Świnoujście LNG terminal on gas distribution and bunkering network in Poland—MTE/ISIS. Zesz. Nauk. Akad. Morskiej W Szczecinie 2018, 53, 154–160. [Google Scholar]
- Biały, R.; Janusz, P.; Łoś, M.; Szurlej, A. Analiza kosztów importu gazu ziemnego do Polski i ich wpływ na strukturę dostaw. Zesz. Nauk. Inst. Gospod. Surowcami Miner. Energią PAN 2014, 87, 83–98. [Google Scholar]
- BP. BP Statistical Review of World Energy; BP: London, UK, 2015. [Google Scholar]
- Dorigoni, S.; Graziano, C.; Pontoni, F. Can LNG increase competetivness in the natural gas market. Energy Policy 2010, 38, 7653–7664. [Google Scholar] [CrossRef]
- Vivoda, V. LNG export diversification and demand security: A comparative study of major exporters. Energy Policy 2022, 170, 113218. [Google Scholar] [CrossRef]
- Ialenti, R. Rising US LNG Exports and Global Natural Gas Price Convergence; Bank of Canada Staff Discussion Paper No. 2021-14; Bank of Canada: Ottawa, ON, Canada, 2021. [Google Scholar] [CrossRef]
- Behrendt, C. Struktura floty statków do przewozu gazu skroplonego. Logistyka 2015, 3, 297–304. [Google Scholar]
- Matczak, M. Wykorzystanie LNG jako paliwa żeglugowego na Morzu Bałtyckim—Przesłanki stosowania, kierunki rozwoju oraz formy wsparcia. Zesz. Nauk. Probl. Transp. Logistyki Uniw. Szczeciński 2015, 30, 73–85. [Google Scholar] [CrossRef]
- Grzelak, S. Liquefied Natural Gas—A Strategic Fuel. Poland’s Security with Regard to Gas Fuels. Kontrola Państwowa 2015, 60, 133–145. [Google Scholar]
- IGU. World LNG Report, 2022 Edition; IGU: Oslo, Norway, 2022. [Google Scholar]
- Peng, Y.; Zhao, X.; Zuo, T.; Wang, W.; Song, X. A systematic literature review on port LNG bunkering station. Transp. Res. Part D Transp. Environ. 2021, 91, 102704. [Google Scholar] [CrossRef]
- Uflaz, E.; Sezer, S.I.; Akyuz, E.; Arslan, O.; Kurt, E. A human reliability analysis for ship to ship LNG bunkering process under D-S evidence fusion HEART approach. J. Loss Prev. Process Ind. 2022, 80, 104887. [Google Scholar] [CrossRef]
- Iannaccone, T.; Landucci, G.; Scarponi, G.E.; Bonvicini, S.; Cozzan, V. Inherent safety assessment of alternative technologies for LNG ships bunkering. Ocean. Eng. 2019, 185, 100–114. [Google Scholar] [CrossRef]
- Calderón, M.; Illing, D.; Veiga, J. Facilities for Bunkering of Liquefied Natural Gas in Ports. Transp. Res. Procedia 2016, 14, 2431–2440. [Google Scholar] [CrossRef]
- Herdzik, J. Wstępna analiza opłacalności tworzenia sieci bunkrowania skroplonego gazu naturalnego LNG w portach Morza Bałtyckiego. Logistyka 2014, 3, 2359–2366. [Google Scholar]
- Hu, A.; He, Z.; Ding, C.; Zhou, M.; Li, F.; Li, C. Optimization of LNG supply chain based on MILP model. In Proceedings of the 3rd International Conference on Applied Mathematics, Modelling, and Intelligent Computing, Tangshan, China, 24–26 March 2023; Volume 12756. [Google Scholar] [CrossRef]
- Bittante, A.; Pettersson, F.; Saxén, H. Optimization of a small-scale LNG supply chain. Energy 2018, 148, 79–89. [Google Scholar] [CrossRef]
- Bittante, A.; Saxén, H. Design of Small LNG Supply Chain by Multi-Period Optimization. Energies 2020, 13, 6704. [Google Scholar] [CrossRef]
- Independent Statistics and Analysis, Natural Gas Industrial Price, 2024. Available online: https://www.eia.gov/dnav/ng/hist/n3035us3M.htm (accessed on 23 August 2024).
- Trading Economics, Natural Gas Price, 2024. Available online: https://tradingeconomics.com/commodity/natural-gas (accessed on 23 August 2024).
- Manual for Marine Monitoring in the COMBINE Programme of HELCOM, 31 July 2017. Available online: https://helcom.fi/action-areas/monitoring-and-assessment/monitoring-guidelines/combine-manual/ (accessed on 28 August 2024).
- Available online: https://www.marinetraffic.com/en/ais/home/centerx:16.9/centery:54.9/zoom:7 (accessed on 30 April 2024).
- 2018. Available online: www.oxfordenergy.org (accessed on 15 April 2024).
- Central Statistical Office in Poland—Statistical Office in Szczecin, Statistical Yearbook of Maritime Economy. Warszawa, Szczecin 2016, 2017, 2018, 2019, 2020, 2021, 2022. Available online: https://stat.gov.pl/obszary-tematyczne/roczniki-statystyczne/roczniki-statystyczne/rocznik-statystyczny-gospodarki-morskiej-2023,11,16.html# (accessed on 20 May 2024).
- International Energy Agency. World Energy Outlook 2021. 2021. Available online: https://www.iea.org/reports/world-energy-outlook-2021 (accessed on 28 August 2024).
- Howard, A.; Bivens, I.C.; Davis, S. Calculus. Early Transcendentals. Global Edition; John Wiley & Sons: Hoboken, NJ, USA, 2022; ISBN 1419172254. [Google Scholar]
- Brealey, R.; Myers, S.; Allen, F.; Edmans, A. Principles of Corporate Finance; McGraw-Hill Education: New York, NY, USA, 2022; ISBN 1265074151. [Google Scholar]
- Livadiotis, G. Statistical analysis of the impact of environmental temperature on the exponential growth rate of cases infected by COVID-19. PLoS ONE 2020, 15, e0233875. [Google Scholar] [CrossRef] [PubMed]
- Muloiwa, M.; Nyende-Byakika, S.; Megersa, D. Comparison of unstructured kinetic bacterial growth models. S. Afr. J. Chem. Eng. 2020, 33, 141–150. [Google Scholar] [CrossRef]
- Bittante, A.; Jokinen, R.; Pettersson, F.; Saxén, H. Optimization of LNG Supply Chain. Comput. Aided Chem. Eng. 2015, 37, 779–784. [Google Scholar] [CrossRef]
- Jokinen, R.; Pettersson, F.; Saxén, H. An MILP model for optimization of a small-scale LNG supply chain along a coastline. Appl. Energy 2015, 138, 423–431. [Google Scholar] [CrossRef]
- Ministry of Infrastructure, Morskie Farmy Wiatrowe Coraz Bliżej, 2023. Available online: https://www.gov.pl/web/infrastruktura/morskie-farmy-wiatrowe-coraz-blizej (accessed on 10 August 2024).
- GAZ System, ORLEN Terminal FSRU w Zatoce Gdańskiej, 2023. Available online: https://www.gaz-system.pl/pl/dla-mediow/komunikaty-prasowe/2023/sierpien/18-08-2023-zakonczenie-procesu-rezerwacji-mocy-regazyfikacyjnych-na-terminalu-fsru-w-zatoce-gdanskiej.html (accessed on 12 August 2024).
Regulation | Date of Adoption | Characteristics |
---|---|---|
MARPOL Annex VI | 19 May 2005 | SO2:
|
Directive 2014/94/UE | 22 October 2014 | SO2 content in fuels used by ships:
|
Directive RED II | 11 December 2018 | Not directly applicable to LNG, and it promotes the use of renewable energy, which influences the development of alternative fuels, including LNG-related technologies. |
FuelEU Maritime | 25 July 2023 | A 2% reduction in greenhouse gas (GHG) intensity by 2025. A 6% reduction by 2030. A 13% reduction by 2035. A 26% reduction by 2040. A 59% reduction by 2045. A 75% reduction by 2050. |
European Union’s Emissions Trading System | 1 January 2024 | From 2024, shipping will be covered by an emissions trading scheme, which means that ships will have to buy emission permits for CO2. |
Area | Date Adoption | Effective Date | Date of Applicability | Oxides |
---|---|---|---|---|
Baltic Sea | 26 September 1997 | 19 May 2005 | 19 May 2006 | SOx |
North Sea | 22 July 2005 | 22 November 2006 | 22 November 2007 | SOx |
US Caribbean Islands | 26 July 2011 | 1 January 2013 | 1 January 2014 | SOx PM NOx |
The area around North America | 26 March 2010 | 1 August 2011 | 1 August 2012 | SOx NOx |
Type of Ship | Number of Ships | SH [%] |
---|---|---|
Tankers | 12,802 | 0.130 |
Bulk carriers | 10,650 | 0.108 |
Container ships | 5009 | 0.051 |
Specialized vessels | 30,193 | 0.308 |
General cargo carriers | 10,973 | 0.112 |
RO-RO/Passenger ships | 2236 | 0.023 |
Cruise ships | 5288 | 0.054 |
Other | 21,021 | 0.214 |
Total | 98,172 | 1 |
Port of Świnoujście | ||||||
---|---|---|---|---|---|---|
Day | Type of Ship * | Requested LNG Volume [m3] | Distance [Nm] | Type of Ship * | Requested LNG Volume [m3] | Distance [Nm] |
1 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | 0 | 0 | 0 | 0 | 0 | 0 |
3 | 4 | 399 | 6.5 | 0 | 0 | 0 |
4 | 8 | 24 | 7.5 | 1 | 0 | 0 |
5 | 1 | 1728 | 8.5 | 0 | 0 | 0 |
6 | 1 | 1728 | 7.5 | 0 | 0 | 0 |
7 | 2 | 130 | 9.5 | 0 | 0 | 0 |
8 | 2 | 130 | 7.0 | 5 | 125 | 8.0 |
9 | 0 | 0 | 0 | 0 | 0 | 0 |
10 | 2 | 200 | 9.5 | 1 | 619 | 7.5 |
Type of Ship | Requested LNG Volume [m3] | Loading Rate [m3/h] | Speed of LNG Bunkering Ship [kn] | Bunkering Lead Time [h] | ||||
---|---|---|---|---|---|---|---|---|
MIN | MAX | MIN | MAX | MIN | MAX | MIN | MAX | |
Tankers | 325 | 2000 | 500 | 1200 | 10 | 14 | 1.6 | 3.0 |
Bulk carriers | 110 | 500 | 500 | 500 | 10 | 10 | 1.3 | 2.2 |
Container ships | 490 | 18,600 | 500 | 1200 | 10 | 14 | 2.1 | 17.1 |
Specialized vessels | 70 | 450 | 500 | 500 | 10 | 10 | 1.2 | 2.0 |
General cargo carriers | 63 | 450 | 500 | 500 | 10 | 10 | 1.1 | 2.0 |
RO-RO/Passenger ships | 25 | 500 | 500 | 500 | 10 | 10 | 1.1 | 2.0 |
Cruise ships | 10 | 3400 | 500 | 1200 | 10 | 14 | 1.1 | 3.6 |
Other | 25 | 800 | 500 | 1000 | 10 | 10 | 1.1 | 1.9 |
Facility | Port | Bunkering | Size of LNG Storage Tanks |
---|---|---|---|
Small handling capacity | Darłowo Krynica Morska Kołobrzeg | Import terminals capable of bunkering <10,000 m3/year | 1000 m3 |
Medium handling capacity | Świnoujście | Import terminals capable of bunkering 10,000–100,000 m3/year | 25,000 m3 |
High handling capacity | Gdynia | Import terminals capable of bunkering >100,000 m3/year | 3 × 25,000 m3 |
Name | Gas Tank Capacity [m3] | Speed [kn] | Loading Rate [m3/h] |
---|---|---|---|
DALIAN 1 G8500-1 | 8330 | 10.00 | 1200 |
BUNKER BREEZE | 7800 | 10.00 | 1200 |
HYUNDAI MIPO 8250 | 7521 | 13.50 | 1200 |
KAIROS | 7521 | 13.50 | 1200 |
SM JEJU LNG1 | 7501 | 13.00 | 1200 |
KEPPEL SINGMARINE H410 | 7500 | 14.00 | 1200 |
CORAL METHANE | 7401 | 14.00 | 1200 |
KEPPEL SINGMARINE H400 | 7350 | 14.00 | 1000 |
KEPPEL SINGMARINE H401 | 7350 | 14.00 | 1000 |
NANTONG CIMC SINOPACIFIC S1049 | 7350 | 14.00 | 1200 |
NANTONG CIMC SINOPACIFIC S1050 | 7350 | 14.00 | 1200 |
SAMSUNG 2234 | 7350 | 14.00 | 1200 |
SM JEJU LNG2 | 7350 | 14.00 | 1200 |
CARDISSA | 6469 | 10.00 | 1200 |
CORAL ANTHELIA | 6443 | 15.50 | 1200 |
DAMEN GORINCHEM 559014 | 6000 | 13.40 | 1000 |
ELENGER | 6000 | 13.40 | 500 |
ESTI GASS | 6000 | 13.40 | 1000 |
KEPPEL SINGMARINE H414 | 5800 | 12.00 | 1000 |
CORALIUS | 5781 | 13.50 | 1000 |
ENGIE ZEEBRUGGE | 5000 | 10.50 | 1000 |
AKEBONO MARU | 3515 | 13.00 | 500 |
KAGUYA | 3500 | 12.00 | 500 |
KAWASAKI SAKAIDE 1744 (EX-2020) | 3500 | 12.00 | 500 |
LNG LONDON | 3000 | 10.70 | 500 |
JMU ARIAKE | 2500 | 14.00 | 1200 |
KAKUYU MARU | 2488 | 14.90 | 500 |
SHINJU MARU 1 | 2487 | 12.70 | 500 |
SHINJU MARU 2 | 2485 | 13.00 | 500 |
NORTH PIONEER | 2462 | 13.30 | 500 |
CLEAN JACKSONVILLE | 2200 | 8.00 | 500 |
PIONEER KNUTSEN | 1078 | 14.00 | 500 |
OIZMENDI | 600 | 9.30 | 500 |
FJALIR | 167 | 12.50 | 500 |
LNG SE-601 | 3000 | 10.00 | 1000 |
Port | LNG Bunkering Ship’s Capacity |
---|---|
Świnoujście | Less than 3000 m3 |
Gdynia | 5500–8000 m3 |
Darłowo | Less than 3000 m3 |
Kołobrzeg | 1000–8000 m3 |
Krynica Morska | 1000–3000 m3 |
Port | LNG Bunkering Ships |
---|---|
Gdynia | 3 × > 5500–8000 m3 |
Świnoujście | 3 × ≤ 1000 m3 2 × 1000–3000 m3 |
Darłowo | 2 × ≤ 1000 m3 1 × 1000–3000 m3 |
Krynica Morska | 1 × 1000–3000 m3 |
Kołobrzeg | 1 × 1000–3000 m3 1 × 3500–4000 m3 2 × 5500–8000 m3 |
Parameter | 2018 | 2019 | 2020 | 2021 | 2022 |
---|---|---|---|---|---|
Test value | 0.968 | 0.969 | 0.969 | 0.9389 | 0.9391 |
Critical value | 0.953 | 0.958 | 0.959 | 0.959 | 0.961 |
Normal distribution |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orysiak, E.; Shuper, M. Determination of Demand for LNG in Poland. Energies 2024, 17, 4414. https://doi.org/10.3390/en17174414
Orysiak E, Shuper M. Determination of Demand for LNG in Poland. Energies. 2024; 17(17):4414. https://doi.org/10.3390/en17174414
Chicago/Turabian StyleOrysiak, Ewelina, and Mykhaylo Shuper. 2024. "Determination of Demand for LNG in Poland" Energies 17, no. 17: 4414. https://doi.org/10.3390/en17174414
APA StyleOrysiak, E., & Shuper, M. (2024). Determination of Demand for LNG in Poland. Energies, 17(17), 4414. https://doi.org/10.3390/en17174414