Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (473)

Search Parameters:
Keywords = LEF

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3604 KiB  
Article
Analysis of the Differences in Rhizosphere Microbial Communities and Pathogen Adaptability in Chili Root Rot Disease Between Continuous Cropping and Rotation Cropping Systems
by Qiuyue Zhao, Xiaolei Cao, Lu Zhang, Xin Hu, Xiaojian Zeng, Yingming Wei, Dongbin Zhang, Xin Xiao, Hui Xi and Sifeng Zhao
Microorganisms 2025, 13(8), 1806; https://doi.org/10.3390/microorganisms13081806 (registering DOI) - 1 Aug 2025
Abstract
In chili cultivation, obstacles to continuous cropping significantly compromise crop yield and soil health, whereas crop rotation can enhance the microbial environment of the soil and reduce disease incidence. However, its effects on the diversity of rhizosphere soil microbial communities are not clear. [...] Read more.
In chili cultivation, obstacles to continuous cropping significantly compromise crop yield and soil health, whereas crop rotation can enhance the microbial environment of the soil and reduce disease incidence. However, its effects on the diversity of rhizosphere soil microbial communities are not clear. In this study, we analyzed the composition and characteristics of rhizosphere soil microbial communities under chili continuous cropping (CC) and chili–cotton crop rotation (CR) using high-throughput sequencing technology. CR treatment reduced the alpha diversity indices (including Chao1, Observed_species, and Shannon index) of bacterial communities and had less of an effect on fungal community diversity. Principal component analysis (PCA) revealed distinct compositional differences in bacterial and fungal communities between the treatments. Compared with CC, CR treatment has altered the structure of the soil microbial community. In terms of bacterial communities, the relative abundance of Firmicutes increased from 12.89% to 17.97%, while the Proteobacteria increased by 6.8%. At the genus level, CR treatment significantly enriched beneficial genera such as RB41 (8.19%), Lactobacillus (4.56%), and Bacillus (1.50%) (p < 0.05). In contrast, the relative abundances of Alternaria and Fusarium in the fungal community decreased by 6.62% and 5.34%, respectively (p < 0.05). Venn diagrams and linear discriminant effect size analysis (LEfSe) further indicated that CR facilitated the enrichment of beneficial bacteria, such as Bacillus, whereas CC favored enrichment of pathogens, such as Firmicutes. Fusarium solani MG6 and F. oxysporum LG2 are the primary chili root-rot pathogens. Optimal growth occurs at 25 °C, pH 6: after 5 days, MG6 colonies reach 6.42 ± 0.04 cm, and LG2 5.33 ± 0.02 cm, peaking in sporulation (p < 0.05). In addition, there are significant differences in the utilization spectra of carbon and nitrogen sources between the two strains of fungi, suggesting their different ecological adaptability. Integrated analyses revealed that CR enhanced soil health and reduced the root rot incidence by optimizing the structure of soil microbial communities, increasing the proportion of beneficial bacteria, and suppressing pathogens, providing a scientific basis for microbial-based soil management strategies in chili cultivation. Full article
(This article belongs to the Section Microbiomes)
Show Figures

Figure 1

17 pages, 5265 KiB  
Article
Influence of Agricultural Practices on Soil Physicochemical Properties and Rhizosphere Microbial Communities in Apple Orchards in Xinjiang, China
by Guangxin Zhang, Zili Wang, Huanhuan Zhang, Xujiao Li, Kun Liu, Kun Yu, Zhong Zheng and Fengyun Zhao
Horticulturae 2025, 11(8), 891; https://doi.org/10.3390/horticulturae11080891 (registering DOI) - 1 Aug 2025
Abstract
In response to the challenges posed by soil degradation in the arid regions of Xinjiang, China, green and organic management practices have emerged as effective alternatives to conventional agricultural management methods, helping to mitigate soil degradation by promoting natural soil recovery and ecological [...] Read more.
In response to the challenges posed by soil degradation in the arid regions of Xinjiang, China, green and organic management practices have emerged as effective alternatives to conventional agricultural management methods, helping to mitigate soil degradation by promoting natural soil recovery and ecological balance. However, most of the existing studies focus on a single management practice or indicator and lack a systematic assessment of the effects of integrated orchard management in arid zones. This study aims to investigate how different agricultural management practices influence soil physicochemical properties and inter-root microbial communities in apple orchards in Xinjiang and to identify the main physicochemical factors affecting the composition of inter-root microbial communities. Inter-root soil samples were collected from apple orchards under green management (GM), organic management (OM), and conventional management (CM) in major apple-producing regions of Xinjiang. Microbial diversity and community composition of the samples were analyzed using high-throughput amplicon sequencing. The results revealed significant differences (p < 0.05) in soil physicochemical properties across different management practices. Specifically, GM significantly reduced soil pH and C:N compared with OM. Both OM and GM significantly decreased soil available nutrient content compared with CM. Moreover, GM and OM significantly increased bacterial diversity and changed the community composition of bacteria and fungi. Proteobacteria and Ascomycota were identified as the dominant bacteria and fungi, respectively, in all management practices. Linear discriminant analysis (LEfSe) showed that biomarkers were more abundant under OM, suggesting that OM may contribute to ecological functions through specific microbial taxa. Co-occurrence network analysis (building a network of microbial interactions) demonstrated that the topologies of bacteria and fungi varied across different management practices and that OM increased the complexity of microbial co-occurrence networks. Mantel test analysis (analyzing soil factors and microbial community correlations) showed that C:N and available potassium (AK) were significantly and positively correlated with the community composition of bacteria and fungi, and that C:N, soil organic carbon (SOC), and alkaline hydrolyzable nitrogen (AN) were significantly and positively correlated with the diversity of fungi. Redundancy analysis (RDA) further indicated that SOC, C:N, and AK were the primary soil physicochemical factors influencing the composition of microbial communities. This study provides theoretical guidance for the sustainable management of orchards in arid zones. Full article
(This article belongs to the Section Fruit Production Systems)
Show Figures

Figure 1

31 pages, 2032 KiB  
Review
Leflunomide Applicability in Rheumatoid Arthritis: Drug Delivery Challenges and Emerging Formulation Strategies
by Ashish Dhiman and Kalpna Garkhal
Drugs Drug Candidates 2025, 4(3), 36; https://doi.org/10.3390/ddc4030036 (registering DOI) - 1 Aug 2025
Abstract
Rheumatoid arthritis (RA) is a chronic systemic inflammatory disorder primarily targeting joints, leading to pain, swelling, and stiffness. RA results from the body’s own immune system attacking its own tissues. Currently, there are various treatments available for RA including disease-modifying antirheumatic drugs (DMARDs) [...] Read more.
Rheumatoid arthritis (RA) is a chronic systemic inflammatory disorder primarily targeting joints, leading to pain, swelling, and stiffness. RA results from the body’s own immune system attacking its own tissues. Currently, there are various treatments available for RA including disease-modifying antirheumatic drugs (DMARDs) and NSAIDs. Leflunomide (LEF) is a USFDA-approved synthetic DMARD which is being widely prescribed for the management of RA; however, it faces several challenges such as prolonged drug elimination, hepatotoxicity, and others. LEF exerts its therapeutic effects by inhibiting dihydroorotate dehydrogenase (DHODH), thereby suppressing pyrimidine synthesis and modulating immune responses. Emerging nanotechnology-based therapies help in encountering the current challenges faced in LEF delivery to RA patients. This review enlists the LEF’s pharmacokinetics, mechanism of action, and clinical efficacy in RA management. A comparative analysis with methotrexate, biologics, and other targeted therapies, highlighting its role in monotherapy and combination regimens and the safety concerns, including hepatotoxicity, gastrointestinal effects, and teratogenicity, is discussed alongside recommended monitoring strategies. Additionally, emerging trends in novel formulations and drug delivery approaches are explored to enhance efficacy and minimize adverse effects. Overall, LEF remains a perfect remedy for RA patients, specifically individuals contraindicated with drugs like methotrexate. The therapeutic applicability of LEF could be enhanced by developing more customized treatments and advanced drug delivery approaches. Full article
(This article belongs to the Section Marketed Drugs)
Show Figures

Figure 1

26 pages, 3684 KiB  
Article
Creation of Zinc (II)-Complexed Green Tea and Its Effects on Gut Microbiota by Daily Green Tea Consumption
by Tsukasa Orita, Daichi Ijiri, De-Xing Hou and Kozue Sakao
Molecules 2025, 30(15), 3191; https://doi.org/10.3390/molecules30153191 - 30 Jul 2025
Viewed by 6
Abstract
Although Zn (II)-(−)-Epigallocatechin gallate (EGCg) complex (Zn-EGCg) is known for its promising bioactivities, little attention has been paid to its incorporation into daily green tea consumption. In this study, we aimed to incorporate Zn (II) into green tea extract to promote the formation [...] Read more.
Although Zn (II)-(−)-Epigallocatechin gallate (EGCg) complex (Zn-EGCg) is known for its promising bioactivities, little attention has been paid to its incorporation into daily green tea consumption. In this study, we aimed to incorporate Zn (II) into green tea extract to promote the formation of Zn-EGCg complex within the tea matrix. We then investigated how the formation of Zn-complexed green tea extract (Zn-GTE) influences the gut microbiota in a Western diet (WD)-fed mouse model. Structural analyses using ultraviolet–visible spectroscopy (UV–Vis), Fourier-transform infrared spectroscopy (FT-IR), proton nuclear magnetic resonance (1H NMR), and powder X-ray diffraction (PXRD) suggested that Zn (II) interacted with hydroxyl groups of polyphenols within the extract, consistent with Zn-EGCg formation, although the complex could not be unequivocally identified. Under intake levels equivalent to daily consumption, Zn-GTE administration restored WD-induced reductions in alpha-diversity and resulted in a distinct microbial composition compared to treatment with green tea extract (GTE) or Zn alone, as shown by beta-diversity analysis. Linear discriminant analysis Effect Size (LEfSe) analysis revealed increased abundances of bacterial taxa belonging to o_Clostridiales, o_Bacteroidales, and f_Rikenellaceae, and decreased abundances of g_Akkermansia in the Zn-GTE group compared to the GTE group. These findings highlight that Zn-GTE, prepared via Zn (II) supplementation to green tea, may exert distinct microbiota-modulating effects compared to its individual components. This study provides new insights into the role of dietary metal–polyphenol complexes, offering a food-based platform for studying metal–polyphenol interactions under physiologically relevant conditions. Full article
(This article belongs to the Special Issue Health Benefits and Applications of Bioactive Phenolic Compounds)
Show Figures

Figure 1

15 pages, 2248 KiB  
Article
Effects of Treadmill Exercise on Gut Microbiota in Alzheimer’s Disease Model Mice and Wild-Type Mice
by Zhe Zhao, Xingqing Wu, Wenfeng Liu, Lan Zheng and Changfa Tang
Microorganisms 2025, 13(8), 1765; https://doi.org/10.3390/microorganisms13081765 - 29 Jul 2025
Viewed by 161
Abstract
There is a growing body of research showing that Alzheimer’s disease (AD) is related to enteric dysbacteriosis. Exercise can be effective in alleviating AD, but the effects that exercise has on the gut microbiota in AD patients needs to be further studied. Through [...] Read more.
There is a growing body of research showing that Alzheimer’s disease (AD) is related to enteric dysbacteriosis. Exercise can be effective in alleviating AD, but the effects that exercise has on the gut microbiota in AD patients needs to be further studied. Through this study, we aimed to investigate the differences in the diversity of gut microorganisms between AD model mice and wild-type mice and the effect that treadmill exercise has on the composition of the gut microbiota in both types of mice. C57BL/6 wild-type mice were randomly divided into a sedentary control group (WTC) and an exercise group (WTE); APP/PS1 double transgenic mice were also randomly divided into a sedentary control group (ADC) and an exercise group (ADE). After the control group remained sedentary for 12 weeks and a 12-week treadmill exercise intervention was adopted for the exercise group, the rectal contents were collected so that they could undergo V3-V4 16S rDNA sequencing, and a comparative analysis of the microbial composition and diversity was also performed. The alpha diversity of the gut microbiota in AD mice was lower than that in wild-type mice, but exercise increased the gut microbial diversity in both types of mice. At the phylum level, the dominant microorganisms in all four groups of mice were Bacteroidetes and Firmicutes. There was an increase in the Bacteroidetes phylum in AD mice. Treadmill exercise reduced the abundance of Bacteroidetes in both groups of mice, whereas the abundance of Firmicutes increased. At the genus level, Muribaculaceae, the Lachnospiraceae_NK4A136_group, Alloprevotella, and Alistipes were in relatively high abundance. Muribaculaceae and Alloprevotella were in greater abundance in AD mice than in wild-type mice, but both decreased after treadmill exercise. Through performing linear discriminant analysis effect size (LEfSe), we found that the dominant strains in AD mice were Campilobacterota, Helicobacteraceae, Escherichia–Shigella, and other malignant bacteria, whereas exercise resulted in an increase in probiotics among the dominant strains in both types of mice. Although gut microbial diversity decreases and malignant bacteria increase in AD mice, treadmill exercise can increase gut microbial diversity and lead to the development of dominant strains of probiotics in both types of mice. These findings provide a basis for applying exercise as a treatment for AD. Full article
Show Figures

Figure 1

14 pages, 513 KiB  
Article
Tailoring Treatment in Complex Regional Pain Syndrome: A Comparative Study of Therapeutic Approaches in Complex Rehabilitation
by Iana Andreieva, Beata Tarnacka, Adam Zalewski and Justyna Wiśniowska
Pharmaceuticals 2025, 18(8), 1114; https://doi.org/10.3390/ph18081114 - 25 Jul 2025
Viewed by 186
Abstract
Complex regional pain syndrome (CRPS) is a disabling pain condition, which is distinct from other pain syndromes by the presence of autonomic dysfunction and regional inflammatory changes. Objectives: To explore the impact of pharmacological treatment strategies, specifically scheduled, on-demand dosing regimens versus lack [...] Read more.
Complex regional pain syndrome (CRPS) is a disabling pain condition, which is distinct from other pain syndromes by the presence of autonomic dysfunction and regional inflammatory changes. Objectives: To explore the impact of pharmacological treatment strategies, specifically scheduled, on-demand dosing regimens versus lack of medical treatment, on pain-related and functional outcomes in rehabilitation for individuals with CRPS. Methods: A total of 32 participants with CRPS were assigned to three treatment groups depending on analgesic treatment during the course of complex rehabilitation. Pre- and post-rehabilitation assessments were conducted using validated measures, including the Numerical Rating Scale (NRS) for pain, the Short-Form McGill Pain Questionnaire (SF-MPQ), PainDETECT, the Disabilities of the Arm, Shoulder, and Hand (DASH), and the Lower Extremity Functional Scale (LEFS). Results: Significant improvements in pain and upper limb function (DASH scores) were observed across all groups (p < 0.05). No statistically significant changes were found in lower limb function (LEFS). Between-group comparisons revealed significant differences in post-treatment pain scores (SFMPQ-B), particularly between groups with a constant treatment regimen and those without treatment. Conclusions: There were no statistically significant changes compared to different treatment regimen groups. The constant treatment group showed slightly better average improvements in pain and disability compared to other groups. Statistically significant improvements in all CRPS patients were observed in pain-related and functional measures. Full article
(This article belongs to the Special Issue Pharmacotherapy for Neuropathic Pain)
Show Figures

Figure 1

27 pages, 4050 KiB  
Article
The Gut Mycobiome and Nutritional Status in Paediatric Phenylketonuria: A Cross-Sectional Pilot Study
by Malgorzata Ostrowska, Elwira Komoń-Janczara, Bozena Mikoluc, Katarzyna Iłowiecka, Justyna Jarczak, Justyna Zagórska, Paulina Zambrzycka, Silvia Turroni and Hubert Szczerba
Nutrients 2025, 17(15), 2405; https://doi.org/10.3390/nu17152405 - 23 Jul 2025
Viewed by 211
Abstract
Background: Phenylketonuria (PKU) is a metabolic disorder managed through a strict, lifelong low-phenylalanine diet, which may influence gut microbiome dynamics. While gut bacterial alterations in PKU are increasingly investigated, the fungal community (mycobiome) remains largely unexplored. This study compared gut mycobiome composition and [...] Read more.
Background: Phenylketonuria (PKU) is a metabolic disorder managed through a strict, lifelong low-phenylalanine diet, which may influence gut microbiome dynamics. While gut bacterial alterations in PKU are increasingly investigated, the fungal community (mycobiome) remains largely unexplored. This study compared gut mycobiome composition and dietary profiles of paediatric PKU patients and healthy controls, stratified by age (<10 and 10–18 years). Methods: Stool samples from 20 children (10 PKU, 10 controls) were analysed using ITS1/ITS2 amplicon sequencing. Nutritional status was assessed using Body Mass Index percentiles (Polish standards), and nutrient intake was evaluated from three-day dietary records compared to national reference values. Correlations between fungal taxa and dietary factors were explored. Results: Although alpha diversity did not differ significantly, beta diversity and LEfSe analyses revealed distinct fungal profiles between PKU patients and controls, indicating a trend toward group separation (PERMANOVA: F = 1.54646, p = 0.09; ANOVA: p = 0.0609). PKU patients showed increased Eurotiales (p = 0.029), Aspergillaceae (p = 0.029), and Penicillium (p = 0.11) and decreased Physalacriaceae (0% vs. 5.84% in controls) and Malassezia (p = 0.13). Spearman’s analysis showed significant correlations between Geotrichum and intake of protein (ρ = 0.55, p = 0.0127) and phenylalanine (ρ = 0.70, p = 0.0005). Conclusions: Dietary treatment in PKU is associated with age-dependent shifts in the gut mycobiome, notably increasing the abundance of taxa such as Eurotiales, Aspergillaceae, and Penicillium, involved in carbohydrate/lipid metabolism and mucosal inflammation. These findings highlight the potential of gut fungi as nutritional and clinical biomarkers in PKU. Full article
(This article belongs to the Special Issue Nutrients: 15th Anniversary)
Show Figures

Figure 1

23 pages, 4569 KiB  
Article
Multi-Omics Analysis Provides New Insights into the Interplay Between Gut Microbiota, Fatty Acid Metabolism, and Immune Response in Cultured and Wild Coilia nasus from the Yangtze River Area in China
by Chang Yang, Kai Liu, Yanmin Deng, Qianhui Wang, Shiqian Cao and Qunlan Zhou
Microorganisms 2025, 13(7), 1711; https://doi.org/10.3390/microorganisms13071711 - 21 Jul 2025
Viewed by 328
Abstract
To elucidate the interactions among fatty acid metabolism, immune status, and gut microbiota, both cultured and wild Coilia nasus from the Yangtze River were examined in China. The results demonstrated that wild C. nasus exhibited markedly higher lipid and docosahexaenoic acid (DHA) contents, [...] Read more.
To elucidate the interactions among fatty acid metabolism, immune status, and gut microbiota, both cultured and wild Coilia nasus from the Yangtze River were examined in China. The results demonstrated that wild C. nasus exhibited markedly higher lipid and docosahexaenoic acid (DHA) contents, a greater ratio of total ω-3 PUFAs to total ω-6 PUFAs, and more active antioxidant enzymes compared to cultured C. nasus. However, the shear force, water-holding capacity, and total n-6 PUFA content were lower in wild C. nasus. Transcriptome analysis revealed distinct gene expression patterns: wild C. nasus upregulated immune-related genes, while cultured C. nasus downregulated genes related to fatty acid metabolism. Significant differences were observed in alpha and beta diversity between cultured and wild groups. LEfSe analysis identified Clostridium_T, Escherichia, and Glutamicibacter as biomarkers for cultured C. nasus, while eight genera, including Pseudomonas_E and Sphingomonas_L, were predominant in wild C. nasus. Modular analysis identified five modules linked to immune functions and fatty acid metabolism. Clostridium_T, Sphingomonas_L, and Pseudomonas_E were dominant in the first two modules, with Pseudomonas_E and Clostridium_T as key regulators of fatty acid metabolism and immune processes. These differences, likely due to gut microbiota variations, provide insights for C. nasus nutritional studies. Full article
(This article belongs to the Special Issue Microbiome in Fish and Their Living Environment)
Show Figures

Figure 1

17 pages, 1694 KiB  
Article
Gut Microbiota Shifts After a Weight Loss Program in Adults with Obesity: The WLM3P Study
by Vanessa Pereira, Amanda Cuevas-Sierra, Victor de la O, Rita Salvado, Inês Barreiros-Mota, Inês Castela, Alexandra Camelo, Inês Brandão, Christophe Espírito Santo, Ana Faria, Conceição Calhau, Marta P. Silvestre and André Moreira-Rosário
Nutrients 2025, 17(14), 2360; https://doi.org/10.3390/nu17142360 - 18 Jul 2025
Viewed by 395
Abstract
Background: The gut microbiota is increasingly recognized as a key modulator in obesity management, influencing host energy balance, lipid metabolism, and inflammatory pathways. With obesity prevalence continuing to rise globally, dietary interventions that promote beneficial microbial shifts are essential for enhancing weight loss [...] Read more.
Background: The gut microbiota is increasingly recognized as a key modulator in obesity management, influencing host energy balance, lipid metabolism, and inflammatory pathways. With obesity prevalence continuing to rise globally, dietary interventions that promote beneficial microbial shifts are essential for enhancing weight loss outcomes and long-term health. Objective: This study investigated the effects of the multicomponent Weight Loss Maintenance 3 Phases Program (WLM3P), which integrates caloric restriction, a high-protein low-carbohydrate diet, time-restricted eating (10h TRE), dietary supplementation (prebiotics and phytochemicals), and digital app-based support on gut microbiota composition compared to a standard low-carbohydrate diet (LCD) in adults with obesity. The analysis focused exclusively on the 6-month weight loss period corresponding to Phases 1 and 2 of the WLM3P intervention. Methods: In this sub-analysis of a randomized controlled trial (ClinicalTrials.gov Identifier: NCT04192357), 58 adults with obesity (BMI 30.0–39.9 kg/m2) were randomized to the WLM3P (n = 29) or LCD (n = 29) groups. Stool samples were collected at baseline and 6 months for 16S rRNA sequencing. Alpha and beta diversity were assessed, and genus-level differential abundance was determined using EdgeR and LEfSe. Associations between microbial taxa and clinical outcomes were evaluated using regression models. Results: After 6-month, the WLM3P group showed a significant increase in alpha diversity (p = 0.03) and a significant change in beta diversity (p < 0.01), while no significant changes were observed in the LCD group. Differential abundance analysis revealed specific microbial signatures in WLM3P participants, including increased levels of Faecalibacterium. Notably, higher Faecalibacterium abundance was associated with greater reductions in fat mass (kg, %) and visceral adiposity (cm2) in the WLM3P group compared to LCD (p < 0.01). Conclusions: These findings suggest a potential microbiota-mediated mechanism in weight loss, where Faecalibacterium may enhance fat reduction effectiveness in the context of the WLM3P intervention. Full article
(This article belongs to the Section Prebiotics and Probiotics)
Show Figures

Figure 1

28 pages, 1119 KiB  
Review
β-Catenin: A Key Molecule in Osteoblast Differentiation
by Edyta Wróbel, Piotr Wojdasiewicz, Agnieszka Mikulska and Dariusz Szukiewicz
Biomolecules 2025, 15(7), 1043; https://doi.org/10.3390/biom15071043 - 18 Jul 2025
Viewed by 409
Abstract
β-catenin is a key regulator of osteoblast differentiation, proliferation, and bone homeostasis. Through its interaction with transcription factors such as TCF/LEF, Runx2, and Osx, it coordinates gene expression essential for osteogenesis. The aim of this review is to demonstrate how β-catenin signaling is [...] Read more.
β-catenin is a key regulator of osteoblast differentiation, proliferation, and bone homeostasis. Through its interaction with transcription factors such as TCF/LEF, Runx2, and Osx, it coordinates gene expression essential for osteogenesis. The aim of this review is to demonstrate how β-catenin signaling is modulated by various physiological and pathological factors, including mechanical loading, oxidative stress, HIV-1 gp120, fluoride, implant topography, and microRNAs. These factors influence Wnt/β-catenin signaling through different mechanisms, often exerting opposing effects on osteoblast function. By integrating these modulators, we provide a comprehensive view of the dynamic regulation of β-catenin in bone biology. Understanding this complexity may provide insight into novel therapeutic strategies targeting β-catenin in bone regeneration, metabolic bone diseases, and pathologies such as HIV-associated bone loss or osteosarcoma. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

15 pages, 10930 KiB  
Article
Leflunomide-Mediated Immunomodulation Inhibits Lesion Progression in a Vitiligo Mouse Model
by Fang Miao, Xiaohui Li, Liang Zhao, Shijiao Zhang, Mengmeng Geng, Chuhuan Ye, Ying Shi and Tiechi Lei
Int. J. Mol. Sci. 2025, 26(14), 6787; https://doi.org/10.3390/ijms26146787 - 15 Jul 2025
Viewed by 272
Abstract
Autoimmune CD8+ T cell-driven melanocyte destruction constitutes a key pathogenic mechanism in the development of vitiligo. Therefore, the pharmacological inhibition of CD8+ T cell effector functions and skin trafficking is a clinically viable therapeutic strategy. This study investigates leflunomide (LEF), an [...] Read more.
Autoimmune CD8+ T cell-driven melanocyte destruction constitutes a key pathogenic mechanism in the development of vitiligo. Therefore, the pharmacological inhibition of CD8+ T cell effector functions and skin trafficking is a clinically viable therapeutic strategy. This study investigates leflunomide (LEF), an immunomodulatory drug with established safety in autoimmune diseases, for its therapeutic potential in a tyrosine-related protein (TRP) 2-180-induced vitiligo mouse model. Through flow cytometry, immunofluorescence, ELISA, and histopathological analyses, we systematically evaluated LEF’s effects on T cell regulation, chemokine expression, and cytokine profiles. Key findings demonstrated that LEF (20 mg/kg/day) significantly attenuated depigmentation by reducing CD8+ T cell infiltration and suppressing the IFN-γ-driven expression of CXCL9/10. Furthermore, LEF restored CD4+/CD8+ T cell homeostasis and rebalanced pro-inflammatory (IFN-γ, TNF-α, IL-2) and anti-inflammatory (IL-4, IL-10) cytokines, inducing a shift from Th1 to Th2. These results position LEF as an effective immunomodulator that disrupts the IFN-γ-CXCL9/10 axis and re-establishes immune balance, offering a promising repurposing strategy for halting vitiligo progression. Full article
(This article belongs to the Special Issue Advances in Vitiligo: From Mechanisms to Treatment Innovations)
Show Figures

Figure 1

11 pages, 2910 KiB  
Communication
Theoretical Study on Low-Chirp Directly Modulated DFB Lasers with (110)-Oriented Quantum Well
by Jianwei Li, Mengzhu Hu, Xinyang Su, Yanting Liu and Ke Zhan
Photonics 2025, 12(7), 647; https://doi.org/10.3390/photonics12070647 - 25 Jun 2025
Viewed by 304
Abstract
The low-chirp operation of distributed feedback lasers is highly desirable in high-speed and high-bit rate optical transmission. In this article, we address this issue by theoretically investigating the possibility of further a reduction in the linewidth enhancement factor (LEF) of a quantum well [...] Read more.
The low-chirp operation of distributed feedback lasers is highly desirable in high-speed and high-bit rate optical transmission. In this article, we address this issue by theoretically investigating the possibility of further a reduction in the linewidth enhancement factor (LEF) of a quantum well (QW). The energy band structure of AlGaInAs quantum-well DFB lasers grown with a (110) crystal orientation in the active region of the L-band has been theoretically analyzed using multi-band k.p perturbation theory, by reducing the asymmetry of conduction bands and valence bands and thus the linewidth enhancement factor parameter, which is related to the frequency chirp. Simulation results show that the LEF of the directly modulated DFB laser is reduced from 2.434 to 1.408 by designing the (110)-oriented compression-strained Al0.06Ga0.24InAs multiple-quantum-well structure, and the eye diagram of the (110)-oriented quantum-well DFB laser with a digital signal transmission of 20 km is significantly better than the (001) crystal-oriented quantum-well DFB laser for the 10Gbps optical fiber communication system, thus achieving a longer distance and higher-quality optical signal transmission. Full article
(This article belongs to the Section Optoelectronics and Optical Materials)
Show Figures

Figure 1

15 pages, 1371 KiB  
Article
Host Plant Dependence of the Symbiotic Microbiome of the Gall-Inducing Wasp Trichagalma acutissimae
by Yingnan Wang, Yuanchen Zhang, Ran Li, Yujian Li, Muha Cha and Xianfeng Yi
Insects 2025, 16(7), 652; https://doi.org/10.3390/insects16070652 - 23 Jun 2025
Viewed by 491
Abstract
Symbiotic bacteria play a pivotal role in the biology and ecology of herbivorous insects, affecting host growth and adaptation. However, the effects of host identity on the symbiotic microbiota of gall-inducing insects remain less explored. In this study, we utilized high-throughput sequencing to [...] Read more.
Symbiotic bacteria play a pivotal role in the biology and ecology of herbivorous insects, affecting host growth and adaptation. However, the effects of host identity on the symbiotic microbiota of gall-inducing insects remain less explored. In this study, we utilized high-throughput sequencing to investigate the effects of different oak hosts on the structure and diversity of the symbiotic microbial community in the asexual larvae of the gall-inducing wasp Trichagalma acutissimae. Host plant species significantly altered the alpha and beta diversity of symbiotic microbiota of T. acutissimae. At the phylum level, Proteobacteria was the predominant microflora in both groups, with significantly higher abundance in larvae parasitizing Quercus acutissima than in those parasitizing Q. variabilis. Pseudomonas, which has been identified as responsible for tannin decomposition, was the most dominant genus in T. acutissimae larvae infesting both hosts. LEfSe analysis revealed substantial differences in the symbiotic microbial communities between the two hosts while also highlighting some commonalities. Functional prediction analysis indicated no significant difference in the functional roles of symbiotic bacteria between larvae infesting the two hosts. These findings suggest that the symbiotic microbiome of T. acutissimae larvae is influenced by host plant species, yet different microbial compositions may perform similar functions, implying the potential role of symbiotic microbiota in the adaptation to high-tannin oak leaves. This research enhances our understanding of the symbiotic relationship between forest pests and their associated microbes. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

10 pages, 852 KiB  
Article
Correlates of Orthotic Prosthetic User Survey, Performance-Based Outcome Measures and Balance in Lower Limb Prosthesis Users
by John D. Smith and Gary Guerra
Prosthesis 2025, 7(3), 66; https://doi.org/10.3390/prosthesis7030066 - 19 Jun 2025
Viewed by 339
Abstract
Background: This study compared performance-based function and self-report function in lower-limb prosthesis users. Methods: Twenty-two lower-limb prosthesis users (aged 52.1 ± 14.2) were administered the Orthotic Prosthetic User Survey (OPUS) Lower Extremity Functional Status (LEF), Satisfaction With Devices (SWD), alongside the Godin Leisure-Time [...] Read more.
Background: This study compared performance-based function and self-report function in lower-limb prosthesis users. Methods: Twenty-two lower-limb prosthesis users (aged 52.1 ± 14.2) were administered the Orthotic Prosthetic User Survey (OPUS) Lower Extremity Functional Status (LEF), Satisfaction With Devices (SWD), alongside the Godin Leisure-Time Exercise Questionnaire (GLTQ), Timed Up and Go (TUG) test, two-minute walk test (2MWT), and six-minute walk test (6MWT). Body composition and standing postural sway displacement and velocity were also measured. Pearson’s Product Moment coefficients were used to assess relationships between the OPUS and other outcome variables. ANOVAs were used to identify differences in all outcome variables between lower unilateral (LU) and all other (AO) amputees. Results: There was a moderate correlation between LEF and center of pressure (CoP) path length with eyes open (r(19) = −0.43, p = 0.048) and eyes closed (r(19) = −0.43, p = 0.049). While the relationship between LEF and TUG was significant (r(20) = −0.49, p = 0.021), this was not so with SWD and TUG (r(20) = −0.17, p = 0.456). Both the 2MWT (r(20) = 0.48, p = 0.023) and 6MWT (r(20) = 0.47, p = 0.028) were moderately correlated with LEF. GLTQ was significantly correlated with LEF (r(20) = 0.70, p = 0.001). The LU group outperformed the AP group during the TUG and 6MWT (p < 0.05). LU group scored significantly higher on LEF compared to the AO group (p < 0.05). The reliability of LEF between the measurement on day 1 (54.3 ± 12.0) and day 2 (53.6 ± 12.8) was high (α = 0.94). Conclusions: This study provides an insight into associations of balance and self-reported function in lower limb prosthesis users. Future work can target rehabilitation strategies to address challenges faced by multiple limb prosthesis users. Full article
Show Figures

Figure 1

16 pages, 2877 KiB  
Article
Diversity and Composition of Gut Microbiota in Different Developmental Stages of the Tibetan Toad (Bufo tibetanus)
by Kaiqin He, Cong Han, Chenyang Liu and Lixia Zhang
Animals 2025, 15(12), 1742; https://doi.org/10.3390/ani15121742 - 12 Jun 2025
Viewed by 1248
Abstract
The intestinal microbiota is vital for host immunity and metabolism, and its changes are associated with the development stage of hosts. However, little is known regarding how growth and development of anurans affect the diversity of their microbiota, which has a complex life [...] Read more.
The intestinal microbiota is vital for host immunity and metabolism, and its changes are associated with the development stage of hosts. However, little is known regarding how growth and development of anurans affect the diversity of their microbiota, which has a complex life cycle. The Tibetan toad (Bufo tibetanus) is a wild population in the high-altitude area of southwest China, which has special adaptability to the environment. Here, the microbial community of the Tibetan toad at six developmental stages (from the tadpole at Gosner stage 18 to the 8-year-old adult) was assessed using high-throughput 16S rRNA sequencing. The alpha diversity index analysis showed that the Chao, Ace, and Shannon indices were highest at Gosner stage 32 and decreased as development progressed, and their alpha diversity remained unchanged over time in adult stages. Beta diversity revealed that the gut microbiota structure differed significantly from Gosner stages 18 to 31, and it became similar to adult toads from Gosner stages 45 to 46 and in juvenile groups. At the phylum level, Firmicutes, Proteobacteria, and Actinobacteria were dominant phyla in tadpoles and adults. The relative abundance of Firmicutes and Proteobacteria in the adult group was significantly higher and lower than that of tadpoles, respectively. The linear discriminant analysis effect size (LEfSe) analysis identified seven phyla exhibiting significant differences during life stages: Verrucomicrobiota, Bacteroidota, and Proteobacteria (Gosner 18 to 31), Cyanobateria and Chloroflexi (Gosner 32 to 41), Actinobacteriota (Gosner 45 to 46), Desulfobacterota (juvenile group), and Firmicutes (adult group). A pathway enrichment analysis revealed that the metabolism and biosynthesis of secondary metabolites were significantly enriched across all developmental stages. This research unveiled variations in the intestinal microbiota composition during development in anurans. Factors such as developmental stage, habitat type and feeding habit jointly affected the gut microbial diversity and community composition in the Tibetan toad. The findings of this study can provide information for understanding the influence of historical developments on the intestinal microbiota and provide protection information for anurans. Full article
(This article belongs to the Section Herpetology)
Show Figures

Figure 1

Back to TopTop