Phenotyping the Athletic Gut Microbiota: The Basis of Health and Physical Performance?

A special issue of Microorganisms (ISSN 2076-2607). This special issue belongs to the section "Gut Microbiota".

Deadline for manuscript submissions: 30 November 2025 | Viewed by 4384

Special Issue Editor


E-Mail Website
Guest Editor
Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Bilbao, Spain
Interests: physiology; gut microbiota; exercise; hypoxia; nutrition; hyperthermia

Special Issue Information

Dear Colleagues,

Athletic performance is based on the premise that better systemic health directly contributes to reduced illness, injury or impaired biological potential. In recent years, several studies have shown how healthy gut health, including a higher diversity, versatile and beneficial microbiota composition, contributes to increased physical performance. However, while the study of gut microbiota has been growing over the last decade, sports nutritional recommendations remain as mechanistic and reductionist theories: ‘so much you spend, so much you have to eat, so much you have to eat and when’. Phenotyping the microbiota in athletes should provide concrete functions that symbiotically alter physiological functions and contribute to a better biological expression. Future studies should propose an optimal relationship between precision nutrition and the expression of functional phenotypes of physical performance.

I look forward to receiving your contributions.

Dr. Jesús Álvarez-Herms
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Microorganisms is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • physiology
  • gut microbiota
  • exercise
  • hypoxia
  • nutrition
  • hyperthermia

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

15 pages, 2248 KiB  
Article
Effects of Treadmill Exercise on Gut Microbiota in Alzheimer’s Disease Model Mice and Wild-Type Mice
by Zhe Zhao, Xingqing Wu, Wenfeng Liu, Lan Zheng and Changfa Tang
Microorganisms 2025, 13(8), 1765; https://doi.org/10.3390/microorganisms13081765 - 29 Jul 2025
Viewed by 161
Abstract
There is a growing body of research showing that Alzheimer’s disease (AD) is related to enteric dysbacteriosis. Exercise can be effective in alleviating AD, but the effects that exercise has on the gut microbiota in AD patients needs to be further studied. Through [...] Read more.
There is a growing body of research showing that Alzheimer’s disease (AD) is related to enteric dysbacteriosis. Exercise can be effective in alleviating AD, but the effects that exercise has on the gut microbiota in AD patients needs to be further studied. Through this study, we aimed to investigate the differences in the diversity of gut microorganisms between AD model mice and wild-type mice and the effect that treadmill exercise has on the composition of the gut microbiota in both types of mice. C57BL/6 wild-type mice were randomly divided into a sedentary control group (WTC) and an exercise group (WTE); APP/PS1 double transgenic mice were also randomly divided into a sedentary control group (ADC) and an exercise group (ADE). After the control group remained sedentary for 12 weeks and a 12-week treadmill exercise intervention was adopted for the exercise group, the rectal contents were collected so that they could undergo V3-V4 16S rDNA sequencing, and a comparative analysis of the microbial composition and diversity was also performed. The alpha diversity of the gut microbiota in AD mice was lower than that in wild-type mice, but exercise increased the gut microbial diversity in both types of mice. At the phylum level, the dominant microorganisms in all four groups of mice were Bacteroidetes and Firmicutes. There was an increase in the Bacteroidetes phylum in AD mice. Treadmill exercise reduced the abundance of Bacteroidetes in both groups of mice, whereas the abundance of Firmicutes increased. At the genus level, Muribaculaceae, the Lachnospiraceae_NK4A136_group, Alloprevotella, and Alistipes were in relatively high abundance. Muribaculaceae and Alloprevotella were in greater abundance in AD mice than in wild-type mice, but both decreased after treadmill exercise. Through performing linear discriminant analysis effect size (LEfSe), we found that the dominant strains in AD mice were Campilobacterota, Helicobacteraceae, Escherichia–Shigella, and other malignant bacteria, whereas exercise resulted in an increase in probiotics among the dominant strains in both types of mice. Although gut microbial diversity decreases and malignant bacteria increase in AD mice, treadmill exercise can increase gut microbial diversity and lead to the development of dominant strains of probiotics in both types of mice. These findings provide a basis for applying exercise as a treatment for AD. Full article
Show Figures

Figure 1

Review

Jump to: Research

25 pages, 1087 KiB  
Review
Summatory Effects of Anaerobic Exercise and a ‘Westernized Athletic Diet’ on Gut Dysbiosis and Chronic Low-Grade Metabolic Acidosis
by Jesús Álvarez-Herms
Microorganisms 2024, 12(6), 1138; https://doi.org/10.3390/microorganisms12061138 - 3 Jun 2024
Cited by 6 | Viewed by 3755
Abstract
Anaerobic exercise decreases systemic pH and increases metabolic acidosis in athletes, altering the acid-base homeostasis. In addition, nutritional recommendations advising athletes to intake higher amounts of proteins and simple carbohydrates (including from sport functional supplements) could be detrimental to restoring acid-base balance. Here, [...] Read more.
Anaerobic exercise decreases systemic pH and increases metabolic acidosis in athletes, altering the acid-base homeostasis. In addition, nutritional recommendations advising athletes to intake higher amounts of proteins and simple carbohydrates (including from sport functional supplements) could be detrimental to restoring acid-base balance. Here, this specific nutrition could be classified as an acidic diet and defined as ‘Westernized athletic nutrition’. The maintenance of a chronic physiological state of low-grade metabolic acidosis produces detrimental effects on systemic health, physical performance, and inflammation. Therefore, nutrition must be capable of compensating for systemic acidosis from anaerobic exercise. The healthy gut microbiota can contribute to improving health and physical performance in athletes and, specifically, decrease the systemic acidic load through the conversion of lactate from systemic circulation to short-chain fatty acids in the proximal colon. On the contrary, microbial dysbiosis results in negative consequences for host health and physical performance because it results in a greater accumulation of systemic lactate, hydrogen ions, carbon dioxide, bacterial endotoxins, bioamines, and immunogenic compounds that are transported through the epithelia into the blood circulation. In conclusion, the systemic metabolic acidosis resulting from anaerobic exercise can be aggravated through an acidic diet, promoting chronic, low-grade metabolic acidosis in athletes. The individuality of athletic training and nutrition must take into consideration the acid-base homeostasis to modulate microbiota and adaptive physiological responses. Full article
Show Figures

Figure 1

Back to TopTop