Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (264)

Search Parameters:
Keywords = LCoS

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1718 KB  
Article
Green Innovation in Energy Storage for Isolated Microgrids: A Monte Carlo Approach
by Jake Elliot, Les Bowtell and Jason Brown
Energies 2025, 18(17), 4732; https://doi.org/10.3390/en18174732 - 5 Sep 2025
Viewed by 1187
Abstract
Thursday Island, a remote administrative hub in Australia’s Torres Strait, exemplifies the socio-technical challenges of transitioning to sustainable energy amid diesel dependence and the intermittency of renewables. As Australia pursues Net Zero by 2050, innovative storage solutions are pivotal for enabling green innovation [...] Read more.
Thursday Island, a remote administrative hub in Australia’s Torres Strait, exemplifies the socio-technical challenges of transitioning to sustainable energy amid diesel dependence and the intermittency of renewables. As Australia pursues Net Zero by 2050, innovative storage solutions are pivotal for enabling green innovation in isolated microgrids. This study evaluates Vanadium Redox Flow Batteries (VRFBs) and Lithium-Ion batteries as key enabling technologies, using a stochastic Monte Carlo simulation to assess their economic viability through Levelized Cost of Storage (LCOS), incorporating uncertainties in capital costs, operations, and performance over 20 years. Employing a stochastic Monte Carlo simulation with 10,000 iterations, this study provides a probabilistic assessment of LCOS, incorporating uncertainties in key parameters such as CAPEX, OPEX, efficiency, and discount rates, offering a novel, data-driven framework for evaluating storage viability in remote microgrids. Results indicate VRFBs’ superiority with a mean LCOS of 168.30 AUD/MWh versus 173.50 AUD/MWh for Lithium-Ion, driven by scalability, durability, and safety—attributes that address socio-economic barriers like high operational costs and environmental risks in tropical, off-grid settings. By framing VRFBs as an innovative green solution, this analysis highlights opportunities for new business models in remote energy sectors, such as reduced fossil fuel reliance (3.6 million litres diesel annually) and enhanced community resilience against energy poverty. It also underscores challenges, including capital uncertainties and policy needs for innovation uptake. This empirical case study contributes to the sustainable energy transition discourse, offering insights for policymakers on overcoming resistance to decarbonization in geographically constrained contexts, aligning with green innovation goals for systemic sustainability. Full article
Show Figures

Figure 1

24 pages, 16565 KB  
Article
Dynamic Characteristics of the Pore Heterogeneity of Longmaxi Shale Based on High-Pressure Triaxial Creep Testing
by Yan Dai, Hanyu Zhang, Yanming Zhu, Haoran Chen, Yao Ge, Qian Wang and Yiming Zhao
Fractal Fract. 2025, 9(9), 564; https://doi.org/10.3390/fractalfract9090564 - 28 Aug 2025
Viewed by 431
Abstract
The dynamic changes in shale pore structure due to tectonic uplift are crucial for understanding the processes of shale gas enrichment and accumulation, particularly in complex tectonic regions. To explore the heterogeneous changes in pore structure and their influencing factors during the last [...] Read more.
The dynamic changes in shale pore structure due to tectonic uplift are crucial for understanding the processes of shale gas enrichment and accumulation, particularly in complex tectonic regions. To explore the heterogeneous changes in pore structure and their influencing factors during the last tectonic uplift of Longmaxi shale, triaxial creep experiments were performed under varying confining pressure conditions. In addition, FE-SEM, MIP, LN2GA, and LCO2GA experiments were employed to both qualitatively and quantitatively characterize the pore structure of three distinct groups of Longmaxi shale samples. To further investigate pore heterogeneity, the multifractal dimension was applied to examine the evolution of the shale pore structure under the influence of the last tectonic uplift. The results revealed that the primary pore types in Longmaxi shale include organic matter pores, microfractures, intergranular pores, and intragranular pores. The shale’s mechanical properties and mineral content have a significant impact on the heterogeneity of these pores. Notably, the shale pores exhibit distinct multifractal characteristics, highlighting the complex nature of pore heterogeneity. The singular index (α0) and ten other multifractal dimension parameters provide valuable insights into the heterogeneity characteristics of shale pores from various perspectives. Additionally, dynamic changes in pore heterogeneity are primarily controlled by the mineral composition. Under identical creep pressure variation conditions, significant differences are observed in the pore rebound behavior of Longmaxi shale with different mineral compositions. Under high-pressure conditions, the content of TOC and quartz plays a dominant role in controlling pore heterogeneity, with their influence initially decreasing and then increasing as pressure decreases. The reduction in creep pressure emphasizes the controlling effect of TOC, quartz, and feldspar content on pore connectivity. This study introduces high-pressure triaxial creep experiments to simulate the stress response behavior of pore structures during tectonic uplift, offering a more comprehensive reflection of pore evolution in organic-rich shale under realistic geological conditions. Full article
(This article belongs to the Special Issue Multiscale Fractal Analysis in Unconventional Reservoirs)
Show Figures

Figure 1

16 pages, 3686 KB  
Article
The Effects of Cell Chemistry, State of Charge, and Abuse Method on Gas Generation in Li-Ion Cell Failure
by Gemma E. Howard, Jonathan E. H. Buston, Jason Gill, Steven L. Goddard, Jack W. Mellor and Philip A. P. Reeve
Batteries 2025, 11(9), 320; https://doi.org/10.3390/batteries11090320 - 27 Aug 2025
Viewed by 1033
Abstract
We report on the effect state of charge (SoC), cell format, and chemistry have on the volume and composition (H2, CO2, CO, CH4, C2H4, C2H6, C3H6 [...] Read more.
We report on the effect state of charge (SoC), cell format, and chemistry have on the volume and composition (H2, CO2, CO, CH4, C2H4, C2H6, C3H6, and C3H8) of cell failure gas from Li-ion cells. Nickel manganese cobalt oxide (NMC) 21700 cells with a 5 Ah capacity were externally heated to failure at a 5–100% SoC under an inert atmosphere. This showed that the volume of gas increased with cell SoC (1.8 L at 5% SoC vs. 8.3 L at 100% SoC). The effect of the cell chemistry format and abuse method was also investigated using 18650, pouch, and prismatic cells (2.3–50 Ah) with Ni-based or lithium cobalt oxide (LCO) cathodes or lithium titanium oxide (LTO) anodes. The results showed that at higher SoCs, larger quantities of gas were generated; however, there was no correlation between the cell SoC and the composition of gases produced. Tests on the other cells found that the Ni-based cell generated 1.29–1.89 L/Ah of gas. The main constituents of this were H2, CO, and CO2; however, all other hydrocarbons were identified in varying quantities. The LTO cells generated lower volumes of gas, 0.8 L/Ah compared to Ni-based cells, and the gas was found to contain lower H2 concentrations but higher concentrations of CO2. The LCO cell was found to generate a gas volume of 1.2 L/Ah. This forms the final of four papers which cover a total of 213 tests on 29 cell types with six different chemistries, all tested using a single robust testing method. Full article
Show Figures

Figure 1

19 pages, 5196 KB  
Article
Exploring Different Metal-Oxide Cathode Materials for Structural Lithium-Ion Batteries Using Dip-Coating
by David Petrushenko, Thomas Burns, Paul Ziehl, Ralph E. White and Paul T. Coman
Energies 2025, 18(16), 4354; https://doi.org/10.3390/en18164354 - 15 Aug 2025
Viewed by 561
Abstract
In this study, a selection of active materials were coated onto commercially available intermediate modulus carbon fibers to form and analyze the performance of novel composite cathodes for structural power composites. Various slurries containing polyvinylidene fluoride (PVDF), active material powders, 1-methyl-2-pyrrolidone (NMP) and [...] Read more.
In this study, a selection of active materials were coated onto commercially available intermediate modulus carbon fibers to form and analyze the performance of novel composite cathodes for structural power composites. Various slurries containing polyvinylidene fluoride (PVDF), active material powders, 1-methyl-2-pyrrolidone (NMP) and carbon black (CB) were used to coat carbon fiber tows by immersion. Four active materials—lithium cobalt oxide (LCO), lithium iron phosphate (LFP), lithium nickel manganese cobalt oxide (NMC), and lithium nickel cobalt aluminum oxide (NCA)—were individually tested to assess their electrochemical reversibility. The cells were prepared with a polymer separator and liquid electrolytes and assembled in 2025-coin cells. Electrochemical analysis of the cathode materials showed that at C/5 and room temperature the measured capacities ranged from 39.8 Ah kg−1 to 64.7 Ah kg−1 for the LFP and NCA active materials, respectively. The full cells exhibited capacities of 18.1, 23.5, 27.2, and 28.2 Ah kg−1 after 55 cycles for LFP, LCO, NCA, and NMC811, respectively. Finally, visual and elemental analysis were performed via scanning electron microscope (SEM) and energy-dispersive x-ray (EDX) confirming desirable surface coverage and successful transfer of the active materials onto the carbon fiber tows. Full article
Show Figures

Figure 1

35 pages, 8425 KB  
Article
Multifactorial Analysis of Defects in Oil Storage Tanks: Implications for Structural Performance and Safety
by Alexandru-Adrian Stoicescu, Razvan George Ripeanu, Maria Tănase, Costin Nicolae Ilincă and Liviu Toader
Processes 2025, 13(8), 2575; https://doi.org/10.3390/pr13082575 - 14 Aug 2025
Viewed by 604
Abstract
This article investigates the combined effects of different common defects on the structural integrity and operational and environmental safety in the operation of an existing Light Cycle Oil (LCO) storage tank. This study correlates all the tank defects (like corrosion and local plate [...] Read more.
This article investigates the combined effects of different common defects on the structural integrity and operational and environmental safety in the operation of an existing Light Cycle Oil (LCO) storage tank. This study correlates all the tank defects (like corrosion and local plate thinning, deformations, and local stress concentrators) against the loads and their combinations that occur during the tank’s lifetime. All the information gathered by various inspection techniques is used together to create a digital twin of the equipment that will be further analyzed by Finite Element Analysis. A tank condition assessment is a complex activity, and it is based on the experience of the engineer performing it. Since there are multiple methods for performing a comprehensive analysis, starting from the basic visual inspection (which is the most important) and some measurements followed by analytical calculations, up to full wall thickness measurements, 3D scan of deformations and FEA analysis of the tank digital twin, it depends on the engineer performing the evaluation to chose the best method for each particular case from technical and economical point of views. The goal of this article is to demonstrate that analytical and FEA methods have the same result and also to establish a well-determined standard calculation model for future applications. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

14 pages, 3262 KB  
Article
Integrated LCOS-SLM-Based Laser Slicing System for Aberration Correction in Silicon Carbide Substrate Manufacturing
by Heng Wang, Qiang Cao, Yuting Hou, Lulu Yu, Tianhao Wu, Zhenzhong Wang and Du Wang
Micromachines 2025, 16(8), 930; https://doi.org/10.3390/mi16080930 - 13 Aug 2025
Viewed by 643
Abstract
Silicon carbide (SiC), a wide-bandgap semiconductor, is renowned for its exceptional performance in power electronics and extreme-temperature environments. However, precision low-loss laser slicing of SiC is impeded by energy divergence and crack delamination induced by refractive-index-mismatch interfacial aberrations. This study presents an integrated [...] Read more.
Silicon carbide (SiC), a wide-bandgap semiconductor, is renowned for its exceptional performance in power electronics and extreme-temperature environments. However, precision low-loss laser slicing of SiC is impeded by energy divergence and crack delamination induced by refractive-index-mismatch interfacial aberrations. This study presents an integrated laser slicing system based on a liquid crystal on silicon spatial light modulator (LCOS-SLM) to address aberration-induced focal elongation and energy inhomogeneity. Through dynamic modulation of the laser wavefront via an inverse ray-tracing algorithm, the system corrects spherical aberrations from refractive index mismatch, thus achieving precise energy concentration at wanted depths. A laser power attenuation model based on interface reflection and the Lambert–Beer law is established to calculate the required laser power at varying processing depths. Experimental results demonstrate that aberration correction reduces focal depth to approximately one-third (from 45 μm to 15 μm) and enhances energy concentration, eliminating multi-layer damage and increasing crack propagation length. Post-correction critical power measurements across depths are consistent with model predictions, with maximum error decreasing from >50% to 8.4%. Verification on a 6-inch N-type SiC ingot shows 90 μm damage thickness, confirming system feasibility for SiC laser slicing. The integrated aberration-correction approach provides a novel solution for high-precision SiC substrate processing. Full article
(This article belongs to the Section D:Materials and Processing)
Show Figures

Figure 1

23 pages, 1967 KB  
Article
Evaluation of Myocardial Protection in Prolonged Aortic Cross-Clamp Times: Del Nido and HTK Cardioplegia in Adult Cardiac Surgery
by Murat Yücel, Emre Demir Benli, Kemal Eşref Erdoğan, Muhammet Fethi Sağlam, Gökay Deniz, Hakan Çomaklı and Emrah Uğuz
Medicina 2025, 61(8), 1420; https://doi.org/10.3390/medicina61081420 - 6 Aug 2025
Viewed by 628
Abstract
Background and Objectives: Effective myocardial protection is essential for successful cardiac surgery outcomes, especially in complex and prolonged procedures. To this end, Del Nido (DN) and histidine-tryptophan-ketoglutarate (HTK) cardioplegia solutions are widely used; however, their comparative efficacy in adult surgeries with prolonged aortic [...] Read more.
Background and Objectives: Effective myocardial protection is essential for successful cardiac surgery outcomes, especially in complex and prolonged procedures. To this end, Del Nido (DN) and histidine-tryptophan-ketoglutarate (HTK) cardioplegia solutions are widely used; however, their comparative efficacy in adult surgeries with prolonged aortic cross-clamp (ACC) times remains unclear. This study aimed to compare the efficacy and safety of DN and HTK for myocardial protection during prolonged ACC times in adult cardiac surgery and to define clinically relevant thresholds. Materials and Methods: This retrospective study included a total of 320 adult patients who underwent cardiac surgery under cardiopulmonary bypass (CPB) with an aortic cross-clamp time ≥ 90 min. Data were collected from the medical records of elective adult cardiac surgery cases performed at a single center between 2019 and 2025. Patients were categorized into two groups based on the type of cardioplegia received: Del Nido (n = 160) and HTK (n = 160). The groups were compared using 1:1 propensity score matching. Clinical and biochemical outcomes—including troponin I (TnI), CK-MB, lactate levels, incidence of low cardiac output syndrome (LCOS), and need for mechanical circulatory support—were analyzed between the two cardioplegia groups. Subgroup analyses were performed according to ACC duration (90–120, 120–150, 150–180 and >180 min). The predictive threshold of ACC duration for each complication was determined by ROC analysis, followed by the analysis of independent predictors of each endpoint by multivariate logistic regression. Results: Intraoperative cardioplegia volume and transfusion requirements were lower in the DN group (p < 0.05). HTK was associated with lower TnI levels and less intra-aortic balloon pump (IABP) requirement at ACC times exceeding 180 min. Markers of myocardial injury were lower in patients with an ACC duration of 120–150 min in favor of HTK. The propensity for ventricular fibrillation after ACC was significantly lower in the DN group. Significantly lower postoperative sodium levels were observed in the HTK group. Prolonged ACC duration was an independent risk factor for LCOS (odds ratio [OR]: 1.023, p < 0.001), VIS > 15 (OR, 1.015; p < 0.001), IABP requirement (OR: 1.020, p = 0.002), and early mortality (OR: 1.016, p = 0.048). Postoperative ejection fraction (EF), troponin I, and CK-MB levels were associated with the development of LCOS and a VIS > 15. Furthermore, according to ROC analysis, HTK cardioplegia was able to tolerate ACC for up to a longer duration in terms of certain complications, suggesting a higher physiological tolerance to ischemia. Conclusions: ACC duration is a strong predictor of major adverse outcomes in adult cardiac surgeries. Although DN cardioplegia is effective and economically advantageous for shorter procedures, HTK may provide superior myocardial protection in operations with long ACC duration. This study supports the need to individualize cardioplegia choice according to ACC duration. Further prospective studies are needed to establish standard dosing protocols and to optimize cardioplegia selection according to surgical duration and complexity. Full article
Show Figures

Figure 1

21 pages, 2799 KB  
Article
Structural Integrity Assessments of an IMO Type C LCO2 Cargo Tank
by Joon Kim, Kyu-Sik Park, Inhwan Cha and Joonmo Choung
J. Mar. Sci. Eng. 2025, 13(8), 1479; https://doi.org/10.3390/jmse13081479 - 31 Jul 2025
Viewed by 501
Abstract
With the rise of carbon capture and storage, liquefied carbon dioxide (LCO2) has emerged as a promising medium for large-scale marine transport. This study evaluates the structural integrity of an IMO Type C cargo tank for a medium-range LCO2 carrier [...] Read more.
With the rise of carbon capture and storage, liquefied carbon dioxide (LCO2) has emerged as a promising medium for large-scale marine transport. This study evaluates the structural integrity of an IMO Type C cargo tank for a medium-range LCO2 carrier under four conditions: ultimate limit state, accidental limit state, hydrostatic pressure test, and fatigue limit state, based on IGC Code and classification rules. Seventeen load cases were analyzed using finite element methods with multi-step loading to ensure stability. The highest stress occurred at the pump dome–shell junction due to geometric discontinuities, but all stress and buckling criteria were satisfied. The fatigue damage from wave-induced loads was negligible, with low-cycle fatigue from loading/unloading operations governing the fatigue life, which exceeded 31,000 years. The findings confirm the tank’s structural robustness and its suitability for safe, efficient medium-pressure LCO2 transport. Full article
(This article belongs to the Special Issue New Advances in the Analysis and Design of Marine Structures)
Show Figures

Figure 1

18 pages, 2688 KB  
Article
Eco-Friendly Leaching of Spent Lithium-Ion Battery Black Mass Using a Ternary Deep Eutectic Solvent System Based on Choline Chloride, Glycolic Acid, and Ascorbic Acid
by Furkan Nazlı, Işıl Hasdemir, Emircan Uysal, Halide Nur Dursun, Utku Orçun Gezici, Duygu Yesiltepe Özçelik, Fırat Burat and Sebahattin Gürmen
Minerals 2025, 15(8), 782; https://doi.org/10.3390/min15080782 - 25 Jul 2025
Viewed by 1143
Abstract
Lithium-ion batteries (LiBs) are utilized in numerous applications due to advancements in technology, and the recovery of end-of-life (EoL) LiBs is imperative for environmental and economic reasons. Pyrometallurgical and hydrometallurgical methods have been used in the recovery of metals such as Li, Co, [...] Read more.
Lithium-ion batteries (LiBs) are utilized in numerous applications due to advancements in technology, and the recovery of end-of-life (EoL) LiBs is imperative for environmental and economic reasons. Pyrometallurgical and hydrometallurgical methods have been used in the recovery of metals such as Li, Co, and Ni in the EoL LiBs. Hydrometallurgical methods, which have been demonstrated to exhibit higher recovery efficiency and reduced energy consumption, have garnered increased attention in recent research. Inorganic acids, including HCl, HNO3, and H2SO4, as well as organic acids such as acetic acid and citric acid, are employed in the hydrometallurgical recovery of these metals. It is imperative to acknowledge the environmental hazards posed by these acids. Consequently, solvometallurgical processes, which involve the use of organic solvents with minimal or no water, are gaining increasing attention as alternative or complementary techniques to conventional hydrometallurgical processes. In the context of solvent systems that have been examined for a range of solvometallurgical methods, deep eutectic solvents (DESs) have garnered particular interest due to their low toxicity, biodegradable nature, tunable properties, and efficient metal recovery potential. In this study, the leaching process of black mass containing graphite, LCO, NMC, and LMO was carried out in a short time using the ternary DES system. The ternary DES system consists of choline chloride (ChCl), glycolic acid (GLY), and ascorbic acid (AA). As a result of the leaching process of cathode powders in the black mass without any pre-enrichment process, Li, Co, Ni, and Mn elements passed into solution with an efficiency of over 95% at 60 °C and within 1 h. Moreover, the kinetics of the leaching process was investigated, and Density Functional Theory (DFT) calculations were used to explain the leaching mechanism. Full article
Show Figures

Figure 1

21 pages, 3984 KB  
Article
Organic Acid Leaching of Black Mass with an LFP and NMC Mixed Chemistry
by Marc Simon Henderson, Chau Chun Beh, Elsayed Oraby and Jacques Eksteen
Recycling 2025, 10(4), 145; https://doi.org/10.3390/recycling10040145 - 21 Jul 2025
Viewed by 1239
Abstract
There is an increasing demand for the development of efficient and sustainable battery recycling processes. Currently, many recycling processes rely on toxic inorganic acids to recover materials from high-value battery chemistries such as lithium nickel manganese cobalt oxides (NMCs) and lithium cobalt oxide [...] Read more.
There is an increasing demand for the development of efficient and sustainable battery recycling processes. Currently, many recycling processes rely on toxic inorganic acids to recover materials from high-value battery chemistries such as lithium nickel manganese cobalt oxides (NMCs) and lithium cobalt oxide (LCOs). However, as cell manufacturers seek more cost-effective battery chemistries, the value of the spent battery value chain is increasingly diluted by chemistries such as lithium iron phosphate (LFPs). These cheaper alternatives present a difficulty when recycling, as current recycling processes are geared towards dealing with high-value chemistries; thus, the current processes become less economical. To date, much research is focused on treating a single battery chemistry; however, often, the feed material entering a battery recycling facility is contaminated with other battery chemistries, e.g., LFP feed contaminated with NMC, LCO, or LMOs. This research aims to selectively leach various battery chemistries out of a mixed feed material with the aid of a green organic acid, namely oxalic acid. When operating at the optimal conditions (2% solids, 0.25 M oxalic acid, natural pH around 1.15, 25 °C, 60 min), this research has proven that oxalic acid can be used to selectively dissolve 95.58% and 93.57% of Li and P, respectively, from a mixed LFP-NMC mixed feed, all while only extracting 12.83% of Fe and 8.43% of Mn, with no Co and Ni being detected in solution. Along with the high degree of selectivity, this research has also demonstrated, through varying the pH, that the selectivity of the leaching system can be altered. It was determined that at pH 0.5 the system dissolved both the NMC and LFP chemistries; at a pH of 1.15, the LFP chemistry (Li and P) was selectively targeted. Finally, at a pH of 4, the NMC chemistry (Ni, Co and Mn) was selectively dissolved. Full article
Show Figures

Graphical abstract

24 pages, 15762 KB  
Article
Performance of TiSiN/TiAlN-Coated Carbide Tools in Slot Milling of Hastelloy C276 with Various Cooling Strategies
by Ly Chanh Trung and Tran Thien Phuc
Lubricants 2025, 13(7), 316; https://doi.org/10.3390/lubricants13070316 - 19 Jul 2025
Viewed by 869
Abstract
Nickel-based superalloy Hastelloy C276 is widely used in high-performance industries due to its strength, corrosion resistance, and thermal stability. However, these same properties pose substantial challenges in machining, resulting in high tool wear, surface defects, and dimensional inaccuracies. This study investigates methods to [...] Read more.
Nickel-based superalloy Hastelloy C276 is widely used in high-performance industries due to its strength, corrosion resistance, and thermal stability. However, these same properties pose substantial challenges in machining, resulting in high tool wear, surface defects, and dimensional inaccuracies. This study investigates methods to enhance machining performance and surface quality by evaluating the tribological behavior of TiSiN/TiAlN-coated carbide inserts under six cooling and lubrication conditions: dry, MQL with coconut oil, Cryo-LN2, Cryo-LCO2, MQL–Cryo-LN2, and MQL–Cryo-LCO2. Open-slot finishing was performed at constant cutting parameters, and key indicators such as cutting zone temperature, tool wear, surface roughness, chip morphology, and microhardness were analyzed. The hybrid MQL–Cryo-LN2 approach significantly outperformed other methods, reducing cutting zone temperature, tool wear, and surface roughness by 116.4%, 94.34%, and 76.11%, respectively, compared to dry machining. SEM and EDS analyses confirmed abrasive, oxidative, and adhesive wear as the dominant mechanisms. The MQL–Cryo-LN2 strategy also lowered microhardness, in contrast to a 39.7% increase observed under dry conditions. These findings highlight the superior performance of hybrid MQL–Cryo-LN2 in improving machinability, offering a promising solution for precision-driven applications. Full article
(This article belongs to the Special Issue High Performance Machining and Surface Tribology)
Show Figures

Figure 1

15 pages, 3437 KB  
Article
Unveiling State-of-Charge Effects on Elastic Properties of LiCoO2 via Deep Learning and Empirical Models
by Ijaz Ul Haq and Seungjun Lee
Appl. Sci. 2025, 15(14), 7809; https://doi.org/10.3390/app15147809 - 11 Jul 2025
Viewed by 565
Abstract
This study investigates the mechanical properties of LiCoO2 (LCO) cathode materials under varying states of charge (SOCs) using both an empirical Buckingham potential model and a machine learning-based Deep Potential (DP) model. The results reveal a substantial decrease in Young’s modulus with [...] Read more.
This study investigates the mechanical properties of LiCoO2 (LCO) cathode materials under varying states of charge (SOCs) using both an empirical Buckingham potential model and a machine learning-based Deep Potential (DP) model. The results reveal a substantial decrease in Young’s modulus with decreasing SOC. Analysis of stress factors identified pairwise interactions, particularly those involving Co3+ and Co4+, as key drivers of this mechanical evolution. The DP model demonstrated superior performance by providing consistent and reliable predictions reflected in a smooth and monotonic stiffness decrease with SOC, in contrast to the large fluctuations observed in the classical Buckingham potential results. The study further identifies the increasing dominance of Co4+ interactions at low SOCs as a contributor to localized stress concentrations, which may accelerate crack initiation and mechanical degradation. These findings underscore the DP model’s capability to capture SOC-dependent mechanical behavior accurately, establishing it as a robust tool for modeling battery materials. Moreover, the calculated SOC-dependent mechanical properties can serve as critical input for continuum-scale models, improving their predictive capability for chemo-mechanical behavior and degradation processes. This integrated multiscale modeling approach can offer valuable insights for developing strategies to enhance the durability and performance of lithium-ion battery materials. Full article
Show Figures

Figure 1

17 pages, 3466 KB  
Article
Levelized Cost of Storage (LCOS) of Battery Energy Storage Systems (BESS) Deployed for Photovoltaic Curtailment Mitigation
by Luca Migliari, Daniele Cocco and Mario Petrollese
Energies 2025, 18(14), 3602; https://doi.org/10.3390/en18143602 - 8 Jul 2025
Cited by 2 | Viewed by 1734
Abstract
Despite the growing application of storage for curtailment mitigation, its cost-effectiveness remains uncertain. This study evaluates the Levelized Cost of Storage, which also represents an implicit threshold revenue, for Lithium-ion Battery Energy Storage Systems deployed for photovoltaic curtailment mitigation. Specifically, the LCOS is [...] Read more.
Despite the growing application of storage for curtailment mitigation, its cost-effectiveness remains uncertain. This study evaluates the Levelized Cost of Storage, which also represents an implicit threshold revenue, for Lithium-ion Battery Energy Storage Systems deployed for photovoltaic curtailment mitigation. Specifically, the LCOS is assessed—using a mathematical simulation model—for various curtailment scenarios defined by maximum levels (10–40%), hourly profiles (upper limit and proportional), and growth rates (2, 5, and 10 years) at three storage system capacities (0.33, 0.50, 0.67 h) and two European locations (Cagliari and Berlin). The results indicate that the LCOS of batteries deployed for curtailment mitigation is, on average, comparable to that of systems used for bulk energy storage applications (155–320 EUR/MWh) in Cagliari (180–410 EUR/MWh). In contrast, in Berlin, the lower and more variable photovoltaic generation results in significantly higher LCOS values (200–750 EUR/MWh). For both locations, the lowest LCOS values (180 EUR/MWh for Cagliari and 200 EUR/MWh for Berlin), obtained for very high curtailment levels (40%), are significantly above average electricity prices (108 EUR/MWh for Cagliari and 78 EUR/MWh for Berlin), suggesting that BESSs for curtailment mitigation are competitive in the day-ahead market only if their electricity is sold at a significantly higher price. This is particularly true for lower curtailment levels. Indeed, for a curtailment level of 10% reached in 5 years, the LCOS for a 0.5 h BESS capacity is approximately 255 EUR/MWh in Cagliari and 460 EUR/MWh in Berlin. The study further highlights that the curtailment scenario significantly affects the Levelized Cost of Storage, with the upper limit hourly profile being more conservative. Full article
(This article belongs to the Special Issue Advanced Solar Technologies and Thermal Energy Storage)
Show Figures

Figure 1

33 pages, 3769 KB  
Article
Hybrid Wind–Redox Flow Battery System for Decarbonizing Off-Grid Mining Operations
by Armel Robert, Baby-Jean Robert Mungyeko Bisulandu, Adrian Ilinca and Daniel R. Rousse
Appl. Sci. 2025, 15(13), 7147; https://doi.org/10.3390/app15137147 - 25 Jun 2025
Viewed by 693
Abstract
Transitioning to sustainable energy systems is crucial for reducing greenhouse gas (GHG) emissions, especially in remote industrial operations where diesel generators remain the dominant power source. This study examines the feasibility of integrating a redox flow battery (RFB) storage system to optimize wind [...] Read more.
Transitioning to sustainable energy systems is crucial for reducing greenhouse gas (GHG) emissions, especially in remote industrial operations where diesel generators remain the dominant power source. This study examines the feasibility of integrating a redox flow battery (RFB) storage system to optimize wind energy utilization at the Raglan mining site in northern Canada, with the goal of reducing diesel dependency, enhancing grid stability, and improving energy security. To evaluate the effectiveness of this hybrid system, a MATLAB R2024b-based simulation model was developed, incorporating wind energy forecasting, load demand analysis, and economic feasibility assessments across multiple storage and wind penetration scenarios. Results indicate that deploying 12 additional E-115 wind turbines combined with a 20 MW/160 MWh redox flow battery system could lead to diesel savings of up to 63.98%, reducing CO2 emissions by 68,000 tonnes annually. However, the study also highlights a key economic challenge: the high Levelized Cost of Storage (LCOS) of CAD (Canadian dollars) 7831/MWh, which remains a barrier to large-scale implementation. For the scenario with high diesel economy, the LCOS was found to be CAD 6110/MWh, and the corresponding LCOE was CAD 590/MWh. While RFB integration improves system reliability, its economic viability depends on key factors, including reductions in electrolyte costs, advancements in operational efficiency, and supportive policy frameworks. This study presents a comprehensive methodology for evaluating energy storage in off-grid industrial sites and identifies key challenges in scaling up renewable energy adoption for remote mining operations. Full article
Show Figures

Figure 1

19 pages, 289 KB  
Review
Solvometallurgy as Alternative to Pyro- and Hydrometallurgy for Lithium, Cobalt, Nickel, and Manganese Extraction from Black Mass Processing: State of the Art
by Alessandra Zanoletti, Alberto Mannu and Antonella Cornelio
Materials 2025, 18(12), 2761; https://doi.org/10.3390/ma18122761 - 12 Jun 2025
Viewed by 1015
Abstract
The rapid growth in lithium-ion battery (LIB) demand has underscored the urgent need for sustainable recycling methods to recover critical metals such as lithium, cobalt, nickel, and manganese. Traditional pyrometallurgical and hydrometallurgical approaches often suffer from high energy consumption, environmental impact, and limited [...] Read more.
The rapid growth in lithium-ion battery (LIB) demand has underscored the urgent need for sustainable recycling methods to recover critical metals such as lithium, cobalt, nickel, and manganese. Traditional pyrometallurgical and hydrometallurgical approaches often suffer from high energy consumption, environmental impact, and limited metal selectivity. As an emerging alternative, solvometallurgy, and in particular the use of low-melting mixtures solvents, including deep eutectic solvents, offers a low-temperature, tunable, and potentially more environmentally compatible pathway for black mass processing. This review presents a comprehensive assessment of the recent advances (2020–2025) in the application of LoMMSs for metal recovery from LCO and NCM cathodes, analyzing 71 reported systems across binary, ternary, hydrated, and non-ChCl-based solvent families. Extraction efficiencies, reaction kinetics, coordination mechanisms, and solvent recyclability are critically evaluated, highlighting how solvent structure influences performance and selectivity. Particular attention is given to the challenges of lithium recovery, solvent degradation, and environmental trade-offs such as energy usage, waste generation, and chemical stability. A comparative synthesis identifies the most promising systems based on their mechanistic behavior and industrial relevance. The future outlook emphasizes the need for greener formulations, enhanced lithium selectivity, and life-cycle integration to support circular economy goals in battery recycling. Full article
(This article belongs to the Special Issue Systems and Materials for Recycling Spent Lithium-Ion Batteries)
Back to TopTop