Solvometallurgy as Alternative to Pyro- and Hydrometallurgy for Lithium, Cobalt, Nickel, and Manganese Extraction from Black Mass Processing: State of the Art
Abstract
1. Introduction
2. Result and Discussion
2.1. Black Mass Composition and Complexity
2.2. Summary of Published Research
2.3. Choline Chloride–Based Binary LoMMSs
2.3.1. ChCl:Urea
2.3.2. ChCl:Polyol Systems
2.3.3. ChCl:Organic Acids
2.3.4. Ternary Systems Based on ChCl
2.4. Systems with Alternative Hydrogen Bond Acceptors than ChCl
2.4.1. Mechanistic Insights and Coordination Chemistry
2.4.2. Eutectic Formation and Its Relationship to Efficiency
2.4.3. Role of Water and Hydration Effects
2.4.4. System Stability, Regeneration, and Environmental Considerations
2.5. Comparative Observations and Highlights
3. Future Outlooks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lithium-ion Battery Market Report 2025: Growing Demand for Energy Storage Applications Using Repurposed LIBs, Falling Lithium-ion Battery Prices Facilitating Increased EV Deployment. Available online: https://www.globenewswire.com/news-release/2025/04/01/3053334/28124/en/Lithium-ion-Battery-Market-Report-2025-Growing-Demand-for-Energy-Storage-Applications-Using-Repurposed-LIBs-Falling-Lithium-ion-Battery-Prices-Facilitating-Increased-EV-Deployment.html (accessed on 19 May 2025).
- Niri, A.J.; Poelzer, G.A.; Zhang, S.E.; Rosenkranz, J.; Pettersson, M.; Ghorbani, Y. Sustainability challenges throughout the electric vehicle battery value chain. Renew. Sustain. Energy Rev. 2024, 191, 114176. [Google Scholar] [CrossRef]
- Altiparmak, S.O.; Waters, K.; Thies, C.G.; Shutters, S.T. Cornering the market with foreign direct investments: China’s cobalt politics. Renew. Sustain. Energy Transit. 2025, 7, 100113. [Google Scholar] [CrossRef]
- New Battery-Related Waste Codes Will Boost Circular Management of Batteries and Their Critical Raw Materials. Available online: https://environment.ec.europa.eu/news/battery-related-waste-codes-update-set-boost-circular-economy-2025-03-05_en#:~:text=Today′s%20Decision%20clarifies%20that%20black,remains%20in%20the%20European%20economy (accessed on 19 May 2025).
- Donnelly, L.; Pirrie, D.; Power, M.; Corfe, I.; Kuva, J.; Lukkari, S.; Lahaye, Y.; Liu, X.; Dehaine, Q.; Jolis, E.M.; et al. The Recycling of End-of-Life Lithium-Ion Batteries and the Phase Characterisation of Black Mass. Recycling 2023, 8, 59. [Google Scholar] [CrossRef]
- Cerai, A.P. Geography of control: A deep dive assessment on criticality and lithium supply chain. Miner. Econ. 2024, 37, 499–546. [Google Scholar] [CrossRef]
- Jena, K.K.; AlFantazi, A.; Mayyas, A.T. Comprehensive Review on Concept and Recycling Evolution of Lithium-Ion Batteries (LIBs). Energy Fuels 2021, 35, 18257–18284. [Google Scholar] [CrossRef]
- Cornelio, A.; Galli, E.; Scaglia, M.; Zanoletti, A.; Zacco, A.; Bonometti, A.; Magugliani, G.; Mossini, E.; Macerata, E.; Federici, S.; et al. Recovery of NMC-lithium battery black mass by microwave heating processes. Energy Storage Mater. 2024, 72, 103703. [Google Scholar] [CrossRef]
- Milian, Y.E.; Jamett, N.; Cruz, C.; Herrera-León, S.; Chacana-Olivares, J. A comprehensive review of emerging technologies for recycling spent lithium-ion batteries. Sci. Total Environ. 2024, 910, 168543. [Google Scholar] [CrossRef]
- Available online: https://environment.ec.europa.eu/news/battery-related-waste-codes-update-set-boost-circular-economy-2025-03-05_en? (accessed on 14 April 2025).
- Zhang, N.; Xu, Z.; Deng, W.; Wang, X. Recycling and Upcycling Spent LIB Cathodes: A Comprehensive Review. Electrochem. Energy Rev. 2022, 5 (Suppl. 1), 33. [Google Scholar] [CrossRef]
- Mousa, E.; Hu, X.; Ye, G. Effect of Graphite on the Recovery of Valuable Metals from Spent Li-Ion Batteries in Baths of Hot Metal and Steel. Recycling 2022, 7, 5. [Google Scholar] [CrossRef]
- Babanejad, S.; Ahmed, H.; Andersson, C.; Mousa, E. Pyrometallurgical Approach to Extracting Valuable Metals from a Combination of Diverse Li-Ion Batteries’ Black Mass. ACS Sustain. Resour. Manag. 2024, 1, 1759–1767. [Google Scholar] [CrossRef]
- Djoudi, N.; Le Page Mostefa, M.; Muhr, H. Hydrometallurgical Process to Recover Cobalt from Spent Li-Ion Batteries. Resources 2021, 10, 58. [Google Scholar] [CrossRef]
- Cornelio, A.; Zanoletti, A.; Bontempi, E. Recent progress in pyrometallurgy for the recovery of spent lithium-ion batteries: A review of state-of-the-art developments. Curr. Opin. Green Sustain. Chem. 2024, 46, 100881. [Google Scholar] [CrossRef]
- Cornelio, A.; Zanoletti, A.; Scaglia, M.; Galli, E.; La Corte, D.; Biava, G.; Bontempi, E. Thermal approaches based on microwaves to recover lithium from spent lithium-ion batteries. RSC Sustain. 2024, 2, 2505–2514. [Google Scholar] [CrossRef]
- Crespo, E.A.; Silva, L.P.; Martins, M.A.R.; Fernandez, L.; Ortega, J.; Ferreira, O.; Sadowski, G.; Held, C.; Pinho, S.P.; Coutinho, J.A.P. Insights into the Nature of Eutectic and Deep Eutectic Mixtures. Ind. Eng. Chem. Res. 2017, 56, 12192–12202. [Google Scholar] [CrossRef]
- Chen, Y.; Yu, Z. Low-melting mixture solvents: Extension of deep eutectic solvents and ionic liquids for broadening green solvents and green chemistry. Green Chem. Eng. 2024, 5, 409–417. [Google Scholar] [CrossRef]
- Abbott, A.P.; Capper, G.; Davies, D.L.; McKenzie, K.J.; Obi, S.U. Solubility of Metal Oxides in Deep Eutectic Solvents Based on Choline Chloride. J. Chem. Eng. Data 2006, 151, 1280–1282. [Google Scholar] [CrossRef]
- Tran, M.K.; Rodrigues, M.T.F.; Kato, K.; Babu, G.; Ajayan, P.M. Deep eutectic solvents for cathode recycling of Li-ion batteries. Nat. Energy 2019, 4, 339–345. [Google Scholar] [CrossRef]
- Wang, J.; Lyu, Y.; Zeng, R.; Zhang, S.; Davey, K.; Mao, J.; Guo, Z. Green recycling of spent Li-ion battery cathodes via deep-eutectic solvents. Energy Environ. Sci. 2024, 17, 867. [Google Scholar] [CrossRef]
- Li, Y.; Sun, M.; Cao, Y.; Yu, K.; Fan, Z.; Cao, Y. Designing Low Toxic Deep Eutectic Solvents for the Green Recycle of Lithium-Ion Batteries Cathodes. ChemSusChem 2024, 17, e202301953. [Google Scholar] [CrossRef] [PubMed]
- Dar, A.A.; Chen, Z.; Zhang, G.; Hu, J.; Zaghib, K.; Deng, S.; Wang, X.; Haghighat, F.; Mulligan, C.N.; An, C.; et al. Sustainable Extraction of Critical Minerals from Waste Batteries: A Green Solvent Approach in Resource Recovery. Batteries 2025, 11, 51. [Google Scholar] [CrossRef]
- Gianvincenzi, M.; Mosconi, E.M.; Marconi, M.; Tola, F. Battery Waste Management in Europe: Black Mass Hazardousness and Recycling Strategies in the Light of an Evolving Competitive Regulation. Recycling 2024, 9, 13. [Google Scholar] [CrossRef]
- Li, H.; Chen, N.; Liu, W.; Feng, H.; Su, J.; Fu, D.; Liu, X.; Qiu, M.; Wang, L. A reusable deep eutectic solvent for the regeneration of Li and Co metals from spent lithium-ion batteries. J. Alloys Compd. 2023, 966, 171517. [Google Scholar] [CrossRef]
- Peeters, N.; Binnemans, K.; Riaño, S. Solvometallurgical recovery of cobalt from lithium-ion battery cathode materials using deep-eutectic solvents. Green Chem. 2020, 22, 4210. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, Z.; Lu, Z.; Xu, Z. A novel method for screening deep eutectic solvent to recycle the cathode of Li-ion batteries. Green Chem. 2020, 22, 4473. [Google Scholar] [CrossRef]
- Yu, H.H.; Wang, S.M.; Li, Y.; Qiao, Q.; Wang, K.; Li, X. Recovery of cobalt from spent lithium-ion battery cathode materials by using choline chloridebased deep eutectic solvent. Green Process. Synth. 2022, 11, 868–874. [Google Scholar] [CrossRef]
- Li, T.B.; Xiong, Y.G.; Yan, X.H.; Hu, T.; Jing, S.Q.; Wang, Z.J.; Ge, X. Closed-loop cobalt recycling from spent lithium-ion batteries based on a deep eutectic solvent (DES) with easy solvent recovery. J. Energy Chem. 2022, 72, 532. [Google Scholar] [CrossRef]
- Ma, W.J.; Liu, M.S.; Zhang, X.; Zhao, Q.X.; Liang, Z.Y. An Efficient and Precipitant-Free Approach to Selectively Recover Lithium Cobalt Oxide Made for Cathode Materials Using a Microwave-Assisted Deep Eutectic Solvent. Energy Fuels 2023, 37, 724. [Google Scholar] [CrossRef]
- Liu, M.S.; Ma, W.J.; Zhang, X.; Liang, Z.Y.; Zhao, Q.X. Recycling lithium and cobalt from LIBs using microwave-assisted deep eutectic solvent leaching technology at low-temperature. Mater. Chem. Phys. 2022, 289, 126466. [Google Scholar] [CrossRef]
- Lu, B.; Du, R.; Wang, G.; Wang, Y.W.; Dong, S.S.; Zhou, D.D.; Wang, S.Y.; Li, C.P. High-efficiency leaching of valuable metals from waste Li-ion batteries using deep eutectic solvents. Environ. Res. 2022, 212, 113286. [Google Scholar] [CrossRef]
- Roldan-Ruiz, M.J.; Ferrer, M.L.; Gutierrez, M.C.; del Monte, F. Highly Efficient p-Toluenesulfonic Acid-Based Deep-Eutectic Solvents for Cathode Recycling of Li-Ion Batteries. ACS Sustain. Chem. Eng. 2020, 8, 5437. [Google Scholar] [CrossRef]
- Yan, B.B.; Ding, A.T.; Li, M.; Liu, C.Y.; Xiao, C.L. Green Leaching of Lithium-Ion Battery Cathodes by Ascorbic Acid Modified Guanidine-Based Deep Eutectic Solvents. Energy Fuels 2023, 37, 1216. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, C.; Wang, Y.; Tian, Y.; Li, Y.; Feng, M.; Guo, Y.; Han, J.; Mu, T. Efficient Recovery of Valuable Metals from Lithium-Ion Battery Cathodes Using Phytic Acid-Based Deep Eutectic Solvents at a Mild Temperature. Energy Fuels 2023, 37, 5361–5369. [Google Scholar] [CrossRef]
- Hanada, T.; Goto, G. Cathode recycling of lithium-ion batteries based on reusable hydrophobic eutectic solvents. Green Chem. 2022, 24, 5107. [Google Scholar] [CrossRef]
- Guo, H.; Min, Z.J.; Hao, Y.; Wang, X.; Fan, J.C.; Shi, P.H.; Min, Y.L.; Xu, Q.J. Sustainable recycling of LiCoO2 cathode scrap on the basis of successive peroxymonosulfate activation and recovery of valuable metals. Sci. Total Environ. 2021, 759, 143478. [Google Scholar] [CrossRef]
- Jafari, M.; Shafaie, S.Z.; Abdollahi, H.; Entezari-Zarandi, A. A Green Approach for Selective Ionometallurgical Separation of Lithium from Spent Li-Ion Batteries by Deep Eutectic Solvent (DES): Process Optimization and Kinetics Modeling. Miner. Process. Extr. Metall. Rev. 2022, 44, 218–230. [Google Scholar] [CrossRef]
- Liao, Y.S.; Gong, S.S.; Wang, G.E.; Wu, R.; Meng, X.L.; Huang, Q.; Su, Y.F.; Wu, F.; Kelly, R.M. A novel ternary deep eutectic solvent for efficient recovery of critical metals from spent lithium-ion batteries under mild conditions. J. Environ. Chem. Eng. 2022, 10, 108627. [Google Scholar] [CrossRef]
- Chen, Y.; Lu, Y.H.; Liu, Z.H.; Zhou, L.Y.; Li, Z.; Jiang, J.Y.; Wei, L.; Ren, P.; Mu, T.C. Efficient Dissolution of Lithium-Ion Batteries Cathode LiCoO2 by Polyethylene Glycol-Based Deep Eutectic Solvents at Mild Temperature. ACS Sustain. Chem. Eng. 2020, 8, 11713. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, Y.L.; Bai, Y.; Duan, Y.T.; Zhang, B.L.; Liu, C.; Sun, X.C.; Feng, M.H.; Mu, T.C. Significant Improvement in Dissolving Lithium-Ion Battery Cathodes Using Novel Deep Eutectic Solvents at Low Temperature. ACS Sustain. Chem. Eng. 2021, 9, 12940. [Google Scholar] [CrossRef]
- Li, B.; Li, Q.; Wang, Q.; Yan, X.; Shi, M.; Wu, C. Deep eutectic solvent for spent lithium-ion battery recycling: Comparison with inorganic acid leaching. Phys. Chem. Chem. Phys. 2022, 24, 19029–19051. [Google Scholar] [CrossRef]
- Lu, Q.; Chen, L.; Li, X.; Chao, Y.; Sun, J.; Ji, H.; Zhu, W. Sustainable and Convenient Recovery of Valuable Metals from Spent Li-Ion Batteries by a One-Pot Extraction Process. ACS Sustain. Chem. Eng. 2021, 9, 13851–13861. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, Y.; Bai, Y.; Feng, M.; Zhou, F.; Lu, Y.; Guo, Y.; Zhang, Y.; Mu, T. Mild and efficient recovery of lithium-ion battery cathode material by deep eutectic solvents with natural and cheap components. Green Chem. Eng. 2023, 4, 303–311. [Google Scholar] [CrossRef]
- Yang, Z.; Tang, S.; Huo, X.; Zhang, M.; Guo, M. A novel green deep eutectic solvent for one-step selective separation of valuable metals from spent lithium batteries: Bifunctional effect and mechanism. Environ. Res. 2023, 233, 116337. [Google Scholar] [CrossRef]
- Tang, S.J.; Zhang, M.; Guo, M. A Novel Deep-Eutectic Solvent with Strong Coordination Ability and Low Viscosity for Efficient Extraction of Valuable Metals from Spent Lithium-Ion Batteries. ACS Sustain. Chem. Eng. 2022, 10, 975. [Google Scholar] [CrossRef]
- Cattaneo, P.; Callegari, D.; Merli, D.; Tealdi, C.; Vadivel, D.; Milanese, C.; Kapelyushko, V.; D’aprile, F.; Quartarone, E. Sorting, characterisation, environmentally friendly recycling and re-use of components from End-of-Life Li ion batteries. Adv. Sustain. Syst. 2023, 7, 2300161. [Google Scholar] [CrossRef]
- Yetim, D.; Svecova, L.; Lepretre, J.-C. Lithium-Ion Battery Cathode Recycling through a Closed-Loop Process Using a Choline Chloride-Ethylene Glycol-Based Deep-Eutectic Solvent in the Presence of Acid. ChemistryOpen 2024, 13, e202300061. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, Y.; Zhou, F.; Tian, Y.; Qin, R.; Xue, Z.; Mu, T. Upcycling spent Lithium-ion battery cathodes to cobalt-polyphenol network by DES dissolution and solvent-induced crystallization. Green Chem. 2024, 26, 5988–5996. [Google Scholar] [CrossRef]
- Wang, C.; Ai, T.; Gao, X.; Lu, J.; Liu, J.; Zhu, W.; Luo, Y. Effective recycling of critical metals from LiCoO2 batteries by hydrated deep eutectic solvents: Performance, kinetic and mechanism. J. Water Process Eng. 2024, 59, 105088. [Google Scholar] [CrossRef]
- Luo, Y.; Yin, C.; Ou, L. A Novel Green Process for Recovery of Transition Metal Ions from Used Lithium-ion Batteries by Selective Coordination of Ethanol. ACS Sustain. Chem. Eng. 2023, 11, 11834–11842. [Google Scholar] [CrossRef]
- Zhu, A.; Bian, X.; Han, W.; Wen, Y.; Ye, K.; Wang, G.; Yan, J.; Cao, D.; Zhu, K.; Wang, S. Microwave-ultra-fast recovery of valuable metals from spent lithium-ion batteries by deep eutectic solvents. Waste Manag. 2023, 156, 139–147. [Google Scholar] [CrossRef]
- Wang, K.; Hu, T.Y.; Shi, P.H.; Min, Y.L.; Wu, J.F.; Xu, Q.J. Efficient Recovery of Value Metals from Spent Lithium-Ion Batteries by Combining Deep Eutectic Solvents and Coextraction. ACS Sustain. Chem. Eng. 2022, 10, 1149. [Google Scholar] [CrossRef]
- Luo, Y.; Yin, C.Z.; Ou, L.M.; Zhang, C.Y. Highly efficient dissolution of the cathode materials of spent Ni–Co–Mn lithium batteries using deep eutectic solvents. Green Chem. 2022, 24, 6562. [Google Scholar] [CrossRef]
- Luo, Y.; Ou, L.; Yin, C. A green and efficient combination process for recycling spent lithium-ion batteries. J. Clean. Prod. 2023, 396, 136552. [Google Scholar] [CrossRef]
- Ma, C.Y.; Svard, M.; Forsberg, K. Recycling cathode material LiCo1/3Ni1/3Mn1/3O2 by leaching with a deep eutectic solvent and metal recovery with antisolvent crystallization. Resour. Conserv. Recycl. 2022, 186, 106579. [Google Scholar] [CrossRef]
- He, X.H.; Wen, Y.P.; Wang, X.Y.; Cui, Y.R.; Li, L.B.; Ma, H.Z. Leaching NCM cathode materials of spent lithium-ion batteries with phosphate acid-based deep eutectic solvent. Waste Manag. 2023, 157, 8. [Google Scholar] [CrossRef] [PubMed]
- Hua, Y.H.; Sun, Y.Q.; Yan, F.; Wang, S.B.; Xu, Z.H.; Zhao, B.J.; Zhang, Z.T. Ionization potential-based design of deep eutectic solvent for recycling of spent lithium ion batteries. J. Chem. Eng. 2022, 436, 133200. [Google Scholar] [CrossRef]
- Chang, X.; Fan, M.; Gu, C.F.; He, W.H.; Meng, Q.H.; Wan, L.J.; Guo, Y.G. Selective Extraction of Transition Metals from Spent LiNixCoyMn1−x−yO2 Cathode via Regulation of Coordination Environment. Angew. Chem. Int. Ed. 2022, 61, e202202558. [Google Scholar] [CrossRef]
- Luo, Y.; Ou, L.; Yin, C. High-efficiency recycling of spent lithium-ion batteries: A double closed-loop process. Sci. Total Environ. 2023, 875, 162567. [Google Scholar] [CrossRef]
- Luo, Y.; Yin, C.; Ou, L. Recycling of waste lithium-ion batteries via a one-step process using a novel deep eutectic solvent. Sci. Total Environ. 2023, 902, 166095. [Google Scholar] [CrossRef]
- Yurramendi, L.; Hidalgo, J.; Siriwardana, A. A Sustainable Process for the Recovery of Valuable Metals from Spent Lithium Ion Batteries by Deep Eutectic Solvents Leaching. Mater. Proc. 2021, 5, 100. [Google Scholar]
- Łukomska, A.; Wisniewska, A.; Dąbrowski, Z.; Kolasa, D.; Luchcinska, S.; Domańska, U. Separation of cobalt, lithium and nickel from the “black mass” of waste Li-ion batteries by ionic liquids, DESs and organophosphorous-based acids extraction. J. Mol. Liq. 2021, 343, 117694. [Google Scholar] [CrossRef]
- He, T.; Dai, J.; Dong, Y.; Zhu, F.; Wang, C.; Zhen, A.; Cai, Y. Green closed-loop regeneration of ternary cathode materials from spent lithium-ion batteries through deep eutectic solvent. Ionics 2023, 29, 1721–1729. [Google Scholar] [CrossRef]
- Lyu, Y.; Yuwono, J.A.; Fan, Y.; Li, J.; Wang, J.; Zeng, R.; Davey, K.; Mao, J.; Zhang, C.; Guo, Z. Selective Extraction of Critical Metals from Spent Li-Ion Battery Cathode: Cation–Anion Coordination and Anti-Solvent Crystallization. Adv. Mater. 2024, 36, 2312551. [Google Scholar] [CrossRef]
- Ebrahimi, E.; Kordloo, M.; Khodadadmahmoudi, G.; Rezaei, A.; Ganjali, M.; Azimi, G. Solvometallurgical Recycling of Spent LiNixCoyMnzO2 (Ncm) Cathode Material Using Ternary Choline Chloride-Ethylene Glycol-P-Toluenesulfonic Acid Deep Eutectic Solvent. Hydrometallurgy 2023, 222, 106184. [Google Scholar] [CrossRef]
- Cheng, J.; Zheng, C.; Xu, K.; Zhu, Y.; Song, Y.; Jing, C. Sequential separation of critical metals from lithium-ion batteries based on deep eutectic solvent and electrodeposition. J. Hazard. Mater. 2024, 465, 133157. [Google Scholar] [CrossRef]
- Domańska, U.; Wisniewska, A.; Dąbrowski, Z.; Kolasa, D.; Wrobel, K.; Lach, J. Recovery of Metals from the “Black Mass” of Waste Portable Li-Ion Batteries with Choline Chloride-Based Dess and Bi-Functional Ionic Liquids by Solvent Extraction. Available SSRN 2024, 52. [Google Scholar] [CrossRef]
- Dong, L.; Li, Y.; Shi, P.; Ren, Z.; Zhou, Z. Low-viscosity acidic deep eutectic solvent for extraction of valuable metals from spent NCM. J. Power Sources 2023, 582, 233564. [Google Scholar] [CrossRef]
- Zeng, G.; Yao, J.; Liu, C.; Luo, X.; Ji, H.; Mi, X.; Deng, C. Simultaneous Recycling of Critical Metals and Aluminum Foil from Waste LiNi1/3Co1/3Mn1/3O2 Cathode via Ethylene Glycol–Citric Acid System. ACS Sustain. Chem. Eng. 2021, 9, 16133–16142. [Google Scholar] [CrossRef]
- Luo, Y.; Deng, Y.; Shi, H.; Yang, H.; Yin, C.; Ou, L. Green and efficient recycling method for spent Ni–Co–Mn lithium batteries utilizing multifunctional deep eutectic solvents. J. Environ. Manag. 2024, 351, 119814. [Google Scholar] [CrossRef]
- Luo, Y.; Ou, L.; Yin, C. Extraction of precious metals from used lithium-ion batteries by a natural deep eutectic solvent with synergistic effects. Waste Manag. 2023, 164, 1–8. [Google Scholar] [CrossRef]
- Liu, C.; Yu, J.; Hu, J.; Xu, J.; Yu, A.; Liu, T.; Wang, Z.; Luo, X.; Deng, C.; Luo, F.; et al. Ultra-low viscosity betaine hydrochloride-formic acid deep eutectic solvent for leaching critical metals from spent NCM lithium-ion batteries. J. Environ. Chem. Eng. 2024, 12, 112586. [Google Scholar] [CrossRef]
- Zhang, T.; Dao, J.; Li, S.; Wang, J.; Wan, R.; Li, C.; Bao, C.; Wang, D.; Dong, P.; Zhang, Z. Efficient Leaching of Valuable Metals from Ncm Cathode Materials by Green Deep Eutectic Solvent. J. Clean. Prod. 2023, 438, 140636. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, F.; Zhang, W.; Ren, S.; Hou, Y.; Wu, W. High-Selectivity Recycling of Valuable Metals from Spent Lithium-Ion Batteries Using Recyclable Deep Eutectic Solvents. ChemSusChem 2024, 17, e202301774. [Google Scholar] [CrossRef]
- Behnajady, B.; Seyf, J.Y.; Karimi, S.; Moradi, M.; Sohrabi, M. Molecular dynamic (MD) simulation and density function theory (DFT) calculation relevant to green leaching of metals from spent lithium-ion battery cathode materials using glucose-based deep eutectic solvent (DES). Hydrometallurgy 2024, 223, 106223. [Google Scholar] [CrossRef]
- Thompson, D.L.; Pateli, I.M.; Lei, C.; Jarvis, A.; Abbott, A.P.; Hartley, J.M. Separation of nickel from cobalt and manganese in lithium ion batteries using deep eutectic solvents. Green Chem. 2022, 24, 4877–4886. [Google Scholar] [CrossRef]
- Schiavi, P.G.; Altimari, P.; Branchi, M.; Zanoni, R.; Simonetti, G.; Navarra, M.A.; Pagnanelli, F. Selective recovery of cobalt from mixed lithium ion battery wastes using deep eutectic solvent. Chem. Eng. J. 2021, 417, 129249. [Google Scholar] [CrossRef]
- Schiavi, P.G.; Altimari, P.; Sturabotti, E.; Marrani, A.G.; Simonetti, G.; Pagnanelli, F. Decomposition of Deep Eutectic Solvent Aids Metals Extraction in Lithium-Ion Batteries Recycling. ChemSusChem 2022, 15, e202200966. [Google Scholar] [CrossRef]
- Yang, H.; Sun, Y.; He, J.; Li, J.; Li, J.; Ding, Z.; Ren, Y. Efficient Recovery and Regeneration Method of Spent Ncm Cathode Materials Based on Novel Deep Eutectic Solvent Design. Available SSRN 2024, 34. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, F.; Zhang, W.; Ren, S.; Hou, Y.; Wu, W. Recyclable deep eutectic solvents for recycling LiCoO2 from spent lithium-ion batteries with high selectivity. Sep. Purif. Technol. 2024, 330, 125498. [Google Scholar] [CrossRef]
- Jafari, M.; Shafaie, S.Z.; Abdollahi, H.; Entezari-Zarandi, A. Green recycling of spent Li-ion batteries by deep eutectic solvents (DESs): Leaching mechanism and effect of ternary DES. J. Environ. Chem. Eng. 2022, 10, 109014. [Google Scholar] [CrossRef]
- Chen, L.L.; Chao, Y.H.; Li, X.W.; Zhou, G.L.; Lu, Q.Q.; Hua, M.Q.; Li, H.P.; Ni, X.G.; Wu, P.W.; Zhu, W.S. Engineering a tandem leaching system for the highly selective recycling of valuable metals from spent Li-ion batteries. Green Chem. 2021, 23, 2177. [Google Scholar] [CrossRef]
- Tang, S.J.; Feng, J.L.; Su, R.C.; Zhang, M.; Guo, M. New Bifunctional Deep-Eutectic Solvent for In Situ Selective Extraction of Valuable Metals from Spent Lithium Batteries. ACS Sustain. Chem. Eng. 2022, 10, 8423. [Google Scholar] [CrossRef]
- Muryanta, W.A.; Manaf, A.; Bahfie, F.; Handoko, A.S.; Prasetyo, E. Polycarboxylic Acid-Based Deep Eutectic Solvents for Critical Metal Recovery from Lithium-Ion Batteries: Kinetic and Efficiency Analysis. Trends Sci. 2025, 22, 9244. [Google Scholar] [CrossRef]
Cathode Type | Li (wt%) | Co (wt%) | Ni (wt%) | Mn (wt%) | Graphite (wt%) | Notes |
---|---|---|---|---|---|---|
LCO | 3–5 | 20–30 | <1 | <1 | 20–25 | Common in portable electronics |
NCM111 | 3–4 | 15–20 | 15–20 | 15–20 | 15–20 | Early-generation EV batteries |
NCM622 | 2.5–3.5 | 8–12 | 25–30 | 5–10 | 10–20 | Mid-generation EV batteries |
NCM811 | 2–3 | 5–7 | 30–40 | 2–5 | 10–20 | High-nickel EV batteries |
Entry | Solvent | T (°C) | Time | Efficiency (%) | Reference |
---|---|---|---|---|---|
LCO cathode | |||||
1 | MA:EG | 150 | 10 h | Co 98.3; Li 98.4 | [25] |
2 | ChCl:CIT:H2O ChCl:EG ChCl:MAL ChCl:MALO ChCl:OA | 60 | 4 h | Co 99.6 Co 2.1 Co 81.2 Co 24.4 Co 19.6 | [26] |
3 | ChCl:U | 180 | 12 h | Li 95; Co 95 | [27] |
4 | ChCl:GLY | 200 | 20 h | Co 95.4 | [28] |
5 | ChCl:OA | 90 | 2 h | Co 100 | [29] |
6 | ChCl:OA:H2O | 100 | 10 min | Li 99; Co 99 | [30] |
7 | ChCl:FA | 70 | 10 min | Li 100; Co 100 | [31] |
8 | ChCl:CIT | 40 | 1 h | Co 98 | [26] |
9 | ChCl:MAL:PTSA | 100 | Li 98.68; Co 98.71 | [32] | |
10 | PTSA:ChCl:H2O | 90 | 15 min | Li 100; Co 100 | [33] |
11 | GUA:LACT | 50 | 24 h | Li 94.7; Co 96.9 | [34] |
12 | PEG200:PA | 80 | 24 h | Li 98.7; Co 96.9 | [35] |
13 | BTFA:TOPO | 70 | 180 min | Li 93.0; Co 90.6 | [36] |
14 | ChCl:EG | 200 | 12 h | Li 86; Co 95 | [37] |
15 | ChCl:U:EG | 100 | 72 h | Li 92.83; Co 1.61; Ni 0.72; Mn 0.42 | [38] |
16 | ChCl:BSA:EtOH | 90 | 2 h | Li 99; Co 98 | [39] |
17 | PEG200:TU | 160 | 24 h | Co 60.2 | [40] |
18 | PEG200:PTSA H2O | 100 | 24 h | Li 99.4; Co 99.5 | [41] |
19 | ChCl:OA | 90 | 2 h | Li 100; Co 100 | [42] |
20 | ChCl:OA 2H2O | 120 | 12 h | Li 96.1; Co 96.3 | [43] |
21 | PEG:PTSA | 80 | 24 h | Li 85.7; Co 70.4 | [41] |
22 | PEG:AA | 80 | 24 h | Li 44.6; Co 55.4 | [44] |
23 | EG:TART | 120 | 12 h | Li 98.34 | [45] |
24 | ChCl:OA | 120 | 12 h | Li 96.1; Co 96.3 | [43] |
25 | EG:SSA 2H2O | 110 | 6 h | Li 98.3; Co 93.5 | [46] |
26 | ChCl:LACT | 105 | 5 h | Li 95; Co 95 | [47] |
27 | PTSA:PolyEG | 100 | 24 h | Co 99.5 | [44] |
28 | ChCl:EG | 87.5 | 2 h | Li 100; Co 100 | [48] |
29 | ChCl:THBA | 110 | 12 h | Li 98; Co 98 | [49] |
30 | ChCl:CIT:H2O | 120 | 4 h | Li 100; Co 97.6 | [50] |
31 | BHC:LACT | 120 | 2.2 h | Li 99.98; Co 99.86 | [51] |
32 | EG:U | 157 | 4 min | Li 91; Co 94 | [52] |
33 | ChCl:GLY | 200 | 20 h | Co 96 | [28] |
NCM or LCO + NCM cathodes | |||||
34 | ChCl:EG | 180 | 24 h | Li 89.94; Co 100; Ni 99.64; Mn 100 | [53] |
35 | BHC:EG | 140 | 10 min | Li 99.5; Co 0.6; Ni 99.7; 34Mn 93.5 | [54] |
36 | BHC:EG | 140 | 20 min | Li 93.6; Co 93.3; Ni 93.0; Mn 82.4 | [55] |
37 | ChCl:TART | 70 | 12 h | Li 96.0; Co 97.1; Ni 98.0; Mn 96.7 | [56] |
38 | ChCl:PPA | 100 | 80 min | Li 97.7; Co 97.0; Ni 96.4; Mn 93.0 | [57] |
39 | ChCl:AA | 50 | 1 h | Li 96.2; Co 98.1; Ni 98.9; Mn 99.3 | [58] |
40 | ChCl:OA | 120 | Co 95.5; Ni 99.1; Mn 94.5 | [59] | |
41 | ChCl:OA | 110 | 2.5 h | Li 99 | [60] |
42 | DMT:OA | 60 | 15 min | Li 100 | [61] |
43 | EG:SSA 2H2O | 110 | 6 h | Li 100; Co 94.8; Ni 99.1; Mn 100 | [46] |
44 | ChCl:LACT:CIT | 55 | 3 h | Co 99 | [62] |
45 | ChCl:LACT:H2O2 | 45 | 6 h | Li 86.7; Co 88.5; Ni 84.5 | [63] |
46 | ChCl:PPA:H2O2 | 45 | 6 h | Li 100; Co 98.7 | [63] |
47 | ChCl:PTSA:H2O | 90 | 2 h | Li 97.96; Co 100; Ni 99.46; Mn 100 | [64] |
48 | ChCl:AA | 120 | 12 h | Li 100; Co 100; Ni 100; Mn 99.2 | [65] |
49 | ChCl:EG:PTSA | 100 | 72 h | Li 97; Co 97; Ni 97; Mn 97 | [66] |
50 | ChCl:EG:TAR | 120 | 10 min | Co 100; Ni 98.8; Mn 100 | [67] |
51 | ChCl:SUC:TCCA | 60 | 2 h | Li 73.4; Co 53.5; Ni 44.3; Mn 73.4 | [68] |
52 | ChCl:GUC:TCCA | 60 | 2 h | Li 59.9; Co 51.4; Ni 49.6 Mn 65.1 | [68] |
53 | ChCl:CIT:PHM | 60 | 2 h | Li 87.7 Mn 73.7 | [68] |
54 | ChCl:CIT:H2O2 | 60 | 2 h | Li 50.8; Co 51.5 Ni 59.3 Mn 61.8 | [68] |
55 | EG:MA | 90 | 6 h | Li 95.6; Ni 84.6; Co 92.7; Mn 91.3 | [69] |
56 | EG:CIT | 95 | 10 h | Li 99.1 Co 96.2 Ni 97.6 Mn 98.3 | [70] |
57 | EG:DMPT | 100 | 1 h | Li 99.6; Ni 99.3; Co 99.0; Mn 99.4 | [71] |
58 | BHC:CIT | 80 | 0.5 h | Li 99.8; Co 99.8; Ni 99.1; Mn 99.2 | [72] |
59 | BHC:FA | 140 | 6 h | Li 98.0; Co 94.2; Ni 96.0; Mn 92.3 | [73] |
60 | TEAC:ASA | 80 | 2 min | Li 99.1; Co 99.4; Ni 99.6 Mn 99.3 | [74] |
61 | TBAC:MCA | 100 | 7 h | Li 100; Co 100 Ni 100 Mn 100 | [75] |
62 | ChCl:GLU | 100 | 24 h | Li 93.7 Co 94.2 Mn 97.6 Ni 82.4 | [76] |
63 | ChCl:OA | 80 | 2 h | Co 100; Mn 100 | [77] |
64 | ChCl:EG | 180 | 24h | Co 90; Ni 10 | [78,79] |
65 | GH:FUMA | 140 | 40 min | Li 99.8; Ni 98.9; Co 99.5; Mn 96.1 | [80] |
66 | CIT:EG | 95 | 10 h | Li 99.1; Co 96.2; Ni 97.6; Mn 98.3 | [81] |
67 | ChCl:EG:U | 40 | 72h | Li 97; Co 41; Ni 40; Mn 34 | [82] |
68 | ChCl:FA | 70 | 12 h | Li 100; Co 100; Mn 100 | [83] |
69 | ChCl:EG | 135 | 24 h | Li 90; Co 94 | [20] |
70 | EG:OA 2H2O | 90 | 12 h | Li 94.4 | [84] |
71 | ChCl:MALE | 80 | 2 h | Li 99.2; Co 65.4; Ni 95.0; Mn 67.9 | [85] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zanoletti, A.; Mannu, A.; Cornelio, A. Solvometallurgy as Alternative to Pyro- and Hydrometallurgy for Lithium, Cobalt, Nickel, and Manganese Extraction from Black Mass Processing: State of the Art. Materials 2025, 18, 2761. https://doi.org/10.3390/ma18122761
Zanoletti A, Mannu A, Cornelio A. Solvometallurgy as Alternative to Pyro- and Hydrometallurgy for Lithium, Cobalt, Nickel, and Manganese Extraction from Black Mass Processing: State of the Art. Materials. 2025; 18(12):2761. https://doi.org/10.3390/ma18122761
Chicago/Turabian StyleZanoletti, Alessandra, Alberto Mannu, and Antonella Cornelio. 2025. "Solvometallurgy as Alternative to Pyro- and Hydrometallurgy for Lithium, Cobalt, Nickel, and Manganese Extraction from Black Mass Processing: State of the Art" Materials 18, no. 12: 2761. https://doi.org/10.3390/ma18122761
APA StyleZanoletti, A., Mannu, A., & Cornelio, A. (2025). Solvometallurgy as Alternative to Pyro- and Hydrometallurgy for Lithium, Cobalt, Nickel, and Manganese Extraction from Black Mass Processing: State of the Art. Materials, 18(12), 2761. https://doi.org/10.3390/ma18122761