The Effects of Cell Chemistry, State of Charge, and Abuse Method on Gas Generation in Li-ion Cell Failure
Abstract
1. Introduction
2. Materials and Methods
- External heating of a single cell type at SoC ranging from 5 to 100%.
- External heating and nail penetration of different capacity cells (2.3–50 Ah) with Ni-based, LCO cathodes, or LTO anodes.
2.1. Cell Types Tested
2.2. Pressure Vessel Set-Up
2.3. Gas Volume Calculations
2.4. Gas Composition Analysis
2.5. External Heat Test Set-Up (All Cells)
2.6. Nail Penetration Test Set-Up
3. Results and Discussion
3.1. 21700 NMC (Cell A) 100% External Heat
3.2. 21700 NMC (Cell A) Other SoC External Heat
3.2.1. Temperature Data and Failure Characteristics (Cell A)
3.2.2. Gas Volume and Composition (Cell A)
3.3. Ni-Based Pouch and Prismatic External Heat and Nail Penetration
3.3.1. Temperature Data and Failure Characteristics
3.3.2. Gas Volumes and Composition
3.4. Cell E (23 Ah LTO Prismatic) External Heat
3.4.1. Temperature Data and Failure Characteristics
3.4.2. Gas Volume and Compositon
3.5. LCO 18650 (Cell I) Gas Volume and Composition
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
SoC | State of charge |
NMC | Nickel manganese cobalt oxide |
LCO | Lithium cobalt oxide |
LTO | Lithium titanium oxide |
TR | Thermal runaway |
SATP | Standard atmospheric temperature and pressure |
LMO | Lithium manganese oxide |
NMC/LMO | Nickel manganese cobalt oxide/Lithium manganese oxide |
NCA | Nickel cobalt aluminium oxide |
LFP | Lithium iron phosphate |
IR | Internal resistance |
EH | External heat |
NP | Nail penetration |
SoH | State of health |
References
- Chen, Y.; Kang, Y.; Zhao, Y.; Wang, L.; Liu, J.; Li, Y.; Liang, Z.; He, X.; Li, X.; Tavajohi, N.; et al. A review of lithium-ion battery safety concerns: The issues, strategies, and testing standards. J. Energy Chem. 2021, 59, 83–99. [Google Scholar] [CrossRef]
- Dai, Y.; Panahi, A. Thermal runaway process in lithium-ion batteries: A review. Next Energy 2025, 6, 100186. [Google Scholar] [CrossRef]
- Feng, X.; Ouyang, M.; Liu, X.; Lu, L.; Xia, Y.; He, X. Thermal runaway mechanism of lithium ion battery for electric vehicles: A review. Energy Storage Mater. 2018, 10, 246–267. [Google Scholar] [CrossRef]
- Shen, H.; Wang, H.; Li, M.; Li, C.; Zhang, Y.; Li, Y.; Yang, X.; Yang, X.; Feng, X.; Ouyang, M. Thermal Runaway Characteristics and Gas Composition Analysis of Lithium-Ion Batteries with Different LFP and NCM Cathode Materials under Inert Atmosphere. Electronics 2023, 12, 1603. [Google Scholar] [CrossRef]
- Huang, W.; Feng, X.; Han, X.; Zhang, W.; Jiang, F. Questions and Answers Relating to Lithium-Ion Battery Safety Issues. Cell Rep. Phys. Sci. 2021, 2, 100285. [Google Scholar] [CrossRef]
- Diaz, F.; Wang, Y.; Weyhe, R.; Friedrich, B. Gas generation measurement and evaluation during mechanical processing and thermal treatment of spent Li-ion batteries. Waste Manag. 2019, 84, 102–111. [Google Scholar] [CrossRef]
- Yuan, L.; Dubaniewicz, T.; Zlochower, I.; Thomas, R.; Rayyan, N. Experimental study on thermal runaway and vented gases of lithium-ion cells. Process Saf. Environ. Prot. 2020, 144, 186–192. [Google Scholar] [CrossRef]
- Koch, S.; Fill, A.; Birke, K.P. Comprehensive gas analysis on large scale automotive lithium-ion cells in thermal runaway. J. Power Sources 2018, 398, 106–112. [Google Scholar] [CrossRef]
- Howard, G.; Buston, J.; Gill, J. Experimental understanding of gas volumes and forces generated due to swelling during lithium-ion pouch cell failure. In Proceedings of the Hazards 31, Virtual, 16–18 November 2021. [Google Scholar]
- Sturk, D.; Rosell, L.; Blomqvist, P.; Tidblad, A.A. Analysis of Li-Ion Battery Gases Vented in an Inert Atmosphere Thermal Test Chamber. Batteries 2019, 5, 61. [Google Scholar] [CrossRef]
- Laruelle, S.; Forestier, C.; Lecocq, A.; Zantman, A.; Grugeon, S.; Sannier, L.; Marlair, G. Study of the Role of LiNi1/3Mn1/3Co1/3O2/Graphite Li-Ion Pouch Cells Confinement, Electrolyte Composition and Separator Coating on Thermal Runaway and Off-Gas Toxicity. J. Electrochem. Soc. 2020, 167, 090513. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, H.; Li, W.; Li, C. Quantitative identification of emissions from abused prismatic Ni-rich lithium-ion batteries. eTransportation 2019, 2, 100031. [Google Scholar] [CrossRef]
- Golubkov, A.W.; Fuchs, D.; Wagner, J.; Wiltsche, H.; Stangl, C.; Fauler, G.; Voitic, G.; Thaler, A.; Hacker, V. Thermal-runaway experiments on consumer Li-ion batteries with metal-oxide and olivin-type cathodes. RSC Adv. 2014, 4, 3633–3642. [Google Scholar] [CrossRef]
- Zhong, G.; Mao, B.; Wang, C.; Jiang, L.; Xu, K.; Sun, J.; Wang, Q. Thermal runaway and fire behavior investigation of lithium ion batteries using modified cone calorimeter. J. Therm. Anal. Calorim. 2018, 135, 2879–2889. [Google Scholar] [CrossRef]
- Xu, L.; Wang, S.; Li, Y.; Li, Y.; Sun, J.; Zhao, F.; Wang, H.; Wang, Y.; Xu, C.; Feng, X. Thermal runaway propagation behavior and gas production characteristics of NCM622 battery modules at different state of charge. Process Saf. Environ. Prot. 2024, 185, 267–276. [Google Scholar] [CrossRef]
- Willstrand, O.; Pushp, M.; Andersson, P.; Brandell, D. Impact of different Li-ion cell test conditions on thermal runaway characteristics and gas release measurements. J. Energy Storage 2023, 68, 107785. [Google Scholar] [CrossRef]
- Essl, C.; Golubkov, A.W.; Fuchs, A. Comparing Different Thermal Runaway Triggers for Two Automotive Lithium-Ion Battery Cell Types. J. Electrochem. Soc. 2020, 167, 130542. [Google Scholar] [CrossRef]
- Xu, C.; Fan, Z.; Zhang, M.; Wang, P.; Wang, H.; Jin, C.; Peng, Y.; Jiang, F.; Feng, X.; Ouyang, M. A comparative study of the venting gas of lithium-ion batteries during thermal runaway triggered by various methods. Cell Rep. Phys. Sci. 2023, 4, 101705. [Google Scholar] [CrossRef]
- Nedjalkov, A.; Meyer, J.; Köhring, M.; Doering, A.; Angelmahr, M.; Dahle, S.; Sander, A.; Fischer, A.; Schade, W. Toxic Gas Emissions from Damaged Lithium Ion Batteries—Analysis and Safety Enhancement Solution. Batteries 2016, 2, 5. [Google Scholar] [CrossRef]
- Abbott, K.C.; Buston, J.E.H.; Gill, J.; Goddard, S.L.; Howard, D.; Howard, G.; Read, E.; Williams, R.C.E. Comprehensive gas analysis of a 21700 Li(Ni0.8Co0.1Mn0.1O2) cell using mass spectrometry. J. Power Sources 2022, 539, 231585. [Google Scholar] [CrossRef]
- Abbott, K.C.; Buston, J.E.H.; Gill, J.; Goddard, S.L.; Howard, D.; Howard, G.E.; Read, E.; Williams, R.C.E. Experimental Study of Three Commercially Available 18650 Lithium Ion Batteries using Multiple Abuse Methods. J. Energy Storage 2023, 65, 107293. [Google Scholar] [CrossRef]
- Howard, G.E.; Abbott, K.C.; Buston, J.E.H.; Gill, J.; Goddard, S.L.; Howard, D. Comprehensive Study of the Gas Volume and Composition Generated by 5 Ah Nickel Manganese Cobalt Oxide (NMC) Li-Ion Pouch Cells Through Different Failure Mechanisms at Varying States of Charge. Batteries 2025, 11, 197. [Google Scholar] [CrossRef]
- Reeve, P.A.P.; Buston, J.E.H.; Gill, J.; Goddard, S.L.; Howard, G.E.; Mellor, J.W. Failure Gas Analysis of Lithium-Nickel-Cobalt-Aluminium Oxide Cells From Different Manufacturers. RSC Adv. 2025, 15, 5084–5095. [Google Scholar] [CrossRef] [PubMed]
- Howard, G.E.; Buston, J.E.H.; Gill, J.; Goddard, S.L.; Mellor, J.W.; Reeve, P.A.P. Comprehensive Study of the Gas Volume and Composition Produced by Different 3–230 Ah Lithium Iron Phosphate (LFP) Cells Failed Using External Heat, Overcharge and Nail Penetration Under Air and Inert Atmospheres. Batteries 2025, 11, 267. [Google Scholar] [CrossRef]
- Rowden, B.; Garcia-Araez, N. A review of gas evolution in lithium ion batteries. Energy Rep. 2020, 6, 10–18. [Google Scholar] [CrossRef]
- Gong, T.; Duan, X.; Shan, Y.; Huang, L. Gas Generation in Lithium-Ion Batteries: Mechanisms, Failure Pathways, and Thermal Safety Implications. Batteries 2025, 11, 152. [Google Scholar] [CrossRef]
- Huang, P.; Wang, Q.; Li, K.; Ping, P.; Sun, J. The combustion behavior of large scale lithium titanate battery. Sci. Rep. 2015, 5, 7788. [Google Scholar] [CrossRef]
Cell ID | Nominal Capacity (Ah) | Format | Dimensions (mm) | Chemistry | Average Weight (g) | IR (mΩ) |
---|---|---|---|---|---|---|
A | 5 | 21700 | 21 (d) × 70 | NMC-811 | 68 | 12.7 @ 30% SoC |
B | 6 | Prismatic | 120 × 75 × 10 | NMC | 240 | 0.787 @ 30% SoC |
C | 10 | Pouch | 100 × 60 × 10 | NMC | 128 | 32.47 @ 30% SoC |
D | 15 | Pouch | N/A | NMC/LMO | 381 | N/A |
E | 23 | Prismatic | 115 × 105 × 21 | LTO | 552 | N/A |
F | 30 | Pouch | 223 × 199 × 9.4 | NMC | 808 | N/A |
G | 50 | Prismatic | 316 × 105 × 11 | NMC/NCA | 759 | 0.737 @ 30% SoC |
H | 50 | Pouch | 280 × 100 × 10 | NMC | 905 | 0.925 @ 30% SoC |
I | 2.3 | 18650 | 18 (d) × 65 | LCO | 46 | N/A |
Cell ID | SoC (%) | Abuse Method | Atmosphere | Number of Tests |
---|---|---|---|---|
Cell A (5 Ah NMC 18650) | 100 | External Heat | Air | 2 |
Cell A | 100 | External Heat | Inert * | 6 |
Cell A | 75 | External Heat | Inert * | 3 |
Cell A | 50 | External Heat | Inert * | 3 |
Cell A | 25 | External Heat | Inert * | 3 |
Cell A | 5 | External Heat | Inert * | 3 |
Cell B (6 Ah NMC Prismatic) | 100 | External Heat | Inert * | 3 |
Cell C (10 Ah NMC Pouch) | 100 | External Heat | Inert * | 3 |
Cell C | 100 | Nail Penetration | Inert | 3 |
Cell D (15 Ah NMC/LMO Pouch) | 100 | External Heat | Inert * | 3 |
Cell D | 100 | Nail Penetration | Inert | 2 + |
Cell E (23 Ah LTO Prismatic) | 100 | External Heat | Inert * | 3 |
Cell F (30 Ah NMC Pouch) | 100 | External Heat | Inert * | 3 |
Cell F | 100 | Nail Penetration | Inert | 3 |
Cell G (50 Ah NMC/NCA Prismatic) | 100 | External Heat | Inert * | 2 |
Cell H (50 Ah NMC Pouch) | 100 | External Heat | Inert * | 2 |
Cell I (2.3 Ah LCO 18650) | 100 | External Heat | Inert * | 3 |
Atmosphere | Average Gas Volume (L) | Average Gas Volume (L/Ah) | Average Gas Composition | |||||||
---|---|---|---|---|---|---|---|---|---|---|
H2 (%) | CO2 (%) | CO (%) | C2H6 (%) | C2H4 (%) | C3H8 (%) | C3H6 (%) | CH4 (%) | |||
Air | 4.2 | 0.83 | 4.9 | 67.5 | 24.7 | 0.2 | 0.3 | 0.4 | 0.2 | 1.9 |
Inert | 8.3 | 1.67 | 22.0 | 27.8 | 37.8 | 0.9 | 3.9 | 2.3 | 0.5 | 4.9 |
Cell ID | SoC (%) | Atmosphere | Maximum Temperature (°C) | Jelly Roll Ejected? | Mass Loss (%) |
---|---|---|---|---|---|
A-1 | 100 | Air | 492 | No | 68 |
A-2 | 100 | Air | 345 | Partial | 72 |
A-3 | 100 | N2 | 413 | No | 37 |
A-4 | 100 | N2 | 565 | No | 64 |
A-5 | 100 | N2 | 414 | Partial | 71 |
A-6 | 100 | Ar | 710 | Partial | 65 |
A-7 | 100 | Ar | 552 | Partial | 69 |
A-8 | 100 | Ar | 332 | N/A | N/A |
A-9 | 75 | Ar | 568 | Partial | 72 |
A-10 | 75 | Ar | 572 | No | 59 |
A-11 | 75 | N2 | 345 | Partial | 63 |
A-12 | 50 | Ar | 433 | No | 37 |
A-13 | 50 | Ar | 197 | Partial | 50 |
A-14 | 50 | N2 | 416 | No | 37 |
A-15 | 25 | Ar | 264 | Yes | 81 |
A-16 | 25 | Ar | 297 | N/A | 72 |
A-17 | 25 | Ar | 353 | Partial | 71 |
A-18 | 5 | Ar | 332 | No | 10 |
A-19 | 5 | Ar | 385 | No | 12 |
A-20 | 5 | N2 | 353 | No | 9 |
Cell ID | Abuse Method | Maximum Temperature (°C) | Cell ID | Abuse Method | Maximum Temperature (°C) |
---|---|---|---|---|---|
B-1 | External Heat | 323 | G-2 | External Heat | 451 |
B-2 | External Heat | 351 | H-1 | External Heat | 794 |
B-3 | External Heat | 406 | H-2 | External Heat | 744 |
C-1 | External Heat | 754 | C-4 | Nail Penetration | 736 |
C-2 | External Heat | 830 | C-5 | Nail Penetration | 55 * |
C-3 | External Heat | 908 | C-6 | Nail Penetration | 584 |
D-1 | External Heat | 429 | F-4 | Nail Penetration | 142 |
D-2 | External Heat | 379 | F-5 | Nail Penetration | 261 |
F-1 | External Heat | 484 | F-6 | Nail Penetration | 209 |
F-2 | External Heat | 486 | D-3 | Nail Penetration | 14 |
F-3 | External Heat | 452 | D-4 | Nail Penetration | 36 |
G-1 | External Heat | 593 |
Cell ID | Abuse Method | Average Gas Composition | |||||||
---|---|---|---|---|---|---|---|---|---|
H2 (%) | CO2 (%) | CO (%) | C2H6 (%) | C2H4 (%) | C3H8 (%) | C3H6 (%) | CH4 (%) | ||
Cell B | External Heat | 28.7 | 29.3 | 19.2 | 2.0 | 6.6 | 6.4 | 2.9 | 4.7 |
Cell C | External Heat | 30.4 | 19.2 | 28.4 | 3.5 | 9.2 | 2.1 | 3.3 | 3.9 |
Cell D | External Heat | 28.5 | 27.2 | 25.5 | 1.9 | 5.7 | 3.0 | 3.7 | 4.4 |
Cell F | External Heat | 33.3 | 28.0 | 19.2 | 2.8 | 8.2 | 3.2 | 2.2 | 3.0 |
Cell G | External Heat | 23.2 | 23.3 | 27.8 | 3.1 | 13.0 | 1.6 | 2.1 | 5.8 |
Cell H | External Heat | 32.5 | 21.5 | 29.5 | 2.0 | 7.4 | 1.8 | 1.4 | 4.1 |
Cell C | Nail Penetration | 30.3 | 24.2 | 16.9 | 4.1 | 11.8 | 3.4 | 5.5 | 3.8 |
Cell F | Nail Penetration | 30.0 | 26.1 | 26.6 | 2.1 | 7.0 | 3.3 | 1.6 | 3.3 |
Cell ID | Average Gas Volume (L) | Average Gas Volume (L/Ah) | Max Temperature Range (°C) | Average Gas Composition | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
H2 (%) | CO2 (%) | CO (%) | C2H6 (%) | C2H4 (%) | C3H8 (%) | C3H6 (%) | CH4 (%) | ||||
Cell I | 2.8 | 1.2 | 133–433 | 29.1 | 38.6 | 0.5 | 2.6 | 12.3 | 5.4 | 4.7 | 6.9 |
3 Ah NMC 18650 | 3.9 | 1.3 | 283–606 | 20.4 | 35.4 | 24.4 | 1.8 | 1.6 | 0.9 | - | 15.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Howard, G.E.; Buston, J.E.H.; Gill, J.; Goddard, S.L.; Mellor, J.W.; Reeve, P.A.P. The Effects of Cell Chemistry, State of Charge, and Abuse Method on Gas Generation in Li-ion Cell Failure. Batteries 2025, 11, 320. https://doi.org/10.3390/batteries11090320
Howard GE, Buston JEH, Gill J, Goddard SL, Mellor JW, Reeve PAP. The Effects of Cell Chemistry, State of Charge, and Abuse Method on Gas Generation in Li-ion Cell Failure. Batteries. 2025; 11(9):320. https://doi.org/10.3390/batteries11090320
Chicago/Turabian StyleHoward, Gemma E., Jonathan E. H. Buston, Jason Gill, Steven L. Goddard, Jack W. Mellor, and Philip A. P. Reeve. 2025. "The Effects of Cell Chemistry, State of Charge, and Abuse Method on Gas Generation in Li-ion Cell Failure" Batteries 11, no. 9: 320. https://doi.org/10.3390/batteries11090320
APA StyleHoward, G. E., Buston, J. E. H., Gill, J., Goddard, S. L., Mellor, J. W., & Reeve, P. A. P. (2025). The Effects of Cell Chemistry, State of Charge, and Abuse Method on Gas Generation in Li-ion Cell Failure. Batteries, 11(9), 320. https://doi.org/10.3390/batteries11090320