Dynamic Characteristics of the Pore Heterogeneity of Longmaxi Shale Based on High-Pressure Triaxial Creep Testing
Abstract
1. Introduction
2. Regional Geological Background
3. Sample Information and Experimental Methods
3.1. Samples and Experimental Plan
3.2. Experimental Methods
3.2.1. High-Pressure Testing System
3.2.2. Geochemical Analyzers
3.2.3. Field Emission Scanning Electron Microscopy (FE-SEM) Experiment
3.3. Multifractal Model
4. Results and Discussion
4.1. Physical Properties of Shale Reservoirs
4.2. Pore Structure
4.2.1. Pore Types
- (1)
- Organic Matter Pores
- (2)
- Intergranular Pores and Intragranular Pores
- (3)
- Characteristics of Microfracture Development
4.2.2. Pore-Size Distribution Patterns
4.3. Computational and Heterogeneity Analysis of Multifractals
4.3.1. Calculation of Multifractal Parameters
4.3.2. Heterogeneity Analysis of Multifractals
4.4. Dynamic Variations in Pore Heterogeneity in Shale
4.5. Influencing Factors of Dynamic Changes in Pore Heterogeneity
5. Conclusions
- (1)
- The pore types in Longmaxi shale mainly include organic matter pores, microfractures, intergranular pores, and intragranular pores. The heterogeneity of the pores is significantly controlled by the mechanical properties of the minerals in which they occur: organic matter pores occurring between rigid minerals can effectively resist tectonic stress and are homogeneous, while organic matter pores between plastic minerals have weaker compressive strength and significant size variation. The size distribution of intergranular pores is the opposite of that of organic matter pores. Intragranular pores are mainly quartz dissolution pores, and their morphology and size are relatively uniform. Microfractures within mineral particles typically appear narrow and long, while intercrystalline fractures are characterized by wide and long dimensions.
- (2)
- The pores in Longmaxi shale mainly consist of mesopores and micropores, with mesopores dominating the total pore volume and micropores controlling the total specific surface area. Together, they form the storage space in Longmaxi shale.
- (3)
- The pores in Longmaxi shale exhibit distinct multifractal characteristics, and the singular index(α0) and other 11 multifractal dimension parameters can reflect the heterogeneity of shale pores from different perspectives. Moreover, except for Rd, the remaining 10 parameters show good correlations with each other.
- (4)
- The dynamic changes in pore heterogeneity are mainly controlled by the mineral composition. Under the same creep pressure variation conditions, there are significant differences in the rebound behavior of pores in Longmaxi shale with different mineral compositions. Under high-pressure conditions, TOC content and quartz mineral content have a dominant influence on pore heterogeneity, and their control ability decreases first and then increases as pressure decreases. As pressure decreases, the control of TOC, quartz, and feldspar content on pore connectivity becomes evident, with feldspar content having a decisive effect on the connectivity of shale pores.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Guo, X.; Wang, R.; Shen, B.; Wang, G.; Wan, C.; Wang, Q. Geological characteristics, resource potential, and development direction of shale gas in China. Petrol. Explor. Dev. 2025, 52, 17–32. [Google Scholar] [CrossRef]
- Chen, W.; Zhou, W.; Luo, P.; Deng, H.; Li, Q.; Shan, R.; Qi, M. Analysis of the shale gas reservoir in the lower Silurian Longmaxi formation, Changxin 1 well, southeast Sichuan Basin, China. Acta Petrol. Sin. 2013, 29, 1073–1086. [Google Scholar]
- Guo, W.; Deng, S.; Sun, Y. Recent advances on shale oil and gas exploration and development technologies. Adv. Geo-Energy Res. 2024, 11, 81–87. [Google Scholar] [CrossRef]
- Fu, E.; He, W. The development and utilization of shale oil and gas resources in China and economic analysis of energy security under the background of global energy crisis. J. Petrol. Explor. Prod. Technol. 2024, 14, 2315–2341. [Google Scholar] [CrossRef]
- Tan, M.; Wu, H.; Wang, S.; Du, G.; Bai, Y.; Wang, Q. Progress and development direction of log interpretation technology for marine shale gas in China. Acta Petrol. Sin. 2024, 45, 241. [Google Scholar]
- Zou, C.; Li, S.; Xiong, B.; Liu, H.; Ma, F. The revolution and significance of “green transformation of energy” under the new quality productivity: Also on the theoretical understanding of “energy triangle”. Oil Explor. Dev. 2024, 51, 1395–1408. (In Chinese) [Google Scholar]
- Li, J.; Li, H.; Jiang, W.; Cai, M.; He, J.; Wang, Q.; Li, D. Shale pore characteristics and their impact on the gas-bearing properties of the Longmaxi Formation in the Luzhou area. Sci. Rep. 2024, 14, 16896. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhou, J.; Mou, X.; Guo, H.; Wang, X.; An, H.; Mo, Q.; Long, H.; Dang, C.; Wu, J. Pore structure and fractal characteristics of the marine shale of the Longmaxi Formation in the Changning Area, Southern Sichuan Basin, China. Front. Earth Sci. 2022, 10, 1018274. [Google Scholar] [CrossRef]
- Li, X.; Zhu, H.; Zhang, K.; Li, Z.; Yu, Y.; Feng, X.; Wang, Z. Pore characteristics and pore structure deformation evolution of ductile deformed shales in the Wufeng-Longmaxi Formation, southern China. Mar. Petrol. Geol. 2021, 127, 104992. [Google Scholar] [CrossRef]
- Xiao, B. Study on the Main Controlling Factors of Organic Matter Enrichment in Black Shale of Wufeng Longmaxi Formation in the Northern Margin of Sichuan Basin. Ph.D. Thesis, Chengdu University of Technology, Chengdu, China, 2019. (In Chinese). [Google Scholar]
- Shang, F.; Zhu, Y.; Hu, Q.; Wang, Y.; Li, Y.; Li, W.; Liu, R.; Gao, H. Factors controlling organic-matter accumulation in the Upper Ordovician-Lower Silurian organic-rich shale on the northeast margin of the Upper Yangtze platform: Evidence from petrographic and geochemical proxies. Mar. Petrol. Geol. 2020, 121, 104597. [Google Scholar] [CrossRef]
- Liu, W.; Liu, J.; Cai, M.; Luo, C.; Shi, X.; Zhang, J. Pore evolution characteristic of shale in the Longmaxi Formation, Sichuan Basin. Petrol. Res. 2017, 2, 291–300. [Google Scholar] [CrossRef]
- Song, Y.; Li, Z.; Jiang, Z.; Liu, D.; Tang, X.; Zhang, K.; Tang, L. Preservation mechanism and model of marine shale gas in southern China. Acta Geol. Sin. 2023, 97, 2858–2873. (In Chinese) [Google Scholar]
- Zhao, X.; Zhou, W.; Xu, H.; Chen, W.; Jiang, K. Pore evolution characteristics of marine organic-rich shale based on a pyrolysis simulation experiment. Minerals 2022, 12, 1098. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Bodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, Y.; Chen, S.; Li, W. Characteristics of the nanoscale pore structure in Northwestern Hunan shale gas reservoirs using field emission scanning electron microscopy, high-pressure mercury intrusion, and gas adsorption. Energy Fuels 2014, 28, 945–955. [Google Scholar] [CrossRef]
- Cheng, G. Shale Deformation and Physical Property Evolution Mechanism of Wufeng Longmaxi Formation in Xuyong Area. Ph.D. Thesis, China University of Mining and Technology, Xuzhou, China, 2022. (In Chinese). [Google Scholar]
- Zhong, B.; Zhu, Y.; Feng, G.; Xiang, J.; Wang, Y. Matrix compression and pore heterogeneity in the coal-measure shale reservoirs of the Qinshui Basin: A multifractal analysis. Fractal Fract. 2024, 8, 580. [Google Scholar] [CrossRef]
- Liang, M.; Dong, M.; Wang, Z.; Zhang, K.; Li, X.; Feng, X. Fractal analysis of organic matter nanopore structure in tectonically deformed shales. Fractal Fract. 2025, 9, 257. [Google Scholar] [CrossRef]
- An, Z.; Zhao, Y.; Zhang, Y. Pore heterogeneity analysis and control mechanisms in Cambrian shale of the Shuijingtuo Formation, Yichang area, China. Front. Earth Sci. 2024, 12, 1365516. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, H.; Zhang, Z.; Jing, L.; Liu, K. Quantifying the pore heterogeneity of alkaline lake shale during hydrous pyrolysis by using the multifractal method. Fractal Fract. 2024, 8, 335. [Google Scholar] [CrossRef]
- Wu, W.; Liang, Z.; Xu, L.; Liu, Y.; Li, Y.; Tang, X.; Yin, Y.; Chen, Y. The effect of thermal maturity on the pore structure heterogeneity of Xiamaling shale by multifractal analysis theory: A case from pyrolysis simulation experiments. Minerals 2023, 13, 1340. [Google Scholar] [CrossRef]
- Xi, B.; Pan, A.; Bao, F.; Lu, L.; Cao, T.; Wang, Y.; Ma, Z.; Liu, X. Monomer in the shale porosity evolution of organic matter in situ thermal simulation. Exp. Oil Geol. 2023, 45, 1016–1025. (In Chinese) [Google Scholar]
- Zhang, C.; Zhou, S.; Chen, K.; Li, J.; Chen, K.; Zhang, Y.; Li, P.; Sun, Z.; Fu, D. The influence of CO2 on the microscopic pore structure of shale under high pressure conditions and its adsorption characteristics in shale. Earth Sci. 2019, 44, 3773–3782. (In Chinese) [Google Scholar]
- Xiang, M.; Xu, S.; Wen, Y.R.; Gou, Q.Y.; Liu, B.C. Influence of tectonic preservation conditions on the nanopore structure of shale reservoir: A case study of Wufeng-Longmaxi Formation shale in western Hubei area, south China. Pet. Sci. 2024, 21, 2203–2217. [Google Scholar] [CrossRef]
- Gou, Q.; Xu, S.; Hao, F.; Lu, Y.; Shu, Z.; Lu, Y.; Wang, Z.; Wang, Y. Evaluation of the exploration prospect and risk of marine gas shale, southern China: A case study of Wufeng-Longmaxi shales in the Jiaoshiba area and Niutitang shales in the Cen’gong area. Bulletin 2022, 134, 1585–1602. [Google Scholar] [CrossRef]
- Tian, F.; Guo, T.; He, D.; Gu, Z.; Meng, X.; Wang, R.; Wang, Y.; Zhang, W.; Lu, G. Three-dimensional structural models, evolution and petroleum geological significances of transtensional faults in the Ziyang area, central Sichuan Basin, SW China. Petrol. Explor. Dev. 2024, 51, 604–620. [Google Scholar] [CrossRef]
- Wei, S.; Hui, L.; Zhi, Z.; Guang, R.; Jing, W.; Yu, W.; Meng, F. Structural evolution and reservoir control characteristics of Sichuan Basin. In Proceedings of the International Field Exploration and Development Conference, Wuhan, China, 19–21 September 2023; Springer Nature: Singapore, 2023; pp. 486–501. [Google Scholar]
- Shi, X.; Wu, W.; Shi, Y.; Jiang, Z.; Zeng, L.; Ma, S.; Shao, X.; Tang, X.; Zheng, M. Influence of multi-period tectonic movement and faults on shale gas enrichment in Luzhou area of Sichuan Basin, China. Energies 2022, 15, 6846. [Google Scholar] [CrossRef]
- Wang, Y. Evolution of Microporous Fracture Structure and Shale Gas Occurrence of Longmaxi Formation Shale in Upper Yangtze Region. Ph.D. Thesis, China University of Mining and Technology, Beijing, China, 2017. (In Chinese). [Google Scholar]
- GB/T19145-2003; Determination of Total Organic Carbon in Sedimentary Rock. Standards Press of China: Beijing, China, 2003.
- SY/T5163-2018; Analysis Method for Clay Minerals and Ordinary Non-Clay Minerals in Sedimentary Rocks by the X-Ray Diffraction. Petroleum Industry Press: Beijing, China, 2018.
- Gao, H. Research and Application of Multifractal Algorithm. Master’s Thesis, Chengdu University of Technology, Chengdu, China, 2004. (In Chinese). [Google Scholar]
- Zhang, N.; Wang, X.; Wang, S.; Wang, R.; Wu, J.; Li, Z.; Song, Y. Multifractal characteristics on pore structure of Longmaxi shale using nuclear magnetic resonance (NMR). Geoenergy Sci. Eng. 2024, 241, 213176. [Google Scholar] [CrossRef]
- Zhang, S.; Zhou, Z.; Gao, Z.; Gai, X.; Song, W. Analyzing the influence of Cerchar abrasiveness index on particle size distribution in ball milling based on multifractal theory. Powder Technol. 2023, 429, 118947. [Google Scholar] [CrossRef]
- Zhang, H. Response Mechanism of Pore Rebound of Shale in Longmaxi Formation Under the Influence of Late Tectonic Uplift. Master’s Thesis, China University of Mining and Technology, Beijing, China, 2024. (In Chinese). [Google Scholar]
- Shang, F. Shale Reservoir Characteristics and Shale Gas Occurrence in Complex Structural Areas. Ph.D. Thesis, China University of Mining and Technology, Xuzhou, China, 2022. (In Chinese). [Google Scholar]
- Fang, L.; Xu, F.; Xu, G.; Liu, J.; Liang, H.; Gong, X. Quantitative classification of shale lithofacies and gas enrichment in deep-marine shale of the late Ordovician Wufeng Formation and early Silurian Longyi 1 Submember, Sichuan Basin, China. Energies 2025, 18, 1835. [Google Scholar] [CrossRef]
- Zhang, S.; Xian, X.; Zhou, J.; Liu, G.; Guo, Y.; Zhao, Y.; Lu, Z. Experimental study of the pore structure characterization in shale with different particle size. J. Energy Res. Technol. 2018, 140, 054502. [Google Scholar] [CrossRef]
- Feng, G. High Temperature and High Pressure Methane Adsorption and Shale Gas Occurrence of Lower Cambrian Shale in the Upper Yangtze Region. Ph.D. Thesis, China University of Mining and Technology, Xuzhou, China, 2020. (In Chinese). [Google Scholar]
- Song, Y.; Jiang, B.; Shao, P.; Wu, J. Matrix compression and multifractal characterization for tectonically deformed coals by Hg porosimetry. Fuel 2018, 211, 661–675. [Google Scholar] [CrossRef]
- Liu, K.; Ostadhassan, M.; Kong, L. Fractal and multifractal characteristics of pore throats in the Bakken Shale. Transp. Porous Media 2019, 126, 579–598. [Google Scholar] [CrossRef]
- Wang, M.; Jiao, C.; Li, C.; Li, Z.; Zhou, N.; Li, J.; Lu, S.; Tian, F.; Hao, G.; Shi, J. Multifractal characteristics of microscopic pores of Shahejie Formation shale in Dongying depression. Pet. Geol. Recovery Effic. 2019, 26, 72–79. (In Chinese) [Google Scholar]
- Wang, T.; Deng, Z.; Hu, H.; Wang, H.; Jiang, Z.; Wang, D. Study on the pore structure and multifractal characteristics of medium-and high-rank coals based on the gas adsorption method: A case study of the Benxi Formation in the eastern margin of the Ordos Basin. Energy Fuels 2024, 38, 4102–4121. [Google Scholar] [CrossRef]
- Zhang, J.; Wei, C.; Chu, X.; Vandeginste, V.; Ju, W. Multifractal analysis in characterizing adsorption pore heterogeneity of middle-and high-rank coal reservoirs. ACS Omega 2020, 5, 19385–19401. [Google Scholar] [CrossRef]
- Wang, H.; Chen, S.; Zhang, S.; Zhang, C.; Wang, Y.; Yi, G.; Peng, Y. Study on fracture characteristics in coal and shale for coal-measure gas reservoir based on 3D CT reconstruction and fractal features. Front. Earth Sci. 2023, 17, 514–526. [Google Scholar] [CrossRef]
- Wang, Y.; Zhong, B.; Yang, L.; Zhu, Y.; Xiang, J.; Zhang, T.; Zhang, H. Multiscale Fractal Evolution Mechanism of Pore Heterogeneity in Hydrocarbon Source Rocks: A Thermal Simulation Experiment in the Xiamaling Formation. Fractals 2025, 9, 351. [Google Scholar] [CrossRef]
Sample | TOC (%) | Average VRequ (%) | vG-vD | Content of Inorganic Minerals % | ||||
---|---|---|---|---|---|---|---|---|
Quartz | Feldspar | Clay | Carbonate | Pyrite | ||||
TB-1 | 7.8 | 3.04 | 265.35 | 79.2 | 4.1 | 16.7 | 0 | 0 |
SH-1 | 2.79 | 3.53 | 273.68 | 27.7 | 9 | 40.1 | 22.6 | 0 |
DFA-1 | 6.29 | 3.49 | 274.42 | 66.0 | 6.7 | 16.6 | 5.6 | 5.1 |
Sample Number | Pressure | High-Pressure Mercury Injection Experiment (50–20,000 nm) | N2 Adsorption Experiment (2–50 nm) | CO2 Adsorption Experiment (0–2 nm) | |||
---|---|---|---|---|---|---|---|
Macropore Volume (cm3/g) | Macroporous Specific Surface Area (m2/g) | Mesoporous Volume (cm3/g) | Mesoporous Specific Surface Area (m2/g) | Micropore Volume (cm3/g) | Specific Surface Area of Micropores (m2/g) | ||
TB-1 | 20 MPa | 0.00150 | 0.01740 | 0.0247 | 13.052 | 0.00950 | 32.49 |
10 MPa | 0.00211 | 0.04462 | 0.0212 | 8.8348 | 0.00731 | 27.07 | |
0 MPa | 0.00191 | 0.03856 | 0.0239 | 11.761 | 0.01091 | 36.13 | |
SH-1 | 20 MPa | 0.00254 | 0.04804 | 0.0113 | 6.4531 | 0.00722 | 19.26 |
10 MPa | 0.00186 | 0.03669 | 0.0107 | 6.1393 | 0.00675 | 18.37 | |
0 MPa | 0.00165 | 0.02577 | 0.0115 | 6.6592 | 0.00517 | 14.24 | |
DFA-1 | 20 MPa | 0.00164 | 0.01293 | 0.0104 | 5.7819 | 0.00726 | 22.38 |
10 MPa | 0.00198 | 0.02279 | 0.0156 | 9.611 | 0.00469 | 14.60 | |
0 MPa | 0.00116 | 0.00767 | 0.0146 | 8.603 | 0.01286 | 37.99 |
Sample | Pressure | α0 | α0–α10 | α−10–α0 | α−10–α10 | Rd | Hurst | D0 | D1 | D2 | D0–D10 | D−10–D0 | D−10–D10 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TB-1 | 20 MPa | 1.362 | 0.732 | 0.712 | 1.443 | 0.020 | 0.911 | 1 | 0.866 | 0.821 | 0.320 | 0.898 | 1.218 |
10 MPa | 1.540 | 1.056 | 1.026 | 2.082 | 0.029 | 0.819 | 1 | 0.696 | 0.639 | 0.477 | 1.337 | 1.814 | |
0 MPa | 1.234 | 0.603 | 0.645 | 1.248 | −0.043 | 0.907 | 1 | 0.865 | 0.814 | 0.323 | 0.712 | 1.035 | |
SH-1 | 20 MPa | 1.046 | 0.194 | 0.204 | 0.398 | −0.009 | 0.974 | 1 | 0.969 | 0.947 | 0.118 | 0.178 | 0.295 |
10 MPa | 1.116 | 0.254 | 0.563 | 0.817 | −0.308 | 0.975 | 1 | 0.970 | 0.949 | 0.112 | 0.537 | 0.649 | |
0 MPa | 1.391 | 0.768 | 0.996 | 1.764 | −0.227 | 0.875 | 1 | 0.784 | 0.750 | 0.341 | 1.183 | 1.523 | |
DFA-1 | 20 MPa | 1.252 | 0.453 | 0.742 | 1.195 | −0.289 | 0.961 | 1 | 0.943 | 0.922 | 0.160 | 0.814 | 0.974 |
10 MPa | 1.041 | 0.313 | 0.165 | 0.477 | 0.148 | 0.946 | 1 | 0.940 | 0.891 | 0.233 | 0.148 | 0.381 | |
0 MPa | 1.452 | 0.702 | 0.831 | 1.533 | −0.128 | 0.890 | 1 | 0.783 | 0.780 | 0.241 | 1.079 | 1.319 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, Y.; Zhang, H.; Zhu, Y.; Chen, H.; Ge, Y.; Wang, Q.; Zhao, Y. Dynamic Characteristics of the Pore Heterogeneity of Longmaxi Shale Based on High-Pressure Triaxial Creep Testing. Fractal Fract. 2025, 9, 564. https://doi.org/10.3390/fractalfract9090564
Dai Y, Zhang H, Zhu Y, Chen H, Ge Y, Wang Q, Zhao Y. Dynamic Characteristics of the Pore Heterogeneity of Longmaxi Shale Based on High-Pressure Triaxial Creep Testing. Fractal and Fractional. 2025; 9(9):564. https://doi.org/10.3390/fractalfract9090564
Chicago/Turabian StyleDai, Yan, Hanyu Zhang, Yanming Zhu, Haoran Chen, Yao Ge, Qian Wang, and Yiming Zhao. 2025. "Dynamic Characteristics of the Pore Heterogeneity of Longmaxi Shale Based on High-Pressure Triaxial Creep Testing" Fractal and Fractional 9, no. 9: 564. https://doi.org/10.3390/fractalfract9090564
APA StyleDai, Y., Zhang, H., Zhu, Y., Chen, H., Ge, Y., Wang, Q., & Zhao, Y. (2025). Dynamic Characteristics of the Pore Heterogeneity of Longmaxi Shale Based on High-Pressure Triaxial Creep Testing. Fractal and Fractional, 9(9), 564. https://doi.org/10.3390/fractalfract9090564