Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (8,986)

Search Parameters:
Keywords = LC-MS.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 865 KiB  
Review
Proteomics-Based Approaches to Decipher the Molecular Strategies of Botrytis cinerea: A Review
by Olivier B. N. Coste, Almudena Escobar-Niño and Francisco Javier Fernández-Acero
J. Fungi 2025, 11(8), 584; https://doi.org/10.3390/jof11080584 - 6 Aug 2025
Abstract
Botrytis cinerea is a highly versatile pathogenic fungus, causing significant damage across a wide range of plant species. A central focus of this review is the recent advances made through proteomics, an advanced molecular tool, in understanding the mechanisms of B. cinerea infection. [...] Read more.
Botrytis cinerea is a highly versatile pathogenic fungus, causing significant damage across a wide range of plant species. A central focus of this review is the recent advances made through proteomics, an advanced molecular tool, in understanding the mechanisms of B. cinerea infection. Recent advances in mass spectrometry-based proteomics—including LC-MS/MS, iTRAQ, MALDI-TOF, and surface shaving—have enabled the in-depth characterization of B. cinerea subproteomes such as the secretome, surfactome, phosphoproteome, and extracellular vesicles, revealing condition-specific pathogenic mechanisms. Notably, in under a decade, the proportion of predicted proteins experimentally identified has increased from 10% to 52%, reflecting the rapid progress in proteomic capabilities. We explore how proteomic studies have significantly enhanced our knowledge of the fungus secretome and the role of extracellular vesicles (EVs), which play key roles in pathogenesis, by identifying secreted proteins—such as pH-responsive elements—that may serve as biomarkers and therapeutic targets. These technologies have also uncovered fine regulatory mechanisms across multiple levels of the fungal proteome, including post-translational modifications (PTMs), the phosphomembranome, and the surfactome, providing a more integrated view of its infection strategy. Moreover, proteomic approaches have contributed to a better understanding of host–pathogen interactions, including aspects of the plant’s defensive responses. Furthermore, this review discusses how proteomic data have helped to identify metabolic pathways affected by novel, more environmentally friendly antifungal compounds. A further update on the advances achieved in the field of proteomics discovery for the organism under consideration is provided in this paper, along with a perspective on emerging tools and future developments expected to accelerate research and improve targeted intervention strategies. Full article
(This article belongs to the Special Issue Plant Pathogenic Sclerotiniaceae)
Show Figures

Figure 1

24 pages, 2121 KiB  
Article
Camellia japonica Flower Extract and the Active Constituent Hyperoside Repair DNA Damage Through FUNDC1-Mediated Mitophagy Pathway for Skin Anti-Aging
by Hongqi Gao, Jiahui Shi, Guangtao Li, Zhifang Lai, Yan Liu, Chanling Yuan and Wenjie Mei
Antioxidants 2025, 14(8), 968; https://doi.org/10.3390/antiox14080968 (registering DOI) - 6 Aug 2025
Abstract
Skin aging is closely related to mitochondrial dysfunction and cell cycle abnormalities, and developing intervention strategies targeting mitochondrial quality control is an important direction for anti-aging research. In this study, we investigated the anti-aging mechanism of Camellia japonica flower (CJF) extract and its [...] Read more.
Skin aging is closely related to mitochondrial dysfunction and cell cycle abnormalities, and developing intervention strategies targeting mitochondrial quality control is an important direction for anti-aging research. In this study, we investigated the anti-aging mechanism of Camellia japonica flower (CJF) extract and its active ingredient hyperoside based on a doxorubicin (DOX)-induced endogenous senescence model in human skin fibroblasts (HSFs). LC-MS proteomics analysis revealed that CJF extract and hyperoside specifically activated the FUNDC1-mediated mitochondrial autophagy pathway, significantly ameliorated the DOX-induced decrease in mitochondrial membrane potential and the accumulation of reactive oxygen species (ROS), and alleviated the cellular S-phase blockade and reversed the high expression of senescence-associated β-galactosidase (SA-β-gal). Further studies showed that the two cleared damaged mitochondria by enhancing mitochondrial autophagy and restoring cellular energy metabolism homeostasis while promoting type III collagen and elastin synthesis and repairing the expression of Claudin 1 related to skin barrier function. For the first time, the present study reveals the molecular mechanism of CJF extract in delaying skin aging by regulating the FUNDC1-dependent mitochondrial autophagy pathway, which provides a theoretical basis and a candidate strategy for developing novel anti-aging agents targeting mitochondrial quality control. Full article
(This article belongs to the Section Extraction and Industrial Applications of Antioxidants)
26 pages, 3575 KiB  
Article
Antioxidant Power of Brown Algae: Ascophyllum nodosum and Fucus vesiculosus Extracts Mitigate Oxidative Stress In Vitro and In Vivo
by Lea Karlsberger, Georg Sandner, Lenka Molčanová, Tomáš Rýpar, Stéphanie Ladirat and Julian Weghuber
Mar. Drugs 2025, 23(8), 322; https://doi.org/10.3390/md23080322 - 6 Aug 2025
Abstract
Brown algae such as Ascophyllum nodosum (AN) and Fucus vesiculosus (FV) are gaining considerable attention as functional feed additives due to their health-beneficial properties. This study evaluated the antioxidant potential of AN and FV extracts in intestinal epithelial cells and the in vivo [...] Read more.
Brown algae such as Ascophyllum nodosum (AN) and Fucus vesiculosus (FV) are gaining considerable attention as functional feed additives due to their health-beneficial properties. This study evaluated the antioxidant potential of AN and FV extracts in intestinal epithelial cells and the in vivo model Caenorhabditis elegans (C. elegans). Aqueous AN and FV extracts were characterized for total phenolic content (TPC), antioxidant capacity (TEAC, FRAP), and phlorotannin composition using LC-HRMS/MS. Antioxidant effects were assessed in vitro, measuring AAPH-induced ROS production in Caco-2 and IPEC-J2 cells via H2DCF-DA, and in vivo, evaluating the effects of paraquat-induced oxidative stress and AN or FV treatment on worm motility, GST-4::GFP reporter expression, and gene expression in C. elegans. FV exhibited higher total phenolic content, antioxidant capacity (TEAC, FRAP), and a broader phlorotannin profile (degree of polymerization [DP] 2–9) than AN (DP 2–7), as determined by LC-HRMS/MS. Both extracts attenuated AAPH-induced oxidative stress in epithelial cells, with FV showing greater efficacy. In C. elegans, pre-treatment with AN and FV significantly mitigated a paraquat-induced motility decline by 22% and 11%, respectively, compared to PQ-stressed controls. Under unstressed conditions, both extracts enhanced nematode healthspan, with significant effects observed at 400 µg/g for AN and starting at 100 µg/g for FV. Gene expression analysis indicated that both extracts modulated antioxidant pathways in unstressed worms. Under oxidative stress, pre-treatment with AN and FV significantly reduced GST-4::GFP expression. In the nematode, AN was more protective under acute stress, whereas FV better supported physiological function in the absence of stressors. These findings demonstrate that AN and FV counteract oxidative stress in intestinal epithelial cells and in C. elegans, highlighting their potential as stress-reducing agents in animal feed. Full article
Show Figures

Figure 1

52 pages, 3790 KiB  
Article
The Identification and Analysis of Novel Umami Peptides in Lager Beer and Their Multidimensional Effects on the Sensory Attributes of the Beer Body
by Yashuai Wu, Ruiyang Yin, Liyun Guo, Yumei Song, Xiuli He, Mingtao Huang, Yi Ren, Xian Zhong, Dongrui Zhao, Jinchen Li, Mengyao Liu, Jinyuan Sun, Mingquan Huang and Baoguo Sun
Foods 2025, 14(15), 2743; https://doi.org/10.3390/foods14152743 - 6 Aug 2025
Abstract
This study was designed to systematically identify novel umami peptides in lager beer, clarify their molecular interactions with the T1R1/T1R3 receptor, and determine their specific effects on multidimensional sensory attributes. The peptides were characterized by LC-MS/MS combined with de novo sequencing, and 906 [...] Read more.
This study was designed to systematically identify novel umami peptides in lager beer, clarify their molecular interactions with the T1R1/T1R3 receptor, and determine their specific effects on multidimensional sensory attributes. The peptides were characterized by LC-MS/MS combined with de novo sequencing, and 906 valid sequences were obtained. Machine-learning models (UMPred-FRL, Tastepeptides-Meta, and Umami-MRNN) predicted 76 potential umami peptides. These candidates were docked to T1R1/T1R3 with the CDOCKER protocol, producing 57 successful complexes. Six representative peptides—KSTEL, DELIK, DIGISSK, IEKYSGA, DEVR, and PVPL—were selected for 100 ns molecular-dynamics simulations and MM/GBSA binding-energy calculations. All six peptides stably occupied the narrow cleft at the T1R1/T1R3 interface. Their binding free energies ranked as DEVR (−44.09 ± 5.47 kcal mol−1) < KSTEL (−43.21 ± 3.45) < IEKYSGA (−39.60 ± 4.37) ≈ PVPL (−39.53 ± 2.52) < DELIK (−36.14 ± 3.11) < DIGISSK (−26.45 ± 4.52). Corresponding taste thresholds were 0.121, 0.217, 0.326, 0.406, 0.589, and 0.696 mmol L−1 (DEVR < KSTEL < IEKYSGA < DELIK < PVPL < DIGISSK). TDA-based sensory validation with single-factor additions showed that KSTEL, DELIK, DEVR, and PVPL increased umami scores by ≈21%, ≈22%, ≈17%, and ≈11%, respectively, while DIGISSK and IEKYSGA produced marginal changes (≤2%). The short-chain peptides thus bound with high affinity to T1R1/T1R3 and improved core taste and mouthfeel but tended to amplify certain off-flavors, and the long-chain peptides caused detrimental impacts. Future formulation optimization should balance flavor enhancement and off-flavor suppression, providing a theoretical basis for targeted brewing of umami-oriented lager beer. Full article
(This article belongs to the Topic Advances in Analysis of Food and Beverages, 2nd Edition)
Show Figures

Graphical abstract

19 pages, 895 KiB  
Article
A Phytochemical and Biological Characterization of Cynara cardunculus L. subsp. scolymus Cultivar “Carciofo di Procida”, a Traditional Italian Agri-Food Product (PAT) of the Campania Region
by Giuseppina Tommonaro, Giulia De Simone, Carmine Iodice, Marco Allarà and Adele Cutignano
Molecules 2025, 30(15), 3285; https://doi.org/10.3390/molecules30153285 - 5 Aug 2025
Abstract
The artichoke (Cynara cardunculus L. subsp. scolymus) is an endemic perennial plant of the Mediterranean area commonly consumed as food. It is known since ancient times for its beneficial properties for human health, among which its antioxidant activity due to polyphenolics [...] Read more.
The artichoke (Cynara cardunculus L. subsp. scolymus) is an endemic perennial plant of the Mediterranean area commonly consumed as food. It is known since ancient times for its beneficial properties for human health, among which its antioxidant activity due to polyphenolics stands out. In the frame of our ongoing studies aiming to highlight the biodiversity and the chemodiversity of natural resources, we investigated the phenolic and saponin content of the cultivar “Carciofo di Procida” collected at Procida, an island of the Gulf of Naples (Italy). Along with the edible part of the immature flower, we included in our analyses the stem and the external bracts, generally discarded for food consuming or industrial preparations. The LCMS quali-quantitative profiling of polyphenols (including anthocyanins) and cynarasaponins of this cultivar is reported for the first time. In addition to antioxidant properties, we observed a significant cytotoxic activity due to extracts from external bracts against human neuroblastoma SH-SY5Y cell lines with 43% of cell viability, after 24 h from the treatment (50 μg/mL), and less potent but appreciable effects also against human colorectal adenocarcinoma CaCo-2 cells. This suggests that the different metabolite composition may be responsible for the bioactivity of extracts obtained from specific parts of artichoke and foresees a possible exploitation of the discarded material as a source of beneficial compounds. Full article
(This article belongs to the Special Issue Extraction and Analysis of Natural Products in Food—3rd Edition)
Show Figures

Figure 1

18 pages, 2229 KiB  
Article
Cell Surface Proteomics Reveals Hypoxia-Regulated Pathways in Cervical and Bladder Cancer
by Faris Alanazi, Ammar Sharif, Melissa Kidd, Emma-Jayne Keevill, Vanesa Biolatti, Richard D. Unwin, Peter Hoskin, Ananya Choudhury, Tim A. D. Smith and Conrado G. Quiles
Proteomes 2025, 13(3), 36; https://doi.org/10.3390/proteomes13030036 - 5 Aug 2025
Abstract
Background Plasma membrane proteins (PMPs) play key roles in cell signalling, adhesion, and trafficking, and are attractive therapeutic targets in cancer due to their surface accessibility. However, their typically low abundance limits detection by conventional proteomic approaches. Methods: To improve PMP detection, we [...] Read more.
Background Plasma membrane proteins (PMPs) play key roles in cell signalling, adhesion, and trafficking, and are attractive therapeutic targets in cancer due to their surface accessibility. However, their typically low abundance limits detection by conventional proteomic approaches. Methods: To improve PMP detection, we employed a surface proteomics workflow combining cell surface biotinylation and affinity purification prior to LC-MS/MS analysis in cervical (SiHa) and bladder (UMUC3) cancer cell lines cultured under normoxic (21% O2) or hypoxic (0.1% O2) conditions. Results: In SiHa cells, 43 hypoxia-upregulated proteins were identified exclusively in the biotin-enriched fraction, including ITGB2, ITGA7, AXL, MET, JAG2, and CAV1/CAV2. In UMUC3 cells, 32 unique upregulated PMPs were detected, including CD55, ADGRB1, SLC9A1, NECTIN3, and ACTG1. These proteins were not observed in corresponding whole-cell lysates and are associated with extracellular matrix remodelling, immune modulation, and ion transport. Biotinylation enhanced the detection of membrane-associated pathways such as ECM organisation, integrin signalling, and PI3K–Akt activation. Protein–protein interaction analysis revealed links between membrane receptors and intracellular stress regulators, including mitochondrial proteins. Conclusions: These findings demonstrate that surface biotinylation improves the sensitivity and selectivity of plasma membrane proteomics under hypoxia, revealing hypoxia-responsive proteins and pathways not captured by standard whole-cell analysis. Full article
(This article belongs to the Section Proteomics of Human Diseases and Their Treatments)
Show Figures

Figure 1

17 pages, 1812 KiB  
Article
Systemic Metabolic Alterations Induced by Etodolac in Healthy Individuals
by Rajaa Sebaa, Reem H. AlMalki, Hatouf Sukkarieh, Lina A. Dahabiyeh, Maha Al Mogren, Tawfiq Arafat, Ahmed H. Mujamammi, Essa M. Sabi and Anas M. Abdel Rahman
Pharmaceuticals 2025, 18(8), 1155; https://doi.org/10.3390/ph18081155 - 4 Aug 2025
Viewed by 17
Abstract
Background/Objective: Pharmacological interventions often exert systemic effects beyond their primary targets, underscoring the need for a comprehensive evaluation of their metabolic impact. Etodolac is a nonsteroidal anti-inflammatory drug (NSAID) that alleviates pain, fever, and inflammation by inhibiting cyclooxygenase-2 (COX-2), thereby reducing prostaglandin synthesis. [...] Read more.
Background/Objective: Pharmacological interventions often exert systemic effects beyond their primary targets, underscoring the need for a comprehensive evaluation of their metabolic impact. Etodolac is a nonsteroidal anti-inflammatory drug (NSAID) that alleviates pain, fever, and inflammation by inhibiting cyclooxygenase-2 (COX-2), thereby reducing prostaglandin synthesis. While its pharmacological effects are well known, the broader metabolic impact and potential mechanisms underlying improved clinical outcomes remain underexplored. Untargeted metabolomics, which profiles the metabolome without prior selection, is an emerging tool in clinical pharmacology for elucidating drug-induced metabolic changes. In this study, untargeted metabolomics was applied to investigate metabolic changes following a single oral dose of etodolac in healthy male volunteers. By analyzing serial blood samples over time, we identified endogenous metabolites whose concentrations were positively or inversely associated with the drug’s plasma levels. This approach provides a window into both therapeutic pathways and potential off-target effects, offering a promising strategy for early-stage drug evaluation and multi-target discovery using minimal human exposure. Methods: Thirty healthy participants received a 400 mg dose of Etodolac. Plasma samples were collected at five time points: pre-dose, before Cmax, at Cmax, after Cmax, and 36 h post-dose (n = 150). Samples underwent LC/MS-based untargeted metabolomics profiling and pharmacokinetic analysis. A total of 997 metabolites were significantly dysregulated between the pre-dose and Cmax time points, with 875 upregulated and 122 downregulated. Among these, 80 human endogenous metabolites were identified as being influenced by Etodolac. Results: A total of 17 metabolites exhibited time-dependent changes closely aligned with Etodolac’s pharmacokinetic profile, while 27 displayed inverse trends. Conclusions: Etodolac influences various metabolic pathways, including arachidonic acid metabolism, sphingolipid metabolism, and the biosynthesis of unsaturated fatty acids. These selective metabolic alterations complement its COX-2 inhibition and may contribute to its anti-inflammatory effects. This study provides new insights into Etodolac’s metabolic impact under healthy conditions and may inform future therapeutic strategies targeting inflammation. Full article
(This article belongs to the Special Issue Advances in Drug Analysis and Drug Development, 2nd Edition)
Show Figures

Figure 1

23 pages, 5432 KiB  
Article
Unveiling the Bioactive Potential of the Invasive Jellyfish Phyllorhiza punctata Through Integrative Transcriptomic and Proteomic Analyses
by Tomás Rodrigues, Ricardo Alexandre Barroso, Alexandre Campos, Daniela Almeida, Francisco A. Guardiola, Maria V. Turkina and Agostinho Antunes
Biomolecules 2025, 15(8), 1121; https://doi.org/10.3390/biom15081121 - 4 Aug 2025
Viewed by 62
Abstract
The white-spotted jellyfish, Phyllorhiza punctata, is an invasive species with significant ecological and economic relevance spreading across various regions. While its ecological impact is well-documented, its molecular and biochemical characteristics remain poorly understood. In this study, we integrate proteomic data generated by [...] Read more.
The white-spotted jellyfish, Phyllorhiza punctata, is an invasive species with significant ecological and economic relevance spreading across various regions. While its ecological impact is well-documented, its molecular and biochemical characteristics remain poorly understood. In this study, we integrate proteomic data generated by LC-MS/MS with publicly available transcriptomic information to characterize P. punctata, analyzing differential protein expression across three distinct tissues: oral arms, mantle, and gonads. A total of 2764 proteins and 25,045 peptides were identified, including several venom components such as jellyfish toxins (JFTs) and phospholipase A2 (PLA2), which were further investigated and compared to toxins from other species. Enrichment analyses revealed clear tissue-specific functions. Additionally, deep learning and machine learning tools identified 274 promising AMP candidates, including the α-helical, β-sheet, and αβ-motif peptides. This dataset provides new insights into the protein composition of P. punctata and highlights strong AMP candidates for further characterization, underscoring the biotechnological potential of underexplored cnidarian species. Full article
(This article belongs to the Special Issue State of the Art and Perspectives in Antimicrobial Peptides)
Show Figures

Figure 1

38 pages, 2337 KiB  
Article
Synthesis of Carboranyl-Containing β-Arylaliphatic Acids for Potential Application in BNCT
by Lana I. Lissovskaya and Ilya V. Korolkov
Molecules 2025, 30(15), 3250; https://doi.org/10.3390/molecules30153250 - 2 Aug 2025
Viewed by 239
Abstract
One of the promising research areas involving carborane derivatives is boron neutron capture therapy (BNCT). Due to the high boron atom content in carborane molecules, these compounds are considered potential candidates for BNCT-based cancer treatment. Despite ongoing studies on various biologically active carboranyl-containing [...] Read more.
One of the promising research areas involving carborane derivatives is boron neutron capture therapy (BNCT). Due to the high boron atom content in carborane molecules, these compounds are considered potential candidates for BNCT-based cancer treatment. Despite ongoing studies on various biologically active carboranyl-containing compounds, the search continues for substances that meet the stringent requirements of effective BNCT agents. In this study, the synthesis of carboranyl-containing derivatives of β-arylaliphatic acids is described, along with the investigation of their reactivity with primary and secondary amines, as well as with metals and their hydroxides. The molecular structures of the synthesized compounds were confirmed using Fourier-transform infrared (FTIR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, elemental analysis, and mass spectrometry (LC-MS). Cytotoxicity of the water-soluble compound potassium 3-(2-isopropyl-1,2-dicarba-closo-dodecaboran-1-yl)-3-phenylpropanoate was evaluated using several cell lines, including HdFn and MCF-7. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Figure 1

20 pages, 4386 KiB  
Article
Foliar Application of Salicylic Acid Stimulates Phenolic Compound Accumulation and Antioxidant Potential in Saposhnikovia divaricata Herb
by Daniil N. Olennikov, Nina I. Kashchenko and Nadezhda K. Chirikova
Horticulturae 2025, 11(8), 895; https://doi.org/10.3390/horticulturae11080895 (registering DOI) - 2 Aug 2025
Viewed by 205
Abstract
Saposhnikovia divaricata (Turcz. ex Ledeb.) Schischk., commonly known as divaricate siler, is a well-known medicinal plant from the Apiaceae family. Its natural habitat is rapidly declining owing to the harvesting of its roots, used as fángfēng in traditional Oriental medicine. This underutilized herb [...] Read more.
Saposhnikovia divaricata (Turcz. ex Ledeb.) Schischk., commonly known as divaricate siler, is a well-known medicinal plant from the Apiaceae family. Its natural habitat is rapidly declining owing to the harvesting of its roots, used as fángfēng in traditional Oriental medicine. This underutilized herb may serve as a valuable source of bioactive phenolic compounds, which can potentially be influenced by salicylic acid (SA) elicitation—a practical method to increase the concentration of valuable substances in plants. A field study showed that foliar application of SA on one-year-old S. divaricata positively influenced the total phenolic content in the herb, with the highest increase observed at 1.0 mM SA. Liquid chromatography–mass spectrometry (LC–MS) data became increasingly complex with rising SA levels, identifying up to 48 compounds, including cinnamoyl quinic acids (CQAs), dihydrofurochromones (DFCs), and flavonol O-glycosides (FOGs), most reported for the first time in this species. The highest concentrations of CQAs, DFCs, and FOGs in plants treated with 1.0 mM SA were 83.14, 3.75, and 60.53 mg/g, respectively, compared to 42.76, 0.95, and 40.73 mg/g in untreated (0.0 mM SA) plants. Nine in vitro antioxidant assays revealed strong radical-scavenging and nitric oxide (NO)- and Fe2+-chelating activities in 1.0 mM SA-treated plants, indicating robust antioxidative properties of the S. divaricata herb. Thus, foliar application of SA considerably enriches the herb with target antioxidants, increasing its medicinal value, which is reflected in the plant’s biological response. This could potentially reduce the overexploitation of natural populations of S. divaricata, helping to preserve this valuable plant. Full article
Show Figures

Figure 1

32 pages, 4311 KiB  
Article
Proteomics-Based Prediction of Candidate Effectors in the Interaction Secretome of Trichoderma harzianum and Pseudocercospora fijiensis
by Jewel Nicole Anna Todd, Karla Gisel Carreón-Anguiano, Gabriel Iturriaga, Roberto Vázquez-Euán, Ignacio Islas-Flores, Miguel Tzec-Simá, Miguel Ángel Canseco-Pérez, César De Los Santos-Briones and Blondy Canto-Canché
Microbiol. Res. 2025, 16(8), 175; https://doi.org/10.3390/microbiolres16080175 - 1 Aug 2025
Viewed by 150
Abstract
Microbe–microbe interactions have been explored at the molecular level to a lesser degree than plant–pathogen interactions, primarily due to the economic impact of crop losses caused by pathogenic microorganisms. Effector proteins are well known for their role in disease development in many plant–pathogen [...] Read more.
Microbe–microbe interactions have been explored at the molecular level to a lesser degree than plant–pathogen interactions, primarily due to the economic impact of crop losses caused by pathogenic microorganisms. Effector proteins are well known for their role in disease development in many plant–pathogen pleinteractions, but there is increasing evidence showing their involvement in other types of interaction, including microbe–microbe interactions. Through the use of LC-MS/MS sequencing, effector candidates were identified in the in vitro interaction between a banana pathogen, Pseudocercospora fijiensis and a biological control agent, Trichoderma harzianum. The diverse interaction secretome revealed various glycoside hydrolase families, proteases and oxidoreductases. T. harzianum secreted more proteins in the microbial interaction compared to P. fijiensis, but its presence induced the secretion of more P. fijiensis proteins that were exclusive to the interaction secretome. The interaction secretome, containing 256 proteins, was screened for effector candidates using the algorithms EffHunter and WideEffHunter. Candidates with common fungal effector motifs and domains such as LysM, Cerato-platanin, NPP1 and CFEM, among others, were identified. Homologs of true effectors and virulence factors were found in the interaction secretome of T. harzianum and P. fijiensis. Further characterization revealed a potential novel effector of T. harzianum. Full article
Show Figures

Figure 1

20 pages, 3519 KiB  
Article
Hylocereus polyrhizus Pulp Residues Polysaccharide Alleviates High-Fat Diet-Induced Obesity by Modulating Intestinal Mucus Secretion and Glycosylation
by Guanghui Li, Kit-Leong Cheong, Yunhua He, Ahluk Liew, Jiaxuan Huang, Chen Huang, Saiyi Zhong and Malairaj Sathuvan
Foods 2025, 14(15), 2708; https://doi.org/10.3390/foods14152708 - 1 Aug 2025
Viewed by 209
Abstract
Although Hylocereus polyrhizus pulp residues polysaccharides (HPPP) have shown potential in improving metabolic disorders and intestinal barrier function, the mechanism by which they exert their effects through regulating O-glycosylation modifications in the mucus layer remains unclear. Therefore, this study established a HFD-induced obese [...] Read more.
Although Hylocereus polyrhizus pulp residues polysaccharides (HPPP) have shown potential in improving metabolic disorders and intestinal barrier function, the mechanism by which they exert their effects through regulating O-glycosylation modifications in the mucus layer remains unclear. Therefore, this study established a HFD-induced obese colitis mouse model (n = 5 per group) and combined nano-capillary liquid chromatography-tandem mass spectrometry (nanoLC-MS/MS) technology to quantitatively analyze the dynamic changes in O-glycosylation. Additionally, through quantitative O-glycosylation proteomics and whole-proteome analysis, we identified 155 specifically altered O-glycosylation sites in colon tissue, with the glycosylation modification level of the MUC2 core protein increased by approximately 2.1-fold. The results indicate that HPPP alleviates colonic mucosal damage by regulating interactions between mucus O-glycosylation. Overall, we demonstrated that HPPP increases HFD-induced O-glycosylation sites, improves intestinal mucosal structure in obese mice, and provides protective effects against obesity-induced intestinal mucosal damage. Full article
Show Figures

Graphical abstract

29 pages, 3958 KiB  
Article
Impact of Manganese on Neuronal Function: An Exploratory Multi-Omics Study on Ferroalloy Workers in Brescia, Italy
by Somaiyeh Azmoun, Freeman C. Lewis, Daniel Shoieb, Yan Jin, Elena Colicino, Isha Mhatre-Winters, Haiwei Gu, Hari Krishnamurthy, Jason R. Richardson, Donatella Placidi, Luca Lambertini and Roberto G. Lucchini
Brain Sci. 2025, 15(8), 829; https://doi.org/10.3390/brainsci15080829 - 31 Jul 2025
Viewed by 297
Abstract
Background: There is growing interest in the potential role of manganese (Mn) in the development of Alzheimer’s Disease and related dementias (ADRD). Methods: In this nested pilot study of a ferroalloy worker cohort, we investigated the impact of chronic occupational Mn exposure on [...] Read more.
Background: There is growing interest in the potential role of manganese (Mn) in the development of Alzheimer’s Disease and related dementias (ADRD). Methods: In this nested pilot study of a ferroalloy worker cohort, we investigated the impact of chronic occupational Mn exposure on cognitive function through β-amyloid (Aβ) deposition and multi-omics profiling. We evaluated six male Mn-exposed workers (median age 63, exposure duration 31 years) and five historical controls (median age: 60 years), all of whom had undergone brain PET scans. Exposed individuals showed significantly higher Aβ deposition in exposed individuals (p < 0.05). The average annual cumulative respirable Mn was 329.23 ± 516.39 µg/m3 (geometric mean 118.59), and plasma Mn levels were significantly elevated in the exposed group (0.704 ± 0.2 ng/mL) compared to controls (0.397 ± 0.18 in controls). Results: LC-MS/MS-based pathway analyses revealed disruptions in olfactory signaling, mitochondrial fatty acid β-oxidation, biogenic amine synthesis, transmembrane transport, and choline metabolism. Simoa analysis showed notable alterations in ADRD-related plasma biomarkers. Protein microarray revealed significant differences (p < 0.05) in antibodies targeting neuronal and autoimmune proteins, including Aβ (25–35), GFAP, serotonin, NOVA1, and Siglec-1/CD169. Conclusion: These findings suggest Mn exposure is associated with neurodegenerative biomarker alterations and disrupted biological pathways relevant to cognitive decline. Full article
(This article belongs to the Special Issue From Bench to Bedside: Motor–Cognitive Interactions—2nd Edition)
Show Figures

Figure 1

10 pages, 726 KiB  
Article
Discovery of New Everninomicin Analogs from a Marine-Derived Micromonospora sp. by Metabolomics and Genomics Approaches
by Tae Hyun Lee, Nathan J. Brittin, Imraan Alas, Christopher D. Roberts, Shaurya Chanana, Doug R. Braun, Spencer S. Ericksen, Song Guo, Scott R. Rajski and Tim S. Bugni
Mar. Drugs 2025, 23(8), 316; https://doi.org/10.3390/md23080316 - 31 Jul 2025
Viewed by 198
Abstract
During the course of genome mining initiatives, we identified a marine-derived Micromonospora, assigned here as strain WMMD956; the genome of WMMD956 appeared to contain a number of features associated with everninomicins, well-known antimicrobial orthosomycins. In addition, LCMS-based hierarchical clustering analysis and principal [...] Read more.
During the course of genome mining initiatives, we identified a marine-derived Micromonospora, assigned here as strain WMMD956; the genome of WMMD956 appeared to contain a number of features associated with everninomicins, well-known antimicrobial orthosomycins. In addition, LCMS-based hierarchical clustering analysis and principal component analysis (hcapca) revealed that WMMD956 displayed an extreme degree of metabolomic and genomic novelty. Dereplication of high-resolution tandem mass spectrometry (HRMS/MS) and Global Natural Product Social molecular networking platform (GNPS) analysis of WMMD956 resulted in the identification of several analogs of the previously known everninomicin. Chemical structures were unambiguously confirmed by HR-ESI-MS, 1D and 2D NMR experiments, and the use of MS/MS data. The isolated metabolites, 13, were evaluated for their antibacterial activity against methicillin-resistant Staphalococcus aureus (MRSA). Full article
(This article belongs to the Special Issue Bioactive Compounds from Extreme Marine Ecosystems)
Show Figures

Graphical abstract

16 pages, 4054 KiB  
Article
Uncovering Fibrocapsa japonica (Raphidophyceae) in South America: First Taxonomic and Toxicological Insights from Argentinean Coastal Waters
by Delfina Aguiar Juárez, Inés Sunesen, Ana Flores-Leñero, Luis Norambuena, Bernd Krock, Gonzalo Fuenzalida and Jorge I. Mardones
Toxins 2025, 17(8), 386; https://doi.org/10.3390/toxins17080386 - 31 Jul 2025
Viewed by 247
Abstract
Fibrocapsa japonica (Raphidophyceae) is a cosmopolitan species frequently associated with harmful algal blooms (HABs) and fish mortality events, representing a potential threat to aquaculture and coastal ecosystems. This study provides the first comprehensive morphological, phylogenetic, pigmentary, and toxicological characterization of F. japonica strains [...] Read more.
Fibrocapsa japonica (Raphidophyceae) is a cosmopolitan species frequently associated with harmful algal blooms (HABs) and fish mortality events, representing a potential threat to aquaculture and coastal ecosystems. This study provides the first comprehensive morphological, phylogenetic, pigmentary, and toxicological characterization of F. japonica strains isolated from Argentina. Light and transmission electron microscopy confirmed key diagnostic features of the species, including anterior flagella and the conspicuous group of mucocyst in the posterior region. Phylogenetic analysis based on the LSU rDNA D1–D2 region revealed monophyletic relationships with strains from geographically distant regions. Pigment analysis by HPLC identified chlorophyll-a (62.3 pg cell−1) and fucoxanthin (38.4 pg cell−1) as the main dominant pigments. Cytotoxicity assays using RTgill-W1 cells exposed for 2 h to culture supernatants and intracellular extracts showed strain-specific effects. The most toxic strain (LPCc049) reduced gill cell viability down to 53% in the supernatant exposure, while LC50 values ranged from 1.6 × 104 to 4.7 × 105 cells mL−1, depending directly on the strain and treatment type. No brevetoxins (PbTx-1, -2, -3, -6, -7, -8, -9, -10, BTX-B1 and BTX-B2) were detected by LC–MS/MS, suggesting that the cytotoxicity may be linked to the production of reactive oxygen species (ROS), polyunsaturated fatty acids (PUFAs), or hemolytic compounds, as previously hypothesized in the literature. These findings offer novel insights into the toxic potential of F. japonica in South America and underscore the need for further research to elucidate the mechanisms underlying its ichthyotoxic effect. Full article
Show Figures

Figure 1

Back to TopTop