Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (29)

Search Parameters:
Keywords = LC–ESI–Orbitrap–MS

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2003 KB  
Article
Enhancing the Detection and Identification Sensitivity of Organophosphorus Pesticide-Related Phenols via Derivatization and LC-ESI-MS/MS: A Straightforward Approach to Identify the Specific Pesticide Involved in Exposure
by Avi Weissberg, Tamar Shamai Yamin, Avital Shifrovitch, Adi Tzadok, Merav Blanca and Moran Madmon
Environments 2025, 12(6), 193; https://doi.org/10.3390/environments12060193 - 8 Jun 2025
Viewed by 1202
Abstract
Organophosphorus (OP) pesticides are a class of chemicals that are extensively used worldwide. The exposure to and use of organophosphates can be assessed by analyzing their metabolites and degradation products, such as dialkyl phosphate (DAP), dialkyl thiophosphate (DATP), and dialkyl dithiophosphate (DADTP). However, [...] Read more.
Organophosphorus (OP) pesticides are a class of chemicals that are extensively used worldwide. The exposure to and use of organophosphates can be assessed by analyzing their metabolites and degradation products, such as dialkyl phosphate (DAP), dialkyl thiophosphate (DATP), and dialkyl dithiophosphate (DADTP). However, since these metabolites/hydrolysis products can result from the metabolism or breakdown of several organophosphorus pesticide families, they serve as nonspecific biomarkers and do not indicate the specific pesticide involved in exposure. In an earlier study, chemical derivatization using N-(2-(bromomethyl)benzyl)-N,N-diethylethanaminium bromide (CAX-B) was described to improve the signal intensity of numerous organophosphorus (OP) acids in liquid chromatography tandem mass spectrometry (LC-ESI-MS/MS) analysis. In the present study, CAX-B was employed to derivatize a set of seven phenolic compounds corresponding to the complementary portion of OP pesticides. The derivatization process using CAX-B was performed in acetonitrile with potassium carbonate at 50 °C for 30 min. LC-Orbitrap-ESI-MS/MS was used to analyze the resulting phenol derivatives and their fragmentation patterns were studied. Notably, the derivatized phenols were markedly more sensitive than the underivatized phenols when LC-ESI-MS/MS was used in MRM technique, without being affected by the sample matrix (soil or plant extracts). This derivatization technique aids in identifying OP pesticides, offers insights into their subfamily, and pinpoints a specific compound through the analysis of corresponding phenol derivative. Full article
Show Figures

Figure 1

17 pages, 1936 KB  
Article
Vicia faba L. Pod Valves: A By-Product with High Potential as an Adjuvant in the Treatment of Parkinson’s Disease
by Carmen Tesoro, Filomena Lelario, Fabiana Piscitelli, Angela Di Capua, Paolo Della Sala, Paola Montoro, Giuliana Bianco, Maria Assunta Acquavia, Mario Dell’Agli, Stefano Piazza and Rosanna Ciriello
Molecules 2024, 29(16), 3943; https://doi.org/10.3390/molecules29163943 - 21 Aug 2024
Cited by 1 | Viewed by 2225
Abstract
Vicia faba L. is a leguminous plant with seeds rich in nutritional compounds, such as polyphenols and L-dopa, a dopamine precursor and first-line treatment for Parkinson’s symptoms. Recently, its by-products have been revalued as a sustainable source of bioactive compounds. In this study, [...] Read more.
Vicia faba L. is a leguminous plant with seeds rich in nutritional compounds, such as polyphenols and L-dopa, a dopamine precursor and first-line treatment for Parkinson’s symptoms. Recently, its by-products have been revalued as a sustainable source of bioactive compounds. In this study, aqueous extracts of Lucan broad bean pod valves (BPs) were characterized to evaluate their potential use as adjuvants in severe Parkinson’s disease. L-dopa content, quantified by LC-UV, was much higher in BPs than in seeds (28.65 mg/g dw compared to 0.76 mg/g dw). In addition, vicine and convicine, the metabolites responsible for favism, were not detected in pods. LC-ESI/LTQ-Orbitrap/MS2 allowed the identification of the major polyphenolic compounds, including quercetin and catechin equivalents, that could ensure neuroprotection in Parkinson’s disease. ESI(±)-FT-ICR MS was used to build 2D van Krevelen diagrams; polyphenolic compounds and carbohydrates were the most representative classes. The neuroprotective activity of the extracts after MPP+-induced neurotoxicity in SH-SY5Y cells was also investigated. BP extracts were more effective than synthetic L-dopa, even at concentrations up to 100 µg/mL, due to the occurrence of antioxidants able to prevent oxidative stress. The stability and antioxidant component of the extracts were then emphasized by using naturally acidic solutions of Punica granatum L., Ribes rubrum L., and gooseberry (Phyllanthus emblica L.) as extraction solvents. Full article
Show Figures

Figure 1

23 pages, 1815 KB  
Article
Health-Promoting Effects, Phytochemical Constituents and Molecular Genetic Profile of the Purple Carrot ‘Purple Sun’ (Daucus carota L.)
by Viviana Maresca, Lucia Capasso, Daniela Rigano, Mariano Stornaiuolo, Carmina Sirignano, Sonia Piacente, Antonietta Cerulli, Nadia Marallo, Adriana Basile, Angela Nebbioso, Deborah Giordano, Angelo Facchiano, Luigi De Masi and Paola Bontempo
Nutrients 2024, 16(15), 2505; https://doi.org/10.3390/nu16152505 - 1 Aug 2024
Cited by 2 | Viewed by 2903
Abstract
The purple carrot cultivar ‘Purple Sun’ (Daucus carota L.) is characterized by a relevant content of phenolic compounds and anthocyanins, which may play an important role in reducing the risk of chronic diseases and in the treatment of metabolic syndrome. In the [...] Read more.
The purple carrot cultivar ‘Purple Sun’ (Daucus carota L.) is characterized by a relevant content of phenolic compounds and anthocyanins, which may play an important role in reducing the risk of chronic diseases and in the treatment of metabolic syndrome. In the present study, the genetic diversity, phytochemical composition, and bioactivities of this outstanding variety were studied for the first time. Genetic analysis by molecular markers estimated the level of genetic purity of this carrot cultivar, whose purple-pigmented roots were used for obtaining the purple carrot ethanol extract (PCE). With the aim to identify specialized metabolites potentially responsible for the bioactivities, the analysis of the metabolite profile of PCE by LC-ESI/LTQ Orbitrap/MS/MS was carried out. LC-ESI/HRMS analysis allowed the assignment of twenty-eight compounds, putatively identified as isocitric acid (1), phenolic acid derivatives (2 and 6), hydroxycinnamic acid derivatives (9, 10, 1214, 16, 17, 19, 22, and 23), anthocyanins (35, 7, 8, 11, and 18), flavanonols (15 and 21), flavonols (20 and 24), oxylipins (25, 26, and 28), and the sesquiterpene 11-acetyloxytorilolone (27); compound 26, corresponding to the primary metabolite trihydroxyoctanoic acid (TriHOME), was the most abundant compound in the LC-ESI/HRMS analysis of the PCE, and hydroxycinnamic acid derivatives followed by anthocyanins were the two most represented groups. The antioxidant activity of PCE, expressed in terms of reactive oxygen species (ROS) level and antioxidant enzymes activity, and its pro-metabolic effect were evaluated. Moreover, the antibacterial activity on Gram (−) and (+) bacterial strains was investigated. An increase in the activity of antioxidant enzymes (SOD, CAT, and GPx), reaching a maximum at 0.5 mg/mL of PCE with a plateau at higher PCE concentrations (1.25, 2.5, and 5.0 mg/mL), was observed. PCE induced an initial decrease in ROS levels at 0.1 and 0.25 mg/mL concentrations, reaching the ROS levels of control at 0.5 mg/mL of PCE with a plateau at higher PCE concentrations (1.25, 2.5, and 5.0 mg/mL). Moreover, significant antioxidant and pro-metabolic effects of PCE on myoblasts were shown by a reduction in ROS content and an increase in ATP production linked to the promotion of mitochondrial respiration. Finally, the bacteriostatic activity of PCE was shown on the different bacterial strains tested, while the bactericidal action of PCE was exclusively observed against the Gram (+) Staphylococcus aureus. The bioactivities of PCE were also investigated from cellular and molecular points of view in colon and hematological cancer cells. The results showed that PCE induces proliferative arrest and modulates the expression of important cell-cycle regulators. For all these health-promoting effects, also supported by initial computational predictions, ‘Purple Sun’ is a promising functional food and an optimal candidate for pharmaceutical and/or nutraceutical preparations. Full article
(This article belongs to the Section Nutrition and Public Health)
Show Figures

Graphical abstract

21 pages, 5713 KB  
Article
The Impact of Different Drying Methods on the Metabolomic and Lipidomic Profiles of Arthrospira platensis
by Marika Mróz, Karol Parchem, Joanna Jóźwik, M. Rosário Domingues and Barbara Kusznierewicz
Molecules 2024, 29(8), 1747; https://doi.org/10.3390/molecules29081747 - 12 Apr 2024
Cited by 4 | Viewed by 2938
Abstract
Drying is an inseparable part of industrial microalgae production. In this work, the impacts of eight different drying methods on the metabolome and lipidome of Arthrospira platensis were investigated. The studied drying methods were freeze drying (FD), sun drying (SD), air drying at [...] Read more.
Drying is an inseparable part of industrial microalgae production. In this work, the impacts of eight different drying methods on the metabolome and lipidome of Arthrospira platensis were investigated. The studied drying methods were freeze drying (FD), sun drying (SD), air drying at 40 and 75 °C (AD′ and AD″), infrared drying at 40 and 75 °C (IRD′ and IRD″), and vacuum drying at 40 and 75 °C (VD′ and VD″). Results gathered by reversed-phase liquid chromatography separation coupled with high-resolution tandem mass spectrometry with electrospray ionization (RP-LC-ESI-Orbitrap HRMS/MS) analysis allowed researchers to identify a total of 316 metabolites (including lipids) in aqueous and ethanolic extracts. The compounds identified in ethanolic extracts were mainly lipids, such as neutral and polar lipids, chlorophylls and carotenoids, while the compounds identified in the aqueous extracts were mainly amino acids and dipeptides. Among the identified compounds, products of enzymatic and chemical degradation, such as pyropheophytins, monoacylglycerols and lysophosphatidylcholines were also identified and their amounts depended on the drying method. The results showed that except for FD method, recognized as a control, the most protective method was AD′. Contrary to this, VD′ and VD″, under the conditions used, promoted the most intense degradation of valuable metabolites. Full article
(This article belongs to the Special Issue Applications of Spectroscopic Techniques in Food Sample Analysis)
Show Figures

Figure 1

14 pages, 1618 KB  
Article
Phenolic Profiles and Antitumor Activity against Colorectal Cancer Cells of Seeds from Selected Ribes Taxa
by Svetlana Lyashenko, Rosalía López-Ruiz, Ana Minerva García-Cervantes, Ignacio Rodríguez-García, Svetlana Yunusova and José Luis Guil-Guerrero
Appl. Sci. 2024, 14(6), 2428; https://doi.org/10.3390/app14062428 - 13 Mar 2024
Cited by 2 | Viewed by 1471
Abstract
Seeds from several Ribes taxa were surveyed for phenolic compounds and in vitro antiproliferative activity against HT-29 colorectal cancer cells. Total phenolic compounds were analyzed through the Folin–Ciocalteu procedure, while LC coupled to a single mass spectrometer (MS) Orbitrap using an electrospray interface [...] Read more.
Seeds from several Ribes taxa were surveyed for phenolic compounds and in vitro antiproliferative activity against HT-29 colorectal cancer cells. Total phenolic compounds were analyzed through the Folin–Ciocalteu procedure, while LC coupled to a single mass spectrometer (MS) Orbitrap using an electrospray interface (ESI) was performed to determine the phenolic profiles. Antitumor effects were established using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. Total phenolics ranged from 11.4 in R. alpinum to 94.8 mg of caffeic acid equivalents (CAE)/g in R. nigrum ‘Koksa’. Concerning phenolic compounds, four were hydroxylated benzoic acids, four cinnamic acid derivatives, eight flavonoids, and nine flavonoid glycosides. The growth inhibition against HT-29 cancer cells was exercised much better by R. nigrum ‘Koksa’ and Ribes ‘Erkeeni’ (GI50 37 and 42 µg/mL). All Ribes extracts, except for R. nigrum ‘Hara katarlik’, showed higher activity than R. rubrum (GI50 at 72 h: 99 µg/mL). Interestingly, the extract from Ribes ‘Erkeeni’, which exhibited high bioactivity, contains all detected phenolic compounds, unlike R. nigrum ‘Koksa’, which lacks only populnin. Therefore, the high bioactivity found for such extracts could be due to a synergy of all detected compounds. This work constitutes a comprehensive action for expanding knowledge on the phenolic profiles and antitumor activity of GLA-rich Ribes seeds. Full article
Show Figures

Figure 1

17 pages, 3220 KB  
Article
Chemical Profiling, Antioxidant, and Anti-Inflammatory Activities of Hyoseris radiata L., a Plant Used in the Phytoalimurgic Tradition
by Maria Vitiello, Michela Pecoraro, Marinella De Leo, Fabiano Camangi, Valentina Parisi, Giuliana Donadio, Alessandra Braca, Silvia Franceschelli and Nunziatina De Tommasi
Antioxidants 2024, 13(1), 111; https://doi.org/10.3390/antiox13010111 - 17 Jan 2024
Cited by 5 | Viewed by 2621
Abstract
Hyoseris radiata L. (Asteraceae), known as “wild chicory”, is a perennial herbaceous plant native to the Mediterranean region, North Africa, and West Asia. Collected from the wild, the plant is largely used in Italy for culinary purposes and in popular medicine, so that [...] Read more.
Hyoseris radiata L. (Asteraceae), known as “wild chicory”, is a perennial herbaceous plant native to the Mediterranean region, North Africa, and West Asia. Collected from the wild, the plant is largely used in Italy for culinary purposes and in popular medicine, so that it can be included in the list of phytoalimurgic plants. The present study aimed to investigate for the first time the plant’s chemical profile, through a combined UHPLC-HR-ESI-Orbitrap/MS and NMR approach, and its potential healthy properties, focusing on antioxidant and anti-inflammatory activities. The LC-MS/MS analysis and the isolation through chromatographic techniques of the plant’s hydroalcoholic extract allowed the authors to identify 48 compounds, including hydroxycinnamic acids, flavonoids, megastigmane glucosides, coumarins, and lignans, together with several unsaturated fatty acids. The quantitative analysis highlighted a relevant amount of flavonoids and hydroxycinnamic acids, with a total of 12.9 ± 0.4 mg/g DW. NMR-based chemical profiling revealed the presence of a good amount of amino acids and monosaccharides, and chicoric and chlorogenic acids as the most representative polyphenols. Finally, the antioxidant and anti-inflammatory activities of H. radiata were investigated through cell-free and cell-based assays, showing a good antioxidant potential for the plant extract and a significant reduction in COX-2 expression. Full article
Show Figures

Figure 1

14 pages, 2774 KB  
Article
Study on the Mass Spectrometry Fragmentation Patterns for Rapid Screening and Structure Identification of Ketamine Analogues in Illicit Powders
by Yilei Fan, Jianhong Gao, Xianxin Chen, Hao Wu, Xing Ke and Yu Xu
Molecules 2023, 28(18), 6510; https://doi.org/10.3390/molecules28186510 - 8 Sep 2023
Cited by 3 | Viewed by 4382
Abstract
Ketamine analogues have been emerging in recent years and are causing severe health and social problems worldwide. Ketamine analogues use 2-phenyl-2-aminocyclohexanone as the basic structure and achieve physiological reactions similar to or even more robust than the prototype of ketamine by changing the [...] Read more.
Ketamine analogues have been emerging in recent years and are causing severe health and social problems worldwide. Ketamine analogues use 2-phenyl-2-aminocyclohexanone as the basic structure and achieve physiological reactions similar to or even more robust than the prototype of ketamine by changing the substituents on the benzene ring (R1 and R2) and amine group (RN1). Therefore, the mass spectrometry (MS) fragmentation pathways and fragments of ketamine analogues have certain regularity. Eight ketamine analogues are systematically investigated by GC-QTOF/MS and LC-Q-Orbitrap MS/MS with the positive mode of electrospray ionization. The MS fragmentation patterns of ketamine analogues are summarized according to high-resolution MS data. The α-cleavage of carbon bond C1-C2 in the cyclohexanone moiety and further losses of CO, methyl radical, ethyl radical and propyl radical are the characteristic fragmentation pathways of ketamine analogues in EI-MS mode. The loss of H2O or the sequential loss of RN1NH2, CO and C4H6 are the distinctive fragmentation pathways of ketamine analogues in ESI-MS/MS mode. Moreover, these MS fragmentation patterns are first introduced for the rapid screening of ketamine analogues in suspicious powder. Furthermore, the structure of the ketamine analogue in suspicious powder is 2-(Methylamino)-2-(o-tolyl)cyclohexan-1-one, which is further confirmed by NMR. This study contributes to the identification of the chemical structure of ketamine analogues, which can be used for the rapid screening of ketamine analogues in seized chemicals. Full article
Show Figures

Graphical abstract

19 pages, 1583 KB  
Article
Exploring the Impact of In Vitro Gastrointestinal Digestion in the Bioaccessibility of Phenolic-Rich Chestnut Shells: A Preliminary Study
by Diana Pinto, Ana Sofia Ferreira, Julián Lozano-Castellón, Emily P. Laveriano-Santos, Rosa M. Lamuela-Raventós, Anna Vallverdú-Queralt, Cristina Delerue-Matos and Francisca Rodrigues
Separations 2023, 10(9), 471; https://doi.org/10.3390/separations10090471 - 28 Aug 2023
Cited by 11 | Viewed by 3226
Abstract
Chestnut shells (CS), the principal by-product of the chestnut processing industry, contain high concentrations of flavonoids and other polyphenols with huge interest for the nutraceuticals field. Nonetheless, the bioaccessibility and bioactivity of phytochemicals can be influenced by their digestibility, making it imperative to [...] Read more.
Chestnut shells (CS), the principal by-product of the chestnut processing industry, contain high concentrations of flavonoids and other polyphenols with huge interest for the nutraceuticals field. Nonetheless, the bioaccessibility and bioactivity of phytochemicals can be influenced by their digestibility, making it imperative to evaluate these activities prior to application of CS as a nutraceutical ingredient. This work aims to appraise the effects of in vitro simulated gastrointestinal digestion on the bioaccessibility, bioactivity, and metabolic profiling of CS. An increase in the total phenolic and flavonoid contents, antioxidant/antiradical properties, radical scavenging capacity, and inhibition on acetylcholinesterase activity was evidenced during in vitro simulated digestion. Metabolomic profiling by LC-ESI-LTQ-Orbitrap-MS revealed changes during the simulated digestion, particularly in phenolic compounds (46% of total compounds annotated), lipids (22%), phenylpropanoids (9%), organic acids (7%), carbohydrates (5%), nucleosides (5%), amino acids (4%), and alcohols (1%). Phenolic acids (gallic acid, syringic acid, and hydroxyphenylacetic acid) and flavonoids (epicatechin) were the major polyphenolic classes identified. The heatmap-positive correlations highlighted that the bioactivity of CS is closely related to the phenolic compounds and their bioaccessibility. These findings suggest the reuse of CS as a potential nutraceutical ingredient with antioxidant and neuroprotective effects, encouraging the use of appropriate extraction and/or encapsulation techniques to enhance the bioaccessibility of phenolic compounds. Full article
(This article belongs to the Section Analysis of Natural Products and Pharmaceuticals)
Show Figures

Figure 1

14 pages, 2689 KB  
Article
Enhanced LC-ESI-MS/MS Sensitivity by Cationic Derivatization of Organophosphorus Acids
by Tamar Shamai Yamin, Moran Madmon, Ariel Hindi, Avital Shifrovich, Hagit Prihed, Merav Blanca and Avi Weissberg
Molecules 2023, 28(16), 6090; https://doi.org/10.3390/molecules28166090 - 16 Aug 2023
Cited by 3 | Viewed by 3197
Abstract
The chemical derivatization to enhance the signal intensity and signal-to-noise (S/N) of several organophosphorus (OP) acids in liquid chromatography tandem mass spectrometry (LC-ESI-MS/MS) is illustrated. The OP class of compounds represents the environmental degradants of OP nerve agents and pesticides. N-(2-(bromomethyl)benzyl)-N,N-diethylethanaminium bromide (CAX-B) [...] Read more.
The chemical derivatization to enhance the signal intensity and signal-to-noise (S/N) of several organophosphorus (OP) acids in liquid chromatography tandem mass spectrometry (LC-ESI-MS/MS) is illustrated. The OP class of compounds represents the environmental degradants of OP nerve agents and pesticides. N-(2-(bromomethyl)benzyl)-N,N-diethylethanaminium bromide (CAX-B) was utilized to derivatize a panel of eight acids consisting of five alkyl methylphosphonic acids (ethyl-, isopropyl-, isobutyl-, cyclohexyl-, and pinacolyl-methylphosphonic acid) along with three dialkylphosphate analogs (diethyl-, dibutyl-, and diethyl thio-phosphate). The derivatization reaction with CAX-B was conducted in acetonitrile in the presence of potassium carbonate at 70 °C for 1 h. The resulting acid derivatives were analyzed with an LC-Orbitrap-ESI-MS/MS, and their dissociation processes were investigated. It was found that the derivatization procedure increased the limits of identification (LOIs) by one to over two orders of magnitude from the range of 1 to 10 ng/mL for the intact OP-acids to the range of 0.02–0.2 ng/mL for the derivatized acids utilizing an LC-MS(QqQ) in MRM mode, regardless of the sample matrix (hair, concrete, or plant extracts). The interpretation of the corresponding ESI-MS/MS spectra for each type of derivatized sub-OP family revealed the formation of characteristic neutral losses and a characteristic ion for the organophosphorus core. This derivatization is beneficial and useful for screening and identifying target and “unknown” OP acids. Full article
(This article belongs to the Special Issue Recent Progress in Organophosphorus Chemistry)
Show Figures

Figure 1

15 pages, 2964 KB  
Article
Metabolomics Approach to Characterize Green Olive Leaf Extracts Classified Based on Variety and Season
by Graziana Difonzo, Maria Assunta Crescenzi, Sonia Piacente, Giuseppe Altamura, Francesco Caponio and Paola Montoro
Plants 2022, 11(23), 3321; https://doi.org/10.3390/plants11233321 - 1 Dec 2022
Cited by 22 | Viewed by 2978
Abstract
The huge interest in the health-related properties of plant polyphenols to be applied in food and health-related sectors has brought about the development of sensitive analytical methods for metabolomic characterization. Olive leaves constitute a valuable waste rich in polyphenols with functional properties. A [...] Read more.
The huge interest in the health-related properties of plant polyphenols to be applied in food and health-related sectors has brought about the development of sensitive analytical methods for metabolomic characterization. Olive leaves constitute a valuable waste rich in polyphenols with functional properties. A (HR)LC-ESI-ORBITRAP-MS analysis with a multivariate statistical analysis approach using PCA and/or PLS-DA projection methods were applied to identify polyphenols in olive leaf extracts of five varieties from the Apulia region (Italy) in two different seasonal times. A total of 26 metabolites were identified, further finding that although metabolites are common among the different cultivars, they differ in the relative intensity of each peak and within each cultivar in the two seasonal periods taken into consideration. The results of the total phenol contents showed the highest content in November for Bambina and Cima di Mola varieties (1816 and 1788 mg/100 g, respectively), followed by Coratina, Leccino, and Cima di Melfi; a similar trend was found for the antioxidant activity and RapidOxy evaluations by reaching in Bambina values of 45 mmol TE/100 g and 85 min of induction time. Full article
Show Figures

Graphical abstract

21 pages, 1870 KB  
Article
HR-LC-ESI-Orbitrap-MS-Based Metabolic Profiling Coupled with Chemometrics for the Discrimination of Different Echinops spinosus Organs and Evaluation of Their Antioxidant Activity
by Amel Bouzabata, Paola Montoro, Katarzyna Angelika Gil, Sonia Piacente, Fadia S. Youssef, Nawal M. Al Musayeib, Geoffrey A. Cordell, Mohamed L. Ashour and Carlo Ignazio Giovanni Tuberoso
Antioxidants 2022, 11(3), 453; https://doi.org/10.3390/antiox11030453 - 24 Feb 2022
Cited by 22 | Viewed by 3990
Abstract
This study aimed to assess and correlate the phenolic content and the antioxidant activity of the methanol extracts of the stems, roots, flowers, and leaves of Echinops spinosus L. from north-eastern Algeria. Qualitative analysis was performed by high-resolution mass spectrometry (HR) LC-ESI-Orbitrap-MS and [...] Read more.
This study aimed to assess and correlate the phenolic content and the antioxidant activity of the methanol extracts of the stems, roots, flowers, and leaves of Echinops spinosus L. from north-eastern Algeria. Qualitative analysis was performed by high-resolution mass spectrometry (HR) LC-ESI-Orbitrap-MS and (HR) LC-ESI-Orbitrap-MS/MS). Forty-five compounds were identified in the methanol extracts; some are described for the first time in E. spinosus. Targeted phenolic compounds were quantified by HPLC-DAD and it was shown that caffeoyl quinic derivatives were the most abundant compounds. Chemometric analysis was performed using principal component analysis (PCA) and hierarchical cluster analysis (HCA) based on the qualitative and quantitative LC data. The score plot discriminates different Echinopsis spinosus organs into three distinct clusters, with the stems and flowers allocated in the same cluster, reflecting their resemblance in their secondary metabolites. The antioxidant activities of the methanol extracts were assessed using cupric reducing antioxidant capacity (CUPRAC), ferric reducing antioxidant assay (FRAP), diphenyl picryl hydrazyl radical-scavenging capacity assay (DPPH), and 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS+). The root extract exhibited the highest antioxidant activity, evidenced by 3.26 and 1.61 mmol Fe2+/g dried residue for CUPRAC and FRAP, respectively, and great free radical-scavenging activities estimated by 0.53 and 0.82 mmol TEAC/g dried residue for DPPH and ABTS+, respectively. The methanol extract of the roots demonstrated a significant level of total phenolics (TP: 125.16 mg GAE/g dried residue) and flavonoids (TFI: 25.40 QE/g dried residue TFII: 140 CE/g dried residue). Molecular docking revealed that tricaffeoyl-altraric acid and dicaffeoyl-altraric acid exhibited the best fit within the active sites of NADPH oxidase (NO) and myeloperoxidase (MP). From ADME/TOPAKT analyses, it can be concluded that tricaffeoyl-altraric acid and dicaffeoyl-altraric acid also revealed reasonable pharmacokinetic and pharmacodynamic characteristics with a significant safety profile. Full article
Show Figures

Figure 1

19 pages, 2828 KB  
Article
LC-ESI/LTQOrbitrap/MS Metabolomic Analysis of Fennel Waste (Foeniculum vulgare Mill.) as a Byproduct Rich in Bioactive Compounds
by Maria Assunta Crescenzi, Gilda D'Urso, Sonia Piacente and Paola Montoro
Foods 2021, 10(8), 1893; https://doi.org/10.3390/foods10081893 - 15 Aug 2021
Cited by 23 | Viewed by 4493
Abstract
Food industries produce a high amount of waste every year. These wastes represent a source of bioactive compounds to be used to produce cosmetic and nutraceutical products. In this study, the possibility to retrain food waste as a potential source of bioactive metabolites [...] Read more.
Food industries produce a high amount of waste every year. These wastes represent a source of bioactive compounds to be used to produce cosmetic and nutraceutical products. In this study, the possibility to retrain food waste as a potential source of bioactive metabolites is evaluated. In particular, metabolite profiles of different parts (bulb, leaves, stems and little stems) of fennel waste were investigated by liquid chromatography coupled with mass spectrometry (LC-ESI/LTQ Orbitrap MS). To discriminate the different plant parts, a Multivariate Data Analysis approach was developed. Metabolomic analysis allowed the identification of different metabolites mainly belonging to hydroxycinnamic acid derivatives, flavonoid glycosides, flavonoid aglycons, phenolic acids, iridoid derivatives and lignans. The identification of compounds was based on retention times, accurate mass measurements, MS/MS data, exploration on specific metabolites database and comparison with data reported in the literature for F. vulgare. Moreover, the presence of different oxylipins was relieved; these metabolites for the first time were identified in fennel. Most of the metabolites identified in F. vulgare possess anti-inflammatory, antioxidant and/or immunomodulatory properties. Considering that polyphenols are described to possess antioxidant activity, spectrophotometric tests were performed to evaluate the antioxidant activity of each part of the fennel. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Graphical abstract

18 pages, 1074 KB  
Article
Encapsulation of Phenolic Compounds from a Grape Cane Pilot-Plant Extract in Hydroxypropyl Beta-Cyclodextrin and Maltodextrin by Spray Drying
by Danilo Escobar-Avello, Javier Avendaño-Godoy, Jorge Santos, Julián Lozano-Castellón, Claudia Mardones, Dietrich von Baer, Javiana Luengo, Rosa M. Lamuela-Raventós, Anna Vallverdú-Queralt and Carolina Gómez-Gaete
Antioxidants 2021, 10(7), 1130; https://doi.org/10.3390/antiox10071130 - 15 Jul 2021
Cited by 51 | Viewed by 8815
Abstract
Grape canes, the main byproducts of the viticulture industry, contain high-value bioactive phenolic compounds, whose application is limited by their instability and poorly solubility in water. Encapsulation in cyclodextrins allows these drawbacks to be overcome. In this work, a grape cane pilot-plant extract [...] Read more.
Grape canes, the main byproducts of the viticulture industry, contain high-value bioactive phenolic compounds, whose application is limited by their instability and poorly solubility in water. Encapsulation in cyclodextrins allows these drawbacks to be overcome. In this work, a grape cane pilot-plant extract (GCPPE) was encapsulated in hydroxypropyl beta-cyclodextrin (HP-β-CD) by a spray-drying technique and the formation of an inclusion complex was confirmed by microscopy and infrared spectroscopy. The phenolic profile of the complex was analyzed by LC-ESI-LTQ-Orbitrap-MS and the encapsulation efficiency of the phenolic compounds was determined. A total of 42 compounds were identified, including stilbenes, flavonoids, and phenolic acids, and a complex of (epi)catechin with β-CD was detected, confirming the interaction between polyphenols and cyclodextrin. The encapsulation efficiency for the total extract was 80.5 ± 1.1%, with restrytisol showing the highest value (97.0 ± 0.6%) and (E)-resveratrol (32.7 ± 2.8%) the lowest value. The antioxidant capacity of the inclusion complex, determined by ORAC-FL, was 5300 ± 472 µmol TE/g DW, which was similar to the value obtained for the unencapsulated extract. This formulation might be used to improve the stability, solubility, and bioavailability of phenolic compounds of the GCPPE for water-soluble food and pharmaceutical applications. Full article
Show Figures

Figure 1

12 pages, 299 KB  
Article
LC-ESI-LTQ-Orbitrap-MS for Profiling the Distribution of Oleacein and Its Metabolites in Rat Tissues
by Anallely López-Yerena, Anna Vallverdú-Queralt, Rosa M. Lamuela-Raventós and Elvira Escribano-Ferrer
Antioxidants 2021, 10(7), 1083; https://doi.org/10.3390/antiox10071083 - 5 Jul 2021
Cited by 8 | Viewed by 2798
Abstract
The purpose of this work was to study the distribution of oleacein (OLEA) and its metabolites in rat plasma and different tissues, namely brain, heart, kidney, liver, lung, small intestine, spleen, stomach, skin, and thyroid, following the acute intake of a refined olive [...] Read more.
The purpose of this work was to study the distribution of oleacein (OLEA) and its metabolites in rat plasma and different tissues, namely brain, heart, kidney, liver, lung, small intestine, spleen, stomach, skin, and thyroid, following the acute intake of a refined olive oil containing 0.3 mg/mL of OLEA. For this purpose, a distribution kinetics study was carried out. The plasma and tissues were collected at 1, 2, and 4.5 h after the intervention, and analyzed by LC-ESI-LTQ-Orbitrap-MS. Unmetabolized OLEA was detected in the stomach, small intestine, liver, plasma and, most notably, the heart. This finding may be useful for the development of new applications of OLEA for cardiovascular disease prevention. Noteworthy are also the high levels of hydroxytyrosol (OH-TY) and OLEA + CH3 found in the small intestine, liver, and plasma, and the detection of nine OLEA metabolites, five of them arising from conjugation reactions. Liver, heart, spleen, and lungs were the target tissues where the metabolites were most distributed. However, it is important to note that OH-TY, in our experimental conditions, was not detected in any target tissue (heart, spleen, thyroids, lungs, brain, and skin). These results shed further light on the metabolism and tissue distribution of OLEA and contribute to understanding the mechanisms underlying its effect in human health. Full article
(This article belongs to the Special Issue Bioavailability and Bioactivity of Plant Antioxidants)
Show Figures

Graphical abstract

15 pages, 1577 KB  
Article
Oleacein Intestinal Permeation and Metabolism in Rats Using an In Situ Perfusion Technique
by Anallely López-Yerena, Maria Pérez, Anna Vallverdú-Queralt, Eleftherios Miliarakis, Rosa M. Lamuela-Raventós and Elvira Escribano-Ferrer
Pharmaceutics 2021, 13(5), 719; https://doi.org/10.3390/pharmaceutics13050719 - 14 May 2021
Cited by 19 | Viewed by 3399
Abstract
Oleacein (OLEA) is one of the most important phenolic compounds in extra virgin olive oil in terms of concentration and health-promoting properties, yet there are insufficient data on its absorption and metabolism. Several non-human models have been developed to assess the intestinal permeability [...] Read more.
Oleacein (OLEA) is one of the most important phenolic compounds in extra virgin olive oil in terms of concentration and health-promoting properties, yet there are insufficient data on its absorption and metabolism. Several non-human models have been developed to assess the intestinal permeability of drugs, among them, single-pass intestinal perfusion (SPIP), which is commonly used to investigate the trans-membrane transport of drugs in situ. In this study, the SPIP model and simultaneous luminal blood sampling were used to study the absorption and metabolism of OLEA in rats. Samples of intestinal fluid and mesenteric blood were taken at different times and the ileum segment was excised at the end of the experiment for analysis by LC–ESI–LTQ–Orbitrap–MS. OLEA was mostly metabolized by phase I reactions, undergoing hydrolysis and oxidation, and metabolite levels were much higher in the plasma than in the lumen. The large number of metabolites identified and their relatively high abundance indicates an important intestinal first-pass effect during absorption. According to the results, OLEA is well absorbed in the intestine, with an intestinal permeability similar to that of the highly permeable model compound naproxen. No significant differences were found in the percentage of absorbed OLEA and naproxen (48.98 ± 12.27% and 43.96 ± 7.58%, respectively). Full article
(This article belongs to the Special Issue Drug Absorption Studies: In Situ, In Vitro and In Silico Models)
Show Figures

Graphical abstract

Back to TopTop