Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (129)

Search Parameters:
Keywords = L- and D-enantiomers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1693 KiB  
Article
Chirality Transfer and Oxazolidine Formation in Reaction of L and D Enantiomers of β-Hydroxy Amino Acids with Nitrogenous Carboxaldehydes and Nickel(II)
by Cynthia T. Brewer, Greg Brewer and Raymond J. Butcher
Molecules 2025, 30(14), 2913; https://doi.org/10.3390/molecules30142913 - 10 Jul 2025
Viewed by 360
Abstract
The reaction of either the L (2S3R) or D (2R3S) enantiomers of H2N-C*H(R)CO2 (R = -C*H(OH)CH3 or -C*H(OH)CH(CH3)2) and the L (2S) or D (2R) enantiomers [...] Read more.
The reaction of either the L (2S3R) or D (2R3S) enantiomers of H2N-C*H(R)CO2 (R = -C*H(OH)CH3 or -C*H(OH)CH(CH3)2) and the L (2S) or D (2R) enantiomers of H2N-C*H(C(CH3)2OH)CO2 with imidazole-4-carboxaldehyde and nickel(II) acetate in methanol yields a single stereoisomer of an oxazolidine. There is retention of chirality on ring positions 4 and 5 (if Cβ is chiral) of the oxazolidine, Cα and Cβ of the parent amino acid, and transfer of chirality to the newly generated stereogenic centers, ring positions 3, the amino acid nitrogen atom, NAA, and 2, the aldehyde carbon atom, Cald. Specifically, when Cα has an S configuration, both NAA and Cald are formed as R. Likewise, a Cα which is R results in both NAA and Cald being formed as S. For example, the reaction of L threonine (Cα is S and Cβ is R) with 4-imidazolecarboxaldehyde in the presence of nickel(II) gives the facial Λ NiL2, where L is (2R, 3R, 4S, 5R) 4-carboxylato-5-methyl-2-(4-imidazolyl)-1,3-oxazolidine. The same reaction with D threonine produces the enantiomeric Δ complex of (2S, 3S, 4R, 5S) 4-carboxylato-5-methyl-2-(4-imidazoyl)-1,3-oxazolidine. The high stereospecificity is thought to be based on the fused three-ring structure of the characterized nickel complexes in which the hydrogen atoms of Cα, NAA, and Cald must be cis to one another. Identical reactions occur with 2-pyridine carboxaldehyde and LT or DT. In contrast, the reactions of L allo threonine (2S3S) and the primary alcohols, L or D serine, give the conventional meridionally coordinated aldimine product. Full article
(This article belongs to the Special Issue Featured Papers in Organometallic Chemistry—2nd Edition)
Show Figures

Graphical abstract

8 pages, 1541 KiB  
Proceeding Paper
Chiral Recognition of Carnitine Enantiomers Using Graphene Oxide-Modified Cadmium Telluride Quantum Dots
by Haiyan Yuan, Yu Ma, Yuhui Zhang, Jidong Yang, Zhiyuan Mei, Chengcheng Pi and Yuan Peng
Eng. Proc. 2025, 98(1), 34; https://doi.org/10.3390/engproc2025098034 - 8 Jul 2025
Viewed by 189
Abstract
Carnitine (CA) is a chiral amino acid and mostly comes from meat and dairy products. CA cannot be found in fruits, vegetables, or other plants, so vegetarians are deficient in CA. CA exists in the form of D-carnitine (D-CA) and L-carnitine (L-CA); only [...] Read more.
Carnitine (CA) is a chiral amino acid and mostly comes from meat and dairy products. CA cannot be found in fruits, vegetables, or other plants, so vegetarians are deficient in CA. CA exists in the form of D-carnitine (D-CA) and L-carnitine (L-CA); only L-carnitine has biological activity. L-CA promotes the oxidation of fatty acids and then causes the effect of weight loss. In this study, the fluorescence probe was established by using graphene oxide-modified cadmium telluride (CdTe) QDs (GO-CdTe QDs) for the chiral recognition of carnitine enantiomers. GO-CdTe QDs present fluorescence. D-CA enhances the fluorescence spectral signal of the GO-CdTe QDs system, while L-CA weakens its spectral signal. Based on this phenomenon, we determined D-carnitine and L-carnitine. Full article
Show Figures

Figure 1

15 pages, 902 KiB  
Article
Cyclodextrin-Modified Capillary Zone Electrophoresis for the Chiral Analysis of Proline and Hydroxyproline Stereoisomers in Chicken Collagen Hydrolysates
by Milada Vodova, Elena Babini, Francesca Soglia, Martina Bordini, Martina Lioi, Sara Tengattini, Caterina Temporini and Roberto Gotti
Int. J. Mol. Sci. 2025, 26(12), 5832; https://doi.org/10.3390/ijms26125832 - 18 Jun 2025
Viewed by 364
Abstract
The stability of collagen, the most abundant protein in humans and many animals, is related to the hydroxylation of L-proline, a post-translational modification occurring at carbon 3 and 4 on its pyrrolidine ring. Collagens of different origins have shown different proline hydroxylation levels, [...] Read more.
The stability of collagen, the most abundant protein in humans and many animals, is related to the hydroxylation of L-proline, a post-translational modification occurring at carbon 3 and 4 on its pyrrolidine ring. Collagens of different origins have shown different proline hydroxylation levels, making hydroxyprolines useful biomarkers in structure characterizations. The presence of two chiral carbon atoms, 3-hydroxyproline and 4-hydroxyproline, results in eight stereoisomers (four pairs of enantiomers) whose quantitation in collagen hydrolysates requires enantioselective analytical methods. Capillary electrophoresis was applied for the separation and quantitation of the eight stereoisomers of 3- and 4-hydroxyproline and D,L-proline in collagen hydrolysates. The developed method is based on the derivatization with the chiral reagent (R)-(-)-4-(3-Isothiocyanatopyrrolidin-yl)-7-nitro-2,1,3-benzoxadiazole, enabling the use of a light-emitting diode-induced fluorescence detector for high sensitivity. The separation of the considered compounds was accomplished in less than 10 min, using a 500 mM acetate buffer pH 3.5 supplemented with 5 mM of heptakis(2,6-di-O-methyl)-β-cyclodextrin as the chiral selector. The method was fully validated and showed the adequate sensitivity for the application to samples of collagen hydrolysates. The analysis of samples extracted from chicken Pectoralis major muscles affected by growth-related myopathies showed different stereoisomer patterns compared to those from the unaffected control samples. Full article
(This article belongs to the Special Issue Current Uses and Applications of Cyclodextrins)
Show Figures

Figure 1

20 pages, 6956 KiB  
Article
Chiral Growth of Gold Horns on Polyhedrons for SERS Identification of Enantiomers and Polarized Light-Induced Photothermal Sterilization
by Bowen Shang and Guijian Guan
Materials 2025, 18(11), 2627; https://doi.org/10.3390/ma18112627 - 4 Jun 2025
Viewed by 540
Abstract
The integration of chirality into nanomaterials holds significant potential for improving molecular recognition and biomedical technologies. In this work, we fabricated novel chiral horned gold nanostructures (HNS) by controlling the concentration of chiral ligands L-/D-cysteine (Cys). The unique three-dimensional morphology with horns-rotational arrangement [...] Read more.
The integration of chirality into nanomaterials holds significant potential for improving molecular recognition and biomedical technologies. In this work, we fabricated novel chiral horned gold nanostructures (HNS) by controlling the concentration of chiral ligands L-/D-cysteine (Cys). The unique three-dimensional morphology with horns-rotational arrangement enables synergistic optimization of chiral optical responses and surface-enhanced Raman scattering (SERS) performance. The proposed chiral HNSs can be used to recognize amino acid enantiomers, in which homochiral amino acid has distinct affinities to the chiral HNSs of homogeneous handedness. The 4-mercaptobenzoic acid (4-MPBA)-modified D-HNS demonstrates significantly enhanced targeting affinity for D-amino acids in the Escherichia coli (E. coli) cell wall, enabling successful amplification of SERS signals and advancing bacterial detection methodologies. By demonstrating the rotation-selective interaction between chiral HNSs and circularly polarized light (CPL), D-HNS exhibits excellent photothermal conversion efficiency under right-handed circularly polarized light (RCP) irradiation. This enables the synergistic combination of targeted physical disruption and photothermal sterilization, which leads to efficient eradication of E. coli. The D-HNS hydrogel composite system further expands the practical application of photothermal sterilization. Altogether, chiral HNSs have achieved SERS detection of bacteria and efficient polarization photothermal sterilization, which helps further develop applications based on chiral nanomaterials. Full article
(This article belongs to the Section Advanced Nanomaterials and Nanotechnology)
Show Figures

Figure 1

15 pages, 6161 KiB  
Article
Chiral-Dependent Redox Capacitive Biosensor Using Cu-Cys-GSH Nanoparticles for Ultrasensitive H2O2 Detection
by Duygu Yilmaz Aydin, Jie Jayne Wu and Jiangang Chen
Biosensors 2025, 15(5), 315; https://doi.org/10.3390/bios15050315 - 14 May 2025
Viewed by 491
Abstract
Copper-thiolate nanostructures, formed through the self-assembly of cysteine (Cys) and glutathione (GSH) with copper ions, offer a versatile platform for redox-active applications due to their structural stability and chemical functionality. In this study, Cu-Cys-GSH nanoparticles were synthesized and employed to develop a capacitive [...] Read more.
Copper-thiolate nanostructures, formed through the self-assembly of cysteine (Cys) and glutathione (GSH) with copper ions, offer a versatile platform for redox-active applications due to their structural stability and chemical functionality. In this study, Cu-Cys-GSH nanoparticles were synthesized and employed to develop a capacitive biosensor for the ultralow concentration detection of hydrogen peroxide (H2O2). The detection mechanism leverages a Fenton-like reaction, where H2O2 interacts with Cu-Cys-GSH nanoparticles to generate hydroxyl radicals (·OH) through redox cycling between Cu2+ and Cu+ ions. These redox processes induce changes in the sensor’s surface charge and dielectric properties, enabling highly sensitive capacitive sensing at gold interdigitated electrodes (IDEs). The influence of chirality on sensing performance was investigated by synthesizing nanoparticles with both L- and D-cysteine enantiomers. Comparative analysis revealed that the stereochemistry of cysteine impacts the catalytic activity and sensor response, with Cu-L-Cys-GSH nanoparticles exhibiting superior performance. Specifically, the biosensor achieved a linear detection range from 1.0 fM to 1.0 pM and demonstrated an ultra-sensitive detection limit of 21.8 aM, outperforming many existing methods for H2O2 detection. The sensor’s practical performance was further validated using milk and saliva samples, yielding high recovery rates and confirming its robustness and accuracy for real-world applications. This study offers a disposable, low-cost sensing platform compatible with sustainable healthcare practices and facilitates easy integration into point-of-care diagnostic systems. Full article
(This article belongs to the Special Issue Innovative Biosensing Technologies for Sustainable Healthcare)
Show Figures

Figure 1

19 pages, 16843 KiB  
Article
Potential of Hyperthermophilic L-Asparaginase from Thermococcus sibiricus to Mitigate Dietary Acrylamide Assessed Using a Simplified Food System
by Maria Dumina, Stanislav Kalinin and Dmitry Zhdanov
Foods 2025, 14(10), 1720; https://doi.org/10.3390/foods14101720 - 12 May 2025
Cited by 1 | Viewed by 838
Abstract
The Maillard reaction is a network of interconnected interactions yielding in formation a number of toxic derivatives in processed foods. Acrylamide, a potential carcinogen and a product of the Maillard reaction, is formed under food processing, predominantly from asparagine and reducing sugars at [...] Read more.
The Maillard reaction is a network of interconnected interactions yielding in formation a number of toxic derivatives in processed foods. Acrylamide, a potential carcinogen and a product of the Maillard reaction, is formed under food processing, predominantly from asparagine and reducing sugars at temperatures over 120 °C. In this study, we investigated the potency of recombinant hyperthermophilic L-asparaginase from Thermococcus sibiricus TsAI to mitigate dietary acrylamide by hydrolyzing substrate for its synthesis under various operation conditions. Using a simplified food system for self-cooking, high acrylamide levels were found in baked samples regardless of whether L- or D-enantiomer of asparagine was added. TsAI effectively reduced acrylamide content under various pretreatment conditions, such as temperature, concentration, and time of incubation. The lowest acrylamide level of 1.0–1.1% of the control values or 3.52–3.76 µg/kg was observed in samples pretreated with TsAI 20 U/mL at 90 °C for 20–25 min. Due to the exceptionally high D-asparaginase activity of hyperthermophilic TsAI, the dietary acrylamide content formed from D-asparagine was reduced by 54.8% compared to the control. Comparison of the wild-type TsAI and its mutant reveal that an enzyme displaying enhanced stability is more functional for food-processing application. The native TsAI decreased acrylamide level by 98.9%, while the highly active mutant, with increased structural flexibility, decreased it by only 26.8%. TsAI treatment effectively blocked acrylamide synthesis, but not melanoidin formation via the Maillard reaction, thus not affecting sample characteristics such as color (browning) and aroma, which are important for consumer perception. Full article
Show Figures

Figure 1

9 pages, 2051 KiB  
Article
Beyond L-Proline: Investigation into the Catalytic Properties of Other Natural Amino Acids in an Organocatalytic Warfarin Synthesis
by Anna I. Wurz, Arhemy Franco-Gonzalez, Naomi R. Benson, Hope L. Jankowski, Sierra N. Carr, Ketan Chamakura, Lizbeth Chirinos, Sydney P. Coll, Kayla F. Ivory, Trinity J. Lamb, Shaya LeBauer, Grace L. McPherson, Thanh Nguyen, Jeimy Nolasco Guevara, Lily N. Parsad, Phuong Pham, Emma G. Piner, Kaci Richardson, Abdelhadi Bendjellal, Chelsea McRae and Robert M. Hughesadd Show full author list remove Hide full author list
Chemistry 2025, 7(2), 59; https://doi.org/10.3390/chemistry7020059 - 4 Apr 2025
Viewed by 882
Abstract
Proline is considered the model organocatalytic amino acid. However, other naturally occurring amino acids remain a potent and perhaps overlooked source of organocatalytic potential. In this work, we investigated the capacity of various natural amino acids to promote enantioselectivity in a synthesis of [...] Read more.
Proline is considered the model organocatalytic amino acid. However, other naturally occurring amino acids remain a potent and perhaps overlooked source of organocatalytic potential. In this work, we investigated the capacity of various natural amino acids to promote enantioselectivity in a synthesis of warfarin. We have identified L- and d-arginine as enantioselective catalysts for this reaction and have developed a recrystallization method to isolate the enantiomers of warfarin with high enantiopurity. In addition, we used methylated derivatives of arginine to provide insight into the reaction mechanism. Full article
Show Figures

Graphical abstract

12 pages, 2390 KiB  
Article
The Probiotic Strain Clostridium butyricum TO-A Produces Butyrate by Utilizing Lactate and Acetate
by Shotaro Honda, Hiromichi Eguchi, Yoichi Okino and Dian-Sheng Wang
Int. J. Mol. Sci. 2025, 26(7), 2951; https://doi.org/10.3390/ijms26072951 - 24 Mar 2025
Viewed by 1860
Abstract
Lactate-utilizing bacteria (LUB) are intestinal bacteria that produce butyrate from lactate and acetate, key metabolites in the gut. As LUB help maintain lactate and butyrate concentrations in the intestinal tract, they are promising probiotic candidates. Clostridium butyricum TO-A (CBTOA) has reportedly been effective [...] Read more.
Lactate-utilizing bacteria (LUB) are intestinal bacteria that produce butyrate from lactate and acetate, key metabolites in the gut. As LUB help maintain lactate and butyrate concentrations in the intestinal tract, they are promising probiotic candidates. Clostridium butyricum TO-A (CBTOA) has reportedly been effective in treating various gastrointestinal issues in humans and animals. Although CBTOA is known to increase intestinal butyrate levels, it is unclear how it utilizes lactate and acetate, similar to LUB, to produce butyrate. We investigated lactate utilization-related genes in CBTOA and examined the relationship between lactate and acetate utilization and butyrate production using peptone–yeast medium supplemented with D-lactate, L-lactate, and/or acetate. This study demonstrates for the first time that the probiotic strain CBTOA harbors lactate utilization-related genes and efficiently produces butyrate only in the presence of exogenous lactate and acetate instead of sugars. Furthermore, CBTOA expresses a lactate racemase that enables the bacterium to utilize both lactate enantiomers while regulating the ratio of D-lactate to L-lactate in the intestinal microenvironment via racemization. In conclusion, CBTOA efficiently produces butyrate utilizing lactate and acetate, similar to LUB; therefore, CBTOA could be an efficient butyrate supplier as a probiotic strain in the intestinal tract. Full article
Show Figures

Graphical abstract

17 pages, 3205 KiB  
Article
Kinetic and Structural Insights into β-Cyclodextrin Complexation with Asparagine Enantiomers: An Experimental and Theoretical Study
by Constantine Kouderis, Stefanos Tsigoias, Panagiota Siafarika and Angelos G. Kalampounias
Molecules 2025, 30(3), 523; https://doi.org/10.3390/molecules30030523 - 24 Jan 2025
Viewed by 1182
Abstract
We report on the dynamic interactions between β-cyclodextrin (β-CD) and each one of the two enantiomers of asparagine (d-Asp, l-Asp). Molecular docking methodologies were applied to elucidate the formation of the β-CD—d-Asp and β-CD—l-Asp inclusion complexes. [...] Read more.
We report on the dynamic interactions between β-cyclodextrin (β-CD) and each one of the two enantiomers of asparagine (d-Asp, l-Asp). Molecular docking methodologies were applied to elucidate the formation of the β-CD—d-Asp and β-CD—l-Asp inclusion complexes. Ultrasonic relaxation spectra revealed a single relaxation process in the frequency range studied that is attributed to the complexation between β-CD and asparagine enantiomers. Kinetic parameters and thermodynamic properties for each system were determined directly from the concentration- and temperature-dependent acoustic measurements, respectively. Both β-CD—d-Asp and β-CD—l-Asp systems revealed subtle differences in their thermodynamic and kinetic properties. The infrared absorption spectra of the host molecule, the guest enantiomers, and both inclusion complexes were recorded to verify and further elucidate the complexation mechanism. DFT methodologies were performed to calculate the theoretical IR spectra of the inclusion complexes and compared with the corresponding experimental spectra. The close resemblance between the experimental and theoretically predicted IR spectra is supportive of the formation of inclusion complexes. The encapsulation of asparagine enantiomers in β-cyclodextrin enables not only applications in drug delivery but also the detection and separation of chimeric molecules. Full article
(This article belongs to the Section Physical Chemistry)
Show Figures

Graphical abstract

17 pages, 4918 KiB  
Article
Mechanistic Insights into Sugar Racemization and Oxidative Degradation via Fenton and Alkaline Peroxide Systems
by Zoltán Köntös and Áron Németh
Chemistry 2025, 7(1), 2; https://doi.org/10.3390/chemistry7010002 - 26 Dec 2024
Viewed by 1285
Abstract
This study explores the oxidation and racemization of selected C5 and C6 sugars using hydrogen peroxide (H2O2) in alkaline and Fenton reaction conditions. The sugars studied include D-Glucose, D-Fructose, D-Mannose, D-Xylose, D-Lactose, D-Arabinose, D-Cellobiose, Sucrose, and D-Galactose. Oxidation reactions [...] Read more.
This study explores the oxidation and racemization of selected C5 and C6 sugars using hydrogen peroxide (H2O2) in alkaline and Fenton reaction conditions. The sugars studied include D-Glucose, D-Fructose, D-Mannose, D-Xylose, D-Lactose, D-Arabinose, D-Cellobiose, Sucrose, and D-Galactose. Oxidation reactions were conducted using both Fenton’s reagent and NaOH/H2O2 to examine product formation, yield distribution, and stereochemical transformations. Under alkaline conditions, sugars primarily oxidized to yield sodium formate and hydrogen, with the minimal formation of intermediate sugar acids. Excess alkaline conditions further promoted the rapid degradation of sugars to sodium formate and hydrogen as primary products, indicating the strong influence of reaction conditions on oxidation pathways. A significant observation was that both alkaline and Fenton oxidation led to racemization, converting optically pure sugars into a racemic mixture of D- and L-enantiomers, thus producing products with zero optical rotation. The generation of L-enantiomers, metabolically inactive in biological systems, has implications for energy yield and biochemical efficiency. Full article
(This article belongs to the Section Theoretical and Computational Chemistry)
Show Figures

Graphical abstract

16 pages, 5796 KiB  
Article
Synthesis of Pyrazole-Based Inhibitors of the Bacterial Enzyme N-Succinyl-l,l-2,6-Diaminopimelic Acid Desuccinylase (DapE) as Potential Antibiotics
by Thomas DiPuma, Emma H. Kelley, Teerana Thabthimthong, Alayna Bland, Katherine Konczak, Katherine J. Torma, Thahani S. Habeeb Mohammad, Kenneth W. Olsen and Daniel P. Becker
Int. J. Mol. Sci. 2025, 26(1), 22; https://doi.org/10.3390/ijms26010022 - 24 Dec 2024
Viewed by 1233
Abstract
Based on the inhibitory potencies from earlier reported tetrazole thioether analogs, we now describe the synthesis and inhibition of pyrazole-based inhibitors of N-succinyl-l,l-2,6-diaminopimelic acid desuccinylase (DapE) from Haemophilus influenzae (HiDapE). The most potent pyrazole analog 7d [...] Read more.
Based on the inhibitory potencies from earlier reported tetrazole thioether analogs, we now describe the synthesis and inhibition of pyrazole-based inhibitors of N-succinyl-l,l-2,6-diaminopimelic acid desuccinylase (DapE) from Haemophilus influenzae (HiDapE). The most potent pyrazole analog 7d bears an aminopyridine amide with an IC50 of 17.9 ± 8.0 μM, and the single enantiomer of ɑ-methyl analog 7q has an IC50 of 18.8 µM, with potency residing in the (R)-enantiomer. Thermal shift revealed strong stabilization upon binding inhibitor (R)-7q with Tm = 50.2 °C and a Ki of 17.3 ± 2.8 μM. Enzyme kinetic experiments confirm competitive inhibition, and docking reveals key active site interactions. Full article
Show Figures

Figure 1

19 pages, 16701 KiB  
Article
Magnetically Separable Chiral Poly(ionic liquid) Microcapsules Prepared Using Oil-in-Oil Emulsions
by Reema Siam, Abeer Ali and Raed Abu-Reziq
Polymers 2024, 16(19), 2728; https://doi.org/10.3390/polym16192728 - 26 Sep 2024
Viewed by 1043
Abstract
This article presents a method for producing chiral ionic liquid-based polyurea microcapsules that can be magnetically separated. The method involves entrapping hydrophilic magnetic nanoparticles within chiral polyurea microspheres. The synthetic process for creating these magnetic polyurea particles involves oil-in-oil (o/o) nano-emulsification of an [...] Read more.
This article presents a method for producing chiral ionic liquid-based polyurea microcapsules that can be magnetically separated. The method involves entrapping hydrophilic magnetic nanoparticles within chiral polyurea microspheres. The synthetic process for creating these magnetic polyurea particles involves oil-in-oil (o/o) nano-emulsification of an ionic liquid-modified magnetite nanoparticle (MNPs-IL) and an ionic liquid-based diamine monomer, which comprises a chiral bis(mandelato)borate anion, in a nonpolar organic solvent, toluene, and contains a suitable surfactant. This is followed by an interfacial polycondensation reaction between the isocyanate monomer, polymethylenepolyphenyl isocyanate (PAPI 27), and the chiral diamine monomer, which generates chiral polyurea microcapsules containing magnetic nanoparticles within their cores. The microcapsules generated from the process are then utilized to selectively adsorb either the R or S enantiomer of tryptophan (Trp) from a racemic mixture that is dissolved in water, in order to evaluate their chiral recognition capabilities. During the experiments, the magnetically separable chiral poly(ionic liquid) microcapsules, which incorporated either the R or S isomer of chiral bis(mandelato)borate, exhibited exceptional enantioselective adsorption performance. Thus, the chiral polymeric microcapsules embedded with the R-isomer of the bis(mandelato)borate anion demonstrated significant selectivity for adsorbing L-Trp, yielding a mixture with 70% enantiomeric excess after 96 h. In contrast, microcapsules containing the S-isomer of the bis(mandelato)borate anion preferentially adsorbed D-Trp, achieving an enantiomeric excess of 73% after 48 h. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

17 pages, 5810 KiB  
Article
Complexes of Hydrogen Peroxide, the Simplest Chiral Molecule, with L- and D-Serine Enantiomers and Their Clusters: MP2 and DFT Calculations
by Yurii A. Borisov, Sergey S. Kiselev, Mikhail I. Budnik and Lubov V. Snegur
Molecules 2024, 29(16), 3955; https://doi.org/10.3390/molecules29163955 - 21 Aug 2024
Viewed by 1309
Abstract
The interaction between natural amino acids and hydrogen peroxide is of paramount importance due to the widespread use of hydrogen peroxide in biological and environmentally significant processes. Given that both amino acids and hydrogen peroxide occur in nature in two enantiomeric forms, it [...] Read more.
The interaction between natural amino acids and hydrogen peroxide is of paramount importance due to the widespread use of hydrogen peroxide in biological and environmentally significant processes. Given that both amino acids and hydrogen peroxide occur in nature in two enantiomeric forms, it is crucial to investigate the formation of complexes between them, considering the role of molecular chirality. In this work, we report a theoretical study on the hydrogen peroxide enantiomers and their interactions with L- and S-serine and their clusters. We aimed to evaluate the non-covalent interactions between each hydrogen peroxide enantiomer and the L- and D-enantiomers of the non-essential amino acid serine and their clusters. First, the potential energy surfaces (PES) of transitions between enantiomers of the simplest chiral molecule, hydrogen peroxide, in the gas phase and in aqueous solution were studied using the Møller–Plesset theory method MP2/aug-cc-pVDZ. The activation energies of such transitions were calculated. The interactions of both hydrogen peroxide enantiomers (P and M) with L- and D-serine enantiomers were analyzed by density functional theory (DFT) with ωb97xd/6-311+G**, B3Lyp/6-311+G**, B3P86/6-311+G**, and M06/6-311+G** functionals. We found that both enantiomers of hydrogen peroxide bind more strongly to L-serine and its clusters than to D-serine, especially highlighting that the L form is the predominant natural form of this and other chiral amino acids. The optimized geometric parameters, interaction energies, and HOMO-LUMO energies for various complexes were estimated. Furthermore, circular dichroism (CD) spectra, which are optical chirality characteristics, were simulated for all the complexes under study. Full article
Show Figures

Figure 1

11 pages, 1955 KiB  
Article
Chiral Star-Shaped [CoIII3LnIII] Clusters with Enantiopure Schiff Bases: Synthesis, Structure, and Magnetism
by Liudi Ji, Juntao Wang, Zeyu Li, Xiaoming Zhu and Peng Hu
Molecules 2024, 29(14), 3304; https://doi.org/10.3390/molecules29143304 - 12 Jul 2024
Viewed by 1340
Abstract
Two enantiomeric pairs of new 3d–4f heterometallic clusters have been synthesized from two enantiomer Schiff base derivatives: (R/S)-2-[(2-hydroxy-1-phenylethylimino)methyl] phenol (R-/S-H2L). The formulae of the series clusters are Co3Ln(R-L)6 [...] Read more.
Two enantiomeric pairs of new 3d–4f heterometallic clusters have been synthesized from two enantiomer Schiff base derivatives: (R/S)-2-[(2-hydroxy-1-phenylethylimino)methyl] phenol (R-/S-H2L). The formulae of the series clusters are Co3Ln(R-L)6 (Ln = Dy (1R), Gd (2R)), Co3Ln (S-L)6 (Ln = Dy (1S), Gd (2S)), whose crystal structures and magnetic properties have been characterized. Structural analysis indicated that the above clusters crystallize in the chiral P213 group space. The central lanthanide ion has a coordination geometry of D3 surrounded by three [CoIII(L)2] anions using six aliphatic oxygen atoms of L2− featuring a star-shaped [CoIII3LnIII] configuration. Magnetic measurements showed the presence of slow magnetic relaxation with an effective energy barrier of 22.33 K in the DyIII derivatives under a zero-dc field. Furthermore, the circular dichroism (CD) spectra of 1R and 1S confirmed their enantiomeric nature. Full article
(This article belongs to the Special Issue Recent Advances in Coordination Chemistry of Metal Complexes)
Show Figures

Graphical abstract

19 pages, 3128 KiB  
Article
Probing the Conformational Restraints of DNA Damage Recognition with β-L-Nucleotides
by Anna V. Yudkina, Daria V. Kim, Timofey D. Zharkov, Dmitry O. Zharkov and Anton V. Endutkin
Int. J. Mol. Sci. 2024, 25(11), 6006; https://doi.org/10.3390/ijms25116006 - 30 May 2024
Viewed by 1269
Abstract
The DNA building blocks 2′-deoxynucleotides are enantiomeric, with their natural β-D-configuration dictated by the sugar moiety. Their synthetic β-L-enantiomers (βLdNs) can be used to obtain L-DNA, which, when fully substituted, is resistant to nucleases and is finding use in many biosensing and nanotechnology [...] Read more.
The DNA building blocks 2′-deoxynucleotides are enantiomeric, with their natural β-D-configuration dictated by the sugar moiety. Their synthetic β-L-enantiomers (βLdNs) can be used to obtain L-DNA, which, when fully substituted, is resistant to nucleases and is finding use in many biosensing and nanotechnology applications. However, much less is known about the enzymatic recognition and processing of individual βLdNs embedded in D-DNA. Here, we address the template properties of βLdNs for several DNA polymerases and the ability of base excision repair enzymes to remove these modifications from DNA. The Klenow fragment was fully blocked by βLdNs, whereas DNA polymerase κ bypassed them in an error-free manner. Phage RB69 DNA polymerase and DNA polymerase β treated βLdNs as non-instructive but the latter enzyme shifted towards error-free incorporation on a gapped DNA substrate. DNA glycosylases and AP endonucleases did not process βLdNs. DNA glycosylases sensitive to the base opposite their cognate lesions also did not recognize βLdNs as a correct pairing partner. Nevertheless, when placed in a reporter plasmid, pyrimidine βLdNs were resistant to repair in human cells, whereas purine βLdNs appear to be partly repaired. Overall, βLdNs are unique modifications that are mostly non-instructive but have dual non-instructive/instructive properties in special cases. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

Back to TopTop