Chiral Star-Shaped [CoIII3LnIII] Clusters with Enantiopure Schiff Bases: Synthesis, Structure, and Magnetism
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of Chiral Heterometallic Clusters
2.2. Structural Characterization
2.3. Magnetic Properties
2.3.1. Static Magnetic Measurements
2.3.2. Dynamic Magnetic Measurements
2.4. Circular Dichroism (CD) Spectrum
3. Materials and Methods
3.1. Reagents and Solutions
3.2. Instruments
3.3. Synthesis of 1R or 1S
3.4. Synthesis of 2R or 2S
3.5. Crystallography
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, H.; Sun, R.; Wu, X.F.; Liu, Y.; Zhan, J.Z.; Wang, B.W.; Gao, S. Circularly polarized luminescence and magneto-optic effects from chiral Dy (III) single molecule magnets. Dalton Trans. 2023, 52, 7646–7651. [Google Scholar] [CrossRef]
- Zhu, S.D.; Hu, J.J.; Dong, L.; Wen, H.R.; Liu, S.J.; Lu, Y.B.; Liu, C.M. Multifunctional Zn(II)-Yb(III) complex enantiomers showing second-harmonic generation, near-infrared luminescence, single-molecule magnet behaviour and proton conduction. J. Mater. Chem. C 2020, 8, 16032–16041. [Google Scholar] [CrossRef]
- Marin, R.; Brunet, G.; Murugesu, M. Shining new light on multifunctional lanthanide single-molecule magnets. Angew. Chem. Int. Ed. 2021, 60, 1728–1746. [Google Scholar] [CrossRef]
- Pointillart, F.; Atzori, M.; Train, C. Magneto-chiral dichroism of chiral lanthanide complexes. Inorg. Chem. Front. 2024, 11, 1313–1321. [Google Scholar] [CrossRef]
- Liu, C.M.; Xiong, R.G.; Zhang, D.Q.; Zhu, D.B. Nanoscale homochiral C3-symmetric mixed-valence manganese cluster complexes with both ferromagnetic and ferroelectric properties. J. Am. Chem. Soc. 2010, 132, 4044–4045. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Wu, G.; Xu, H.; Wang, X.; Long, L.S.; Kong, X.; Zheng, L.S. Magnetooptical Properties of Chiral [Co2Ln] Clusters. Inorg. Chem. 2019, 59, 193–197. [Google Scholar] [CrossRef]
- Train, C.; Nuida, T.; Gheorghe, R.; Gruselle, M.; Ohkoshi, S.I. Large magnetization-induced second harmonic generation in an enantiopure chiral magnet. J. Am. Chem. Soc. 2009, 131, 16838–16843. [Google Scholar] [CrossRef]
- Feltham, H.L.C.; Brooker, S. Review of purely 4f and mixed-metal nd-4f single-molecule magnets containing only one lanthanide ion. Coord. Chem. Rev. 2014, 276, 1–33. [Google Scholar] [CrossRef]
- Liu, X.; Ma, X.; Yuan, W.; Cen, P.; Zhang, Y.Q.; Ferrando-Soria, J. Concise chemistry modulation of the SMM behavior within a family of mononuclear Dy(III) complexes. Inorg. Chem. 2018, 57, 14843–14851. [Google Scholar] [CrossRef]
- Wan, Q.; Wakizaka, M.; Yamashita, M. Single-ion magnetism behaviors in lanthanide (III) based coordination frameworks. Inorg. Chem. Front. 2023, 10, 5212–5224. [Google Scholar] [CrossRef]
- Hu, Z.; Wang, Y.; Ullah, A.; Gutiérrez-Finol, G.M.; Bedoya-Pinto, A.; Gargiani, P.; Shi, D.; Yang, S.; Shi, Z.; Gaita-Arino, A.; et al. High-temperature magnetic blocking in a monometallic dysprosium azafullerene single-molecule magnet. Chem 2023, 9, 3613–3622. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhao, C.; Feng, T.; Liu, X.; Ying, X.; Li, X.-L.; Zhang, Y.-Q.; Tang, J. Air-stable chiral single-molecule magnets with record anisotropy barrier exceeding 1800 K. J. Am. Chem. Soc. 2021, 143, 10077–10082. [Google Scholar] [CrossRef]
- Guo, F.S.; Day, B.M.; Chen, Y.C.; Tong, M.L.; Mansikkamäki, A.; Layfield, R.A. Magnetic hysteresis up to 80 kelvin in a dysprosium metallocene single-molecule magnet. Science 2018, 362, 1400–1403. [Google Scholar] [CrossRef]
- Goodwin, C.A.; Ortu, F.; Reta, D.; Chilton, N.F.; Mills, D.P. Molecular magnetic hysteresis at 60 kelvin in dysprosocenium. Nature 2017, 548, 439–442. [Google Scholar] [CrossRef]
- Liu, C.M.; Sun, R.; Wang, B.W.; Hao, X.; Li, X.L. Effects of counter ions, coordination anions, and coordination solvent molecules on single-molecule magnetic behaviors and nonlinear optical properties of chiral Zn2Dy Schiff base complexes. Inorg. Chem. 2022, 61, 18510–18523. [Google Scholar] [CrossRef]
- Liu, J.L.; Chen, Y.C.; Tong, M.L. Symmetry strategies for high performance lanthanide-based single-molecule magnets. Chem. Soc. Rev. 2018, 47, 2431–2453. [Google Scholar] [CrossRef]
- Li, Y.L.; Wang, H.L.; Zhu, Z.H.; Wang, Y.F.; Liang, F.P.; Zou, H.H. Aggregation induced emission dynamic chiral europium(III) complexes with excellent circularly polarized luminescence and smart sensors. Nat. Commun. 2024, 15, 2896. [Google Scholar] [CrossRef]
- Long, J.; Rouquette, J.; Thibaud, J.-M.; Ferreira, R.A.S.; Carlos, L.D.; Donnadieu, B.; Vieru, V.; Chibotaru, L.F.; Konczewicz, L.; Haines, J. A high-temperature molecular ferroelectric Zn/Dy complex exhabiting single-ion-magnet behavior and lanthanide luminescence. Angew. Chem. Int. Ed. 2015, 54, 2236–2240. [Google Scholar] [CrossRef]
- Mayans, J.; Saez, Q.; Font-Bardia, M.; Escuer, A. Enhancement of magnetic relaxation properties with 3d diamagnetic cations in [ZnIILnIII] and [NiIILnIII], LnIII = Kramers lanthanides. Dalton Trans. 2019, 48, 641–652. [Google Scholar] [CrossRef]
- Wen, H.R.; Liu, S.J.; Xie, X.R.; Bao, J.; Liu, C.M.; Chen, J.-L. A family of nickel-lanthanide heterometallic dinuclear complexes derived from a chiral Schiff-base ligand exhibiting single-molecule magnet behaviors. Inorg. Chim. Acta 2015, 435, 274–282. [Google Scholar] [CrossRef]
- Aibibula, M.; Song, Y.H.; Xu, H.; Chen, M.T.; Kong, X.J.; Long, L.S.; Zheng, L.S. Magneto-optical properties of chiral Co2Ln and Co3Ln2 (Ln = Dy and Er) clusters. Inorg. Chem. 2024, 63, 8003–8007. [Google Scholar] [CrossRef]
- Miao, L.; Liu, M.J.; Zeng, M.; Kou, H.Z. Chiral Zn3Ln3 Hexanuclear Clusters of an Achiral Flexible Ligand. Inorg. Chem. 2023, 62, 12814–12821. [Google Scholar] [CrossRef]
- Li, J.; Wei, R.M.; Pu, T.C.; Cao, F.; Yang, L.; Han, Y. Tuning quantum tunnelling of magnetization through 3d-4f magnetic interactions: An alternative approach for manipulating single-molecule magnetism. Inorg. Chem. Front. 2017, 4, 114–122. [Google Scholar] [CrossRef]
- Liu, M.J.; Yuan, J.; Zhang, Y.Q.; Sun, H.L.; Liu, C.M.; Kou, H.Z. Chiral six-coordinate Dy(III) and Tb(III) complexes of an achiral ligand: Structure, fluorescence, and magnetism. Dalton Trans. 2017, 46, 13035–13042. [Google Scholar] [CrossRef]
- Yamashita, A.; Watanabe, A.; Akine, S.; Nabeshima, T.; Nakano, M.; Yamamura, T.; Kajiwara, T. Wheel-shaped ErIIIZnII3 single-molecule magnet: A macrocyclic approach to designing magnetic anisotropy. Angew. Chem. Int. Ed. 2011, 50, 4016–4019. [Google Scholar] [CrossRef]
- Wang, X.; Wang, S.Q.; Chen, J.N.; Jia, J.H.; Wang, C.; Paillot, K.; Breslavetz, I.; Long, L.S.; Zheng, L.S.; Train, C.; et al. Magnetic 3d-4f Chiral Clusters Showing Multimetal Site Magneto-Chiral Dichroism. J. Am. Chem. Soc. 2022, 144, 8837–8847. [Google Scholar] [CrossRef]
- Wang, X.; Du, M.H.; Xu, H.; Long, L.S.; Kong, X.J.; Zheng, L.S. Cocrystallization of chiral 3d-4f clusters {Mn10Ln6} and {Mn6Ln2}. Inorg. Chem. 2021, 60, 5925–5930. [Google Scholar] [CrossRef]
- Liu, C.M.; Zhang, D.Q.; Hao, X.; Zhu, D.B. Assembly of chiral 3d-4f wheel-like cluster complexes with achiral ligands: Single-molecule magnetic behavior and magnetocaloric effect. Inorg. Chem. Front. 2020, 7, 3340–3351. [Google Scholar] [CrossRef]
- Li, Y.L.; Wang, H.L.; Zhu, Z.H.; Liang, F.P.; Zou, H.H. Recent advances in the structural design and regulation of lanthanide clusters: Formation and self-assembly mechanisms. Coord. Chem. Rev. 2023, 493, 215322. [Google Scholar] [CrossRef]
- Yin, J.; Yin, T.T.; Gao, C.; Wang, B.W.; Zhu, Y.Y.; Wu, Z.Q.; Gao, S. A Pair of Enantiopure Cubane-Type CuII4O4 Clusters: Synthesis, Structure, Chirality and Magnetism. Eur. J. Inorg. Chem. 2014, 2014, 5385–5390. [Google Scholar] [CrossRef]
- Zhu, Y.Y.; Guo, X.; Cui, C.; Wang, B.W.; Wang, Z.M.; Gao, S. An enantiopure FeIII4 single-molecule magnet. Chem. Commun. 2011, 47, 8049–8051. [Google Scholar] [CrossRef]
- Zhu, Y.Y.; Zhang, Y.Q.; Yin, T.T.; Gao, C.; Wang, B.W.; Gao, S. A family of CoIICoIII3 single-ion magnets with zero-field slow magnetic relaxation: Fine tuning of energy barrier by remote substituent and counter cation. Inorg. Chem. 2015, 54, 5475–5486. [Google Scholar] [CrossRef]
- Hazra, S.; Titiš, J.; Valigura, D.; Boča, R.; Mohanta, S. Bis-phenoxido and bis-acetato bridged heteronuclear {CoIIIDyIII} single molecule magnets with two slow relaxation branches. Dalton Trans. 2016, 45, 7510–7520. [Google Scholar] [CrossRef]
- Polyzou, C.D.; Koumousi, E.S.; Lada, Z.G.; Raptopoulou, C.P.; Psycharis, V.; Rouzières, M.; Tsipis, A.C.; Mathonière, C.; Clérac, R.; Perlepes, S.P. “Switching on” the single-molecule magnet properties within a series of dinuclear cobalt(III)–dysprosium(III) 2-pyridyloximate complexes. Dalton Trans. 2017, 46, 14812–14825. [Google Scholar] [CrossRef]
- Zhu, Z.; Ying, X.; Zhao, C.; Zhang, Y.Q.; Tang, J. A new breakthrough in low-coordinate Dy(III) single-molecule magnets. Inorg. Chem. Front. 2022, 9, 6061–6066. [Google Scholar] [CrossRef]
- Canaj, A.B.; Singh, M.K.; Wilson, C.; Rajaraman, G.; Murrie, M. Chemical and in silico tuning of the magnetisation reversal barrier in pentagonal bipyramidal Dy (III) single-ion magnets. Chem. Commun. 2018, 54, 8273–8276. [Google Scholar] [CrossRef]
- Yu, S.; Hu, Z.; Chen, Z.; Li, B.; Zhang, Y.Q.; Liang, Y.; Liu, D.; Yao, D.; Liang, F. Two Dy (III) single-molecule magnets with their performance tuned by schiff base ligands. Inorg. Chem. 2019, 58, 1191–1200. [Google Scholar] [CrossRef]
- Lefeuvre, B.; Guizouarn, T.; Dorcet, V.; Cordier, M.; Pointillart, F. Single-Molecule Magnet Properties in 3d4f Heterobimetallic Iron and Dysprosium Complexes Involving Hydrazone Ligand. Molecules 2023, 28, 6359. [Google Scholar] [CrossRef]
- Xu, W.J.; Luo, Q.C.; Li, Z.H.; Zhai, Y.Q.; Zheng, Y.Z. Bis-Alkoxide Dysprosium (III) Crown Ether Complexes Exhibit Tunable Air Stability and Record Energy Barrier. Adv. Sci. 2024, 11, 2308548. [Google Scholar] [CrossRef]
- Sun, R.; Wang, C.; Wang, B.W.; Wang, Z.M.; Chen, Y.F.; Tamm, M.; Gao, S. Low-coordinate bis (imidazolin-2-iminato) dysprosium (III) single-molecule magnets. Inorg. Chem. Front. 2023, 10, 485–492. [Google Scholar] [CrossRef]
- Cole, K.S.; Cole, R.H. Dispersion and Absorption in Dielectrics I. Alternating Current Characteristics. J. Chem. Phys. 1941, 9, 341–351. [Google Scholar] [CrossRef]
- Guo, M.; Zhang, Y.Q.; Zhu, Z.; Tang, J. Dysprosium compounds with hula-hoop-like geometries: The influence of magnetic anisotropy and magnetic interactions on magnetic relaxation. Inorg. Chem. 2018, 57, 12213–12221. [Google Scholar] [CrossRef]
- Li, Q.; Peng, Y.; Qian, J.; Yan, T.; Du, L.; Zhao, Q. A family of planar hexanuclear CoIII4LnIII2 clusters with lucanidae-like arrangement and single-molecule magnet behavior. Dalton Trans. 2019, 48, 12880–12887. [Google Scholar] [CrossRef]
- Bhanja, A.; Herchel, R.; Travnicek, Z.; Ray, D. Two types of hexanuclear partial tetracubane [Ni4Ln2](Ln = Dy, Tb, Ho) complexes of thioether-based schiff base ligands: Synthesis, structure, and comparison of magnetic properties. Inorg. Chem. 2019, 58, 12184–12198. [Google Scholar] [CrossRef]
- Feltham, H.L.; Clérac, R.; Ungur, L.; Vieru, V.; Chibotaru, L.F.; Powell, A.K.; Brooker, S. Synthesis and magnetic properties of a new family of macrocyclic MII3LnIII complexes: Insights into the effect of subtle chemical modification on single-molecule magnet behavior. Inorg. Chem. 2012, 51, 10603–10612. [Google Scholar] [CrossRef]
- Singh, S.K.; Beg, M.F.; Rajaraman, G. Role of Magnetic Exchange Interactions in the Magnetization Relaxation of {3d–4f} Single-Molecule Magnets: A Theoretical Perspective. Chem.-Eur. J. 2016, 22, 672–680. [Google Scholar] [CrossRef]
- Dais, T.N.; Takano, R.; Ishida, T.; Plieger, P.G. Self-assembly of non-macrocyclic triangular Ni3Ln clusters. Dalton Trans. 2022, 51, 1446–1453. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SHELXL-2014, Program for Refinement of Crystal Structures; University of Göttingen: Göttingen, Germany, 2014. [Google Scholar]
- Sheldrick, G.M. SHELXS-2014, Program for Solution of Crystal Structures; University of Göttingen: Göttingen, Germany, 2014. [Google Scholar]
Complexes | Space Group | Coordination Number of 4f Ion | Symmetry of 4f Ion | Ueff (K) | τ0 (s) | Ref. |
---|---|---|---|---|---|---|
[NiIIDyIII (L a)(NO3)3] | P1 | 10 | − | 18.4 | 7.39 × 10−6 | [20] |
[NiIIDyIII(L b)(NO3)3] | C2 | 10 | − | 9.3 | 2.1 × 10−5 | [19] |
[ZnIIDyIII(L b)(MeOH)(NO3)3] ·MeOH | P21 | 10 | C2v | 17.7 | 8.3 × 10−7 | [19] |
[ZnIIDyIII(L b)(H2O)(NO3)3] | P21 | 10 | − | 11.9/46.1 | 4.23 × 10−5/8.85 × 10−8 | [1] |
[ZnIIDyIII(L b)(OAc)(NO3)2 | P21 | 9 | C4v | 19.4/51.8 | 1.23 × 10−8/3.75 × 10−9 | [18] |
[YbIIIZnII2(L a)2(H2O)4](ClO4)3·5H2O | C2221 | 8 | − | 8.94 | 1.91 × 10−5 | [2] |
[CoIII2DyIII(L c)4]·Cl5·(H2O)2·(CH3O)· CH3CH2OH | P21212 | 10 | − | − | − | [6] |
[CoIII2DyIII(L d)6(Ac)(H2O)]·(ClO4)2·5H2O | P21212 | 10 | − | − | − | [21] |
[DyIIIZnII2(L e)Cl2(H2O)](ClO4)·0.5MeOH·0.25H2O | P1 | 9 | Cs | 212.1 | 7.0 × 10−10 | [15] |
[DyIIIZnII2(L e)Cl2 (H2O)](CF3SO3)·0.5MeOH | P1 | 9 | Cs | 203.5 | 1.0 × 10−10 | [15] |
[DyIIIZnII2(L e)Br2 (H2O)](CF3SO3)·0.25MeOH | P1 | 9 | Cs | 207.3 | 1.5 × 10−10 | [15] |
[ErIIIZnII3(L f)(OAc)(NO3)2(H2O)1.5(MeOH)0.5] | P212121 | 9 | − | 8.1 | 5.3 × 10−10 | [25] |
[ZnII(L g)Cl]3DyIII·MeOH·0.5H2O | P1 | 6 | D3 | 7.0 | − | [24] |
[CoIII3DyIII (L h)6] | P21212 | 6 | D3 | 22.33 | 3.73 × 10−6 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, L.; Wang, J.; Li, Z.; Zhu, X.; Hu, P. Chiral Star-Shaped [CoIII3LnIII] Clusters with Enantiopure Schiff Bases: Synthesis, Structure, and Magnetism. Molecules 2024, 29, 3304. https://doi.org/10.3390/molecules29143304
Ji L, Wang J, Li Z, Zhu X, Hu P. Chiral Star-Shaped [CoIII3LnIII] Clusters with Enantiopure Schiff Bases: Synthesis, Structure, and Magnetism. Molecules. 2024; 29(14):3304. https://doi.org/10.3390/molecules29143304
Chicago/Turabian StyleJi, Liudi, Juntao Wang, Zeyu Li, Xiaoming Zhu, and Peng Hu. 2024. "Chiral Star-Shaped [CoIII3LnIII] Clusters with Enantiopure Schiff Bases: Synthesis, Structure, and Magnetism" Molecules 29, no. 14: 3304. https://doi.org/10.3390/molecules29143304
APA StyleJi, L., Wang, J., Li, Z., Zhu, X., & Hu, P. (2024). Chiral Star-Shaped [CoIII3LnIII] Clusters with Enantiopure Schiff Bases: Synthesis, Structure, and Magnetism. Molecules, 29(14), 3304. https://doi.org/10.3390/molecules29143304