Beyond L-Proline: Investigation into the Catalytic Properties of Other Natural Amino Acids in an Organocatalytic Warfarin Synthesis
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Patel, S.; Singh, R.; Preuss, C.V.; Patel, N. Warfarin; 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK470313/ (accessed on 9 December 2024).
- Crader, M.F.; Johns, T.; Arnold, J.K. Warfarin Drug Interactions; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Kaminsky, L.S.; Zhang, Z.-Y. Human P450 metabolism of warfarin. Pharmacol. Ther. 1997, 73, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Wigle, T.J.; Jansen, L.E.; Teft, W.A.; Kim, R.B. Pharmacogenomics Guided-Personalization of Warfarin and Tamoxifen. J. Pers. Med. 2017, 7, 20. [Google Scholar] [CrossRef] [PubMed]
- Rulcova, A.; Prokopova, I.; Krausova, L.; Bitman, M.; Vrzal, R.; Dvorak, Z.; Blahos, J.; Pavek, P. Stereoselective interactions of warfarin enantiomers with the pregnane X nuclear receptor in gene regulation of major drug-metabolizing cytochrome P450 enzymes. J. Thromb. Haemost. 2010, 8, 2708–2717. [Google Scholar] [CrossRef] [PubMed]
- Song, J.J.; Frutos, R.P.; Tampone, T.; Senanayake, C.H.; Krishnamurthy, D. 9.3 Industrial Applications of Asymmetric Synthesis: Asymmetric Synthesis as an Enabler of Green Chemistry; Elsevier: Amsterdam, The Netherlands, 2012; pp. 46–72. [Google Scholar] [CrossRef]
- Mondal, A.; Bhowmick, K.C. Asymmetric Organocatalyzed Warfarin Synthesis in Aqueous and Nonaqueous Media: A Discussion in the Era of COVID-19 Pandemic. Curr. Organocatalysis 2021, 8, 109–125. [Google Scholar] [CrossRef]
- Dong, Z.; Wang, L.; Chen, X.; Liu, X.; Lin, L.; Feng, X. Organocatalytic Enantioselective Michael Addition of 4-Hydroxycoumarin to α,β-Unsaturated Ketones: A Simple Synthesis of Warfarin. Eur. J. Org. Chem. 2009, 2009, 5192–5197. [Google Scholar] [CrossRef]
- Halland, N.; Hansen, T.; Jørgensen, K.A. Organocatalytic Asymmetric Michael Reaction of Cyclic 1,3-Dicarbonyl Compounds and α,β-Unsaturated Ketones—A Highly Atom-Economic Catalytic One-Step Formation of Optically Active Warfarin Anticoagulant. Angew. Chem. Int. Ed. 2003, 42, 4955–4957. [Google Scholar] [CrossRef]
- Kim, H.; Yen, C.; Preston, P.; Chin, J. Substrate-Directed Stereoselectivity in Vicinal Diamine-Catalyzed Synthesis of Warfarin. Org. Lett. 2006, 8, 5239–5242. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.-W.; Yue, L.; Chen, W.; Du, W.; Zhu, J.; Deng, J.-G.; Chen, Y.-C. Highly Enantioselective Michael Addition of Cyclic 1,3-Dicarbonyl Compounds to α,β-Unsaturated Ketones. Org. Lett. 2007, 9, 413–415. [Google Scholar] [CrossRef] [PubMed]
- Panday, S.K. Advances in the chemistry of proline and its derivatives: An excellent amino acid with versatile applications in asymmetric synthesis. Tetrahedron Asymmetry 2011, 22, 1817–1847. [Google Scholar] [CrossRef]
- Thorat, R.B.; Mali, N.S.; Wavhal, S.S.; Bhagat, S.D.; Borade, M.R.; Chapolikar, A.; Gandhi, A.; Shinde, P. L-Proline: A Versatile Organo-Catalyst in Organic Chemistry. Comb. Chem. High Throughput Screen. 2023, 26, 1108–1140. [Google Scholar] [CrossRef] [PubMed]
- List, B.; Lerner, R.A.; Barbas, C.F., III. Proline-Catalyzed Direct Asymmetric Aldol Reactions. J. Am. Chem. Soc. 2000, 122, 2395–2396. [Google Scholar]
- Wong, T.C.; Sultana, C.M.; Vosburg, D.A. A Green, Enantioselective Synthesis of Warfarin for the Undergraduate Organic Laboratory. J. Chem. Educ. 2010, 87, 194–195. [Google Scholar] [CrossRef]
- Dong, S.; Feng, X.; Liu, X. Chiral guanidines and their derivatives in asymmetric synthesis. Chem. Soc. Rev. 2018, 47, 8525–8540. [Google Scholar] [CrossRef] [PubMed]
- Odagi, M.; Nagasawa, K. Exploring Guanidinium Organocatalysts for Hypoiodite-Mediated Reactions. Chem. Rec. 2023, 23, e202300030. [Google Scholar] [CrossRef] [PubMed]
- Vachan, B.S.; Karuppasamy, M.; Vinoth, P.; Vivek Kumar, S.; Perumal, S.; Sridharan, V.; Menéndez, J.C. Proline and its Derivatives as Organocatalysts for Multi-Component Reactions in Aqueous Media: Synergic Pathways to the Green Synthesis of Heterocycles. Adv. Synth. Catal. 2020, 362, 87–110. [Google Scholar] [CrossRef]
Catalyst | Yield (%) |
---|---|
Uncatalyzed | 4 a |
Tyrosine (L-Tyr) | 14 a |
Glutamic Acid (L-Glu) | 14 a |
Leucine (L-Leu) | 18 a |
Isoleucine (L-Ile) | 20 a |
Glycine (Gly) | 34 a, 38 b |
Phenylalanine (L-Phe) | 35 a, 33 b |
Lysine (L-Lys) | 44 a, 56 b |
Methionine (L-Met) | 47 a, 47 b |
Histidine (L-His) | 52 a, 48 b |
Tryptophan (L-Trp) | 77 a, 53 b |
Arginine (L-Arg) | 78 a, 52 b |
Proline (L-Pro) | 86 a, 47 b |
Catalyst | ee (%R) |
---|---|
Glycine (Gly) | 0 |
Proline (L-Pro) | 0 |
Tryptophan (L-Trp) | +23 |
Lysine (L-Lys) | +30 |
Phenylalanine (L-Phe) | +35 |
Histidine (L-His) | +37 |
Methionine (L-Met) | +44 |
Arginine (L-Arg) | +48 |
R,R-DPEN | +48 |
S,S-DPEN | −44 |
Catalyst | Yield (%) | ee (%R) |
---|---|---|
Uncatalyzed | 4 | n.d. |
L-Arginine (L-Arg) | 78 a, 52 b | +48 |
NGMA | 68 a, 47 b | +52 |
ADMA | 36 | +41 |
SDMA | 4 | n.d. |
Methoxy Arginine | 7 | −2 |
L-citrulline (L-Cit) | 13 | +20 |
Catalyst | Yield (%) | ee (%R) |
---|---|---|
Boc-Arg-OH | 9 | 22 |
N-alpha-p-tosyl-L-Arg OMe | 2 | n.d. |
H-Arg(Tos)-OH | 56 a, 27 b | 38 |
H-Arg(Mtr)-OH | 41 a, 21 b | 32 |
N-w-Nitro-L-Arg | 16 | 28 |
Boc-N-omega-(nitro)-L-homoArg | 2 | n.d. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wurz, A.I.; Franco-Gonzalez, A.; Benson, N.R.; Jankowski, H.L.; Carr, S.N.; Chamakura, K.; Chirinos, L.; Coll, S.P.; Ivory, K.F.; Lamb, T.J.; et al. Beyond L-Proline: Investigation into the Catalytic Properties of Other Natural Amino Acids in an Organocatalytic Warfarin Synthesis. Chemistry 2025, 7, 59. https://doi.org/10.3390/chemistry7020059
Wurz AI, Franco-Gonzalez A, Benson NR, Jankowski HL, Carr SN, Chamakura K, Chirinos L, Coll SP, Ivory KF, Lamb TJ, et al. Beyond L-Proline: Investigation into the Catalytic Properties of Other Natural Amino Acids in an Organocatalytic Warfarin Synthesis. Chemistry. 2025; 7(2):59. https://doi.org/10.3390/chemistry7020059
Chicago/Turabian StyleWurz, Anna I., Arhemy Franco-Gonzalez, Naomi R. Benson, Hope L. Jankowski, Sierra N. Carr, Ketan Chamakura, Lizbeth Chirinos, Sydney P. Coll, Kayla F. Ivory, Trinity J. Lamb, and et al. 2025. "Beyond L-Proline: Investigation into the Catalytic Properties of Other Natural Amino Acids in an Organocatalytic Warfarin Synthesis" Chemistry 7, no. 2: 59. https://doi.org/10.3390/chemistry7020059
APA StyleWurz, A. I., Franco-Gonzalez, A., Benson, N. R., Jankowski, H. L., Carr, S. N., Chamakura, K., Chirinos, L., Coll, S. P., Ivory, K. F., Lamb, T. J., LeBauer, S., McPherson, G. L., Nguyen, T., Nolasco Guevara, J., Parsad, L. N., Pham, P., Piner, E. G., Richardson, K., Bendjellal, A., ... Hughes, R. M. (2025). Beyond L-Proline: Investigation into the Catalytic Properties of Other Natural Amino Acids in an Organocatalytic Warfarin Synthesis. Chemistry, 7(2), 59. https://doi.org/10.3390/chemistry7020059