Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (81,639)

Search Parameters:
Keywords = K112

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 5304 KiB  
Article
Multi-Criteria Optimization and Techno-Economic Assessment of a Wind–Solar–Hydrogen Hybrid System for a Plateau Tourist City Using HOMER and Shannon Entropy-EDAS Models
by Jingyu Shi, Ran Xu, Dongfang Li, Tao Zhu, Nanyu Fan, Zhanghua Hong, Guohua Wang, Yong Han and Xing Zhu
Energies 2025, 18(15), 4183; https://doi.org/10.3390/en18154183 (registering DOI) - 7 Aug 2025
Abstract
Hydrogen offers an effective pathway for the large-scale storage of renewable energy. For a tourist city located in a plateau region rich in renewable energy, hydrogen shows great potential for reducing carbon emissions and utilizing uncertain renewable energy. Herein, the wind–solar–hydrogen stand-alone and [...] Read more.
Hydrogen offers an effective pathway for the large-scale storage of renewable energy. For a tourist city located in a plateau region rich in renewable energy, hydrogen shows great potential for reducing carbon emissions and utilizing uncertain renewable energy. Herein, the wind–solar–hydrogen stand-alone and grid-connected systems in the plateau tourist city of Lijiang City in Yunnan Province are modeled and techno-economically evaluated by using the HOMER Pro software (version 3.14.2) with the multi-criteria decision analysis models. The system is composed of 5588 kW solar photovoltaic panels, an 800 kW wind turbine, a 1600 kW electrolyzer, a 421 kWh battery, and a 50 kW fuel cell. In addition to meeting the power requirements for system operation, the system has the capacity to provide daily electricity for 200 households in a neighborhood and supply 240 kg of hydrogen per day to local hydrogen-fueled buses. The stand-alone system can produce 10.15 × 106 kWh of electricity and 93.44 t of hydrogen per year, with an NPC of USD 8.15 million, an LCOE of USD 0.43/kWh, and an LCOH of USD 5.26/kg. The grid-connected system can generate 10.10 × 106 kWh of electricity and 103.01 ton of hydrogen annually. Its NPC is USD 7.34 million, its LCOE is USD 0.11/kWh, and its LCOH is USD 3.42/kg. This study provides a new solution for optimizing the configuration of hybrid renewable energy systems, which will develop the hydrogen economy and create low-carbon-emission energy systems. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

18 pages, 2653 KiB  
Article
Clustering of Countries Through UMAP and K-Means: A Multidimensional Analysis of Development, Governance, and Logistics
by Enrique Delahoz-Domínguez, Adel Mendoza-Mendoza and Delimiro Visbal-Cadavid
Logistics 2025, 9(3), 108; https://doi.org/10.3390/logistics9030108 (registering DOI) - 7 Aug 2025
Abstract
Background: Growing disparities in development, governance, and logistics performance across countries pose challenges for global policymaking and Sustainable Development Goal (SDG) monitoring. This study proposes a classification of 137 countries based on multiple structural dimensions. The dataset for 2023 includes six components [...] Read more.
Background: Growing disparities in development, governance, and logistics performance across countries pose challenges for global policymaking and Sustainable Development Goal (SDG) monitoring. This study proposes a classification of 137 countries based on multiple structural dimensions. The dataset for 2023 includes six components of the Logistics Performance Index (LPI), six dimensions of the Worldwide Governance Indicators (WGIs), and four proxies of the Human Development Index (HDI). Methods: The Uniform Manifold Approximation and Projection (UMAP) technique was used to reduce dimensionality and allow for meaningful clustering. Based on the reduced space, the K-means algorithm was employed to group countries with similar development characteristics. Results: The classification process allowed the identification of three distinct groups of countries, supported by a Hopkins statistic of 0.984 and an explained variance ratio of 87.3%. These groups exhibit structural differences in the quality of governance, logistics capacity, and social development conditions. Internal consistency checks and multivariate statistical analyses (ANOVA and MANOVA) confirmed the robustness and statistical significance of the clustering. Conclusions: The resulting classification offers a practical analytical tool for policymakers to design differentiated strategies aligned with national contexts. Furthermore, it provides a data-driven approach for comparative monitoring of the SDGs from an integrated and empirical perspective. Full article
Show Figures

Figure 1

31 pages, 2319 KiB  
Review
Biopharming of Lactoferrin: Current Strategies and Future Prospects
by Rajaravindra Konadaka Sri, Parthasarathi Balasamudram Chandrasekhar, Architha Sirisilla, Qudrathulla Khan Quadri Mohammed, Thejasri Jakkoju, Rajith Reddy Bheemreddy, Tarun Kumar Bhattacharya, Rajkumar Ullengala and Rudra Nath Chatterjee
Pharmaceutics 2025, 17(8), 1023; https://doi.org/10.3390/pharmaceutics17081023 (registering DOI) - 7 Aug 2025
Abstract
Lactoferrin (LF) is an 80 kDa iron-binding glycoprotein primarily found in milk, saliva, tears, and nasal secretions. LF is well known for its antibacterial and immunomodulatory effects. However, the extraction of LF from milk is inadequate for large-scale therapeutic applications, presenting a challenge [...] Read more.
Lactoferrin (LF) is an 80 kDa iron-binding glycoprotein primarily found in milk, saliva, tears, and nasal secretions. LF is well known for its antibacterial and immunomodulatory effects. However, the extraction of LF from milk is inadequate for large-scale therapeutic applications, presenting a challenge for economic mass production. Recombinant protein expression systems offer a solution to overcome this challenge and efficient production of LF. This review discusses recent progress in the translational research of LF gene transfer and biopharming, focusing on different expression systems such as bacteria, yeast, filamentous fungi, transgenic crops, and animals as well as purification methods. The optimization of expression yields, prospects for genetic engineering, and biotechnology to enhance LF production for biomedical applications are emphasized. This review systematically sourced the literature from 1987 to 2025 from leading scientific databases, including PubMed, Scopus, Web of Science, and Google Scholar. Despite ongoing debates, progress in this field indicates a viable path towards the effective use of LF in therapeutic settings. Full article
(This article belongs to the Section Biopharmaceutics)
Show Figures

Figure 1

19 pages, 1835 KiB  
Article
Methods for Enhancing Energy and Resource Efficiency in Sunflower Oil Production: A Case Study from Bulgaria
by Penka Zlateva, Angel Terziev, Nikolay Kolev, Martin Ivanov, Mariana Murzova and Momchil Vasilev
Eng 2025, 6(8), 195; https://doi.org/10.3390/eng6080195 - 6 Aug 2025
Abstract
The rising demand for energy resources and industrial goods presents significant challenges to sustainable development. Sunflower oil, commonly utilized in the food sector, biofuels, and various industrial applications, is notably affected by this demand. In Bulgaria, it serves as a primary source of [...] Read more.
The rising demand for energy resources and industrial goods presents significant challenges to sustainable development. Sunflower oil, commonly utilized in the food sector, biofuels, and various industrial applications, is notably affected by this demand. In Bulgaria, it serves as a primary source of vegetable fats, ranking second to butter in daily consumption. The aim of this study is to evaluate and propose methods to improve energy and resource efficiency in sunflower oil production in Bulgaria. The analysis is based on data from an energy audit conducted in 2023 at an industrial sunflower oil production facility. Reconstruction and modernization initiatives, which included the installation of high-performance, energy-efficient equipment, led to a 34% increase in energy efficiency. The findings highlight the importance of adjusting the technological parameters such as temperature, pressure, grinding level, and pressing time to reduce energy use and operational costs. Additionally, resource efficiency is improved through more effective raw material utilization and waste reduction. These strategies not only enhance the economic and environmental performance of sunflower oil production but also support sustainable development and competitiveness within the industry. The improvement reduces hexane use by approximately 2%, resulting in energy savings of 12–15 kWh/t of processed seeds and a reduction in CO2 emissions by 3–4 kg/t, thereby improving the environmental profile of sunflower oil production. Full article
(This article belongs to the Special Issue Interdisciplinary Insights in Engineering Research)
Show Figures

Figure 1

21 pages, 1366 KiB  
Article
Liquid-Phase Hydrogenation over a Cu/SiO2 Catalyst of 5-hydroximethylfurfural to 2,5-bis(hydroxymethyl)furan Used in Sustainable Production of Biopolymers: Kinetic Modeling
by Juan Zelin, Hernán Antonio Duarte, Alberto Julio Marchi and Camilo Ignacio Meyer
Sustain. Chem. 2025, 6(3), 22; https://doi.org/10.3390/suschem6030022 - 6 Aug 2025
Abstract
2,5-bis(hydroxymethy)lfuran (BHMF), a renewable compound with extensive industrial applications, can be obtained by selective hydrogenation of the C=O group of 5-hydroxymethylfurfural (HMF), a platform molecule derived from lignocellulosic biomass. In this work, we perform kinetic modeling of the selective liquid-phase hydrogenation of HMF [...] Read more.
2,5-bis(hydroxymethy)lfuran (BHMF), a renewable compound with extensive industrial applications, can be obtained by selective hydrogenation of the C=O group of 5-hydroxymethylfurfural (HMF), a platform molecule derived from lignocellulosic biomass. In this work, we perform kinetic modeling of the selective liquid-phase hydrogenation of HMF to BHMF over a Cu/SiO2 catalyst prepared by precipitation–deposition (PD) at a constant pH. Physicochemical characterization, using different techniques, confirms that the Cu/SiO2–PD catalyst is formed by copper metallic nanoparticles of 3–5 nm in size highly dispersed on the SiO2 surface. Before the kinetic study, the Cu/SiO2-PD catalyst was evaluated in three solvents: tetrahydrofuran (THF), 2-propanol (2-POH), and water. The pattern of catalytic activity and BHMF yield for the different solvents was THF > 2-POH > H2O. In addition, selectivity to BHF was the highest in THF. Thus, THF was chosen for further kinetic study. Several experiments were carried out by varying the initial HMF concentration (C0HMF) between 0.02 and 0.26 M and the hydrogen pressure (PH2) between 200 and 1500 kPa. In all experiments, BHMF selectivity was 97–99%. By pseudo-homogeneous modeling, an apparent reaction order with respect to HFM close to 1 was estimated for a C0HMF between 0.02 M and 0.065 M, while when higher than 0.065 M, the apparent reaction order changed to 0. The apparent reaction order with respect to H2 was nearly 0 when C0HMF = 0.13 M, while for C0HMF = 0.04 M, it was close to 1. The reaction orders estimated suggest that HMF is strongly absorbed on the catalyst surface, and thus total active site coverage is reached when the C0HMF is higher than 0.065 M. Several Langmuir–Hinshelwood–Hougen–Watson (LHHW) kinetic models were proposed, tested against experimental data, and statistically compared. The best fitting of the experimental data was obtained with an LHHW model that considered non-competitive H2 and HMF chemisorption and strong chemisorption of reactant and product molecules on copper metallic active sites. This model predicts both the catalytic performance of Cu/SiO2-PD and its deactivation during liquid-phase HMF hydrogenation. Full article
Show Figures

Graphical abstract

12 pages, 2649 KiB  
Article
Comparative Effects of THC and CBD on Chemotherapy-Induced Peripheral Neuropathy: Insights from a Large Real-World Self-Reported Dataset
by Ravit Geva, Tali Hana Bar-Lev, Lee Ahuva Lavi Kutchuk, Tali Schaffer, Dan Mirelman, Sharon Pelles-Avraham, Ido Wolf and Lihi Bar-Lev Schleider
Biomedicines 2025, 13(8), 1921; https://doi.org/10.3390/biomedicines13081921 - 6 Aug 2025
Abstract
Background/Objective: Chemotherapy-induced peripheral neuropathy (CIPN) is a common dose-limiting adverse effect of various chemotherapeutic agents. Previous work demonstrated that cannabis alleviates symptoms of oxaliplatin-induced CIPN. To evaluate the effects of cannabis components, cannabidiol (CBD) and tetrahydrocannabinol (THC), on CIPN-related symptoms. Methods: We reviewed [...] Read more.
Background/Objective: Chemotherapy-induced peripheral neuropathy (CIPN) is a common dose-limiting adverse effect of various chemotherapeutic agents. Previous work demonstrated that cannabis alleviates symptoms of oxaliplatin-induced CIPN. To evaluate the effects of cannabis components, cannabidiol (CBD) and tetrahydrocannabinol (THC), on CIPN-related symptoms. Methods: We reviewed a patient-reported outcomes dataset from “Tikun Olam,” a major medical cannabis provider. Of 1493 patients, 802 reported at least one CIPN symptom at baseline, including a burning sensation, cold sensation, paresthesia (prickling) and numbness, and 751 of them met the study inclusion criteria. Patients were categorized into THC-high/CBD-low and CBD-high/THC-low groups. Symptom changes after six months of cannabis use were analyzed using K-means clustering and logistic regression, incorporating interactions between baseline symptoms and THC and CBD doses. Linear regression assessed changes in activities of daily living (ADL) and quality of life (QOL). Results: Both groups reported symptom improvement. The THC-high group showed significantly greater improvement in burning sensation and cold sensation (p = 0.024 and p = 0.008). Improvements in ADL and QOL were also significantly higher in the THC group (p = 0.029 and p = 0.006). A significant interaction between THC and CBD was observed for symptom improvement (p < 0.0001). Conclusion: Cannabis effectively reduces CIPN symptoms and improves QOL and ADL. Higher THC doses were more effective than lower doses, with combined CBD and THC doses yielding greater symptom relief. Full article
Show Figures

Figure 1

19 pages, 1226 KiB  
Article
Improving Endodontic Radiograph Interpretation with TV-CLAHE for Enhanced Root Canal Detection
by Barbara Obuchowicz, Joanna Zarzecka, Michał Strzelecki, Marzena Jakubowska, Rafał Obuchowicz, Adam Piórkowski, Elżbieta Zarzecka-Francica and Julia Lasek
J. Clin. Med. 2025, 14(15), 5554; https://doi.org/10.3390/jcm14155554 - 6 Aug 2025
Abstract
Objective: The accurate visualization of root canal systems on periapical radiographs is critical for successful endodontic treatment. This study aimed to evaluate and compare the effectiveness of several image enhancement algorithms—including a novel Total Variation–Contrast-Limited Adaptive Histogram Equalization (TV-CLAHE) technique—in improving the detectability [...] Read more.
Objective: The accurate visualization of root canal systems on periapical radiographs is critical for successful endodontic treatment. This study aimed to evaluate and compare the effectiveness of several image enhancement algorithms—including a novel Total Variation–Contrast-Limited Adaptive Histogram Equalization (TV-CLAHE) technique—in improving the detectability of root canal configurations in mandibular incisors, using cone-beam computed tomography (CBCT) as the gold standard. A null hypothesis was tested, assuming that enhancement methods would not significantly improve root canal detection compared to original radiographs. Method: A retrospective analysis was conducted on 60 periapical radiographs of mandibular incisors, resulting in 420 images after applying seven enhancement techniques: Histogram Equalization (HE), Contrast-Limited Adaptive Histogram Equalization (CLAHE), CLAHE optimized with Pelican Optimization Algorithm (CLAHE-POA), Global CLAHE (G-CLAHE), k-Caputo Fractional Differential Operator (KCFDO), and the proposed TV-CLAHE. Four experienced observers (two radiologists and two dentists) independently assessed root canal visibility. Subjective evaluation was performed using an own scale inspired by a 5-point Likert scale, and the detection accuracy was compared to the CBCT findings. Quantitative metrics including Peak Signal-to-Noise Ratio (PSNR), Signal-to-Noise Ratio (SNR), image entropy, and Structural Similarity Index Measure (SSIM) were calculated to objectively assess image quality. Results: Root canal detection accuracy improved across all enhancement methods, with the proposed TV-CLAHE algorithm achieving the highest performance (93–98% accuracy), closely approaching CBCT-level visualization. G-CLAHE also showed substantial improvement (up to 92%). Statistical analysis confirmed significant inter-method differences (p < 0.001). TV-CLAHE outperformed all other techniques in subjective quality ratings and yielded superior SNR and entropy values. Conclusions: Advanced image enhancement methods, particularly TV-CLAHE, significantly improve root canal visibility in 2D radiographs and offer a practical, low-cost alternative to CBCT in routine dental diagnostics. These findings support the integration of optimized contrast enhancement techniques into endodontic imaging workflows to reduce the risk of missed canals and improve treatment outcomes. Full article
(This article belongs to the Section Dentistry, Oral Surgery and Oral Medicine)
13 pages, 1739 KiB  
Article
Study on the Shear Characteristics of the Frozen Soil–Concrete Interface at Different Roughness Levels
by Ming Xie, Mengqi Xu, Fangbo Xu, Zhangdong Wang, Lie Yin and Xiangdong Wu
Buildings 2025, 15(15), 2783; https://doi.org/10.3390/buildings15152783 - 6 Aug 2025
Abstract
The shear characteristics of the frozen soil–concrete interface are core parameters in frost heave resistance design in cold-region engineering, and the influence mechanism of interface roughness on these characteristics is not clear. In this study, the regulatory effect of different roughness levels (R-0 [...] Read more.
The shear characteristics of the frozen soil–concrete interface are core parameters in frost heave resistance design in cold-region engineering, and the influence mechanism of interface roughness on these characteristics is not clear. In this study, the regulatory effect of different roughness levels (R-0 to R-4) on the interfacial freezing strength was quantitatively analyzed for the first time through direct shear tests, and the evolution characteristics of the contribution ratio of the ice cementation strength were revealed. The results show that the peak shear strength of the interface increases significantly with the roughness (when the normal stress is 400 kPa and the water content is 14%, the increase in R-4 is 47.7% compared with R-0); the ice cementation strength increases synchronously and its contribution ratio increases with the increase in roughness. Although the absolute value of the residual strength increase is small, the relative amplitude is larger (178.5% increase under the same working conditions). The peak cohesion increased significantly with the roughness (R-0 to R-4 increased by 268.6%), while the residual cohesion decreased. The peak and residual internal friction angle increased slightly with the roughness. The study clarifies the differential influence mechanism of roughness on the interface’s shear parameters and provides a key quantitative basis for the anti-frost heave design of engineering interfaces in cold regions. Full article
15 pages, 1805 KiB  
Article
Indoor Application of Coupled FLOCponics System with Caipira Lettuce (Lactuca sativa) Affects the Growth Performance and Water Characteristics of Far Eastern Catfish (Silurus asotus) and Tropical Eel (Anguilla bicolor)
by Jun Seong Park, Hae Seung Jeong, Jeong-ho Lee and Ju-ae Hwang
Animals 2025, 15(15), 2305; https://doi.org/10.3390/ani15152305 - 6 Aug 2025
Abstract
In this study, we sought to improve the productivity of Far Eastern catfish (Silurus asotus) and tropical eel (Anguilla bicolor), which are high-value fish species in the Republic of Korea, as well as that of associated crops by applying [...] Read more.
In this study, we sought to improve the productivity of Far Eastern catfish (Silurus asotus) and tropical eel (Anguilla bicolor), which are high-value fish species in the Republic of Korea, as well as that of associated crops by applying biofloc technology (BFT)-based aquaponics systems. The following three systems were used: the flow-through system (FTS), BFT, and BFT aquaponics system (BAPs). Caipira lettuce (Lactuca sativa) was utilized and hydroponics (HP) was implemented to compare crop productivity. After 42 days of treatment, the BAPs and BFT systems improved fish productivity, with weight gain rates of 134.47 ± 1.80% in BAPs-cat, 130.38 ± 0.95% in BFT, and 114.21 ± 6.62% in FTS for S. asotus, and 70.61 ± 3.26% in BAPs-eel, 62.37 ± 7.04% in BFT, and 47.83 ± 1.09% in FTS for A. bicolor. During the experiment, the total ammonia nitrogen and NO2-N concentrations were stable in all plots. In the case of NO3-N, BFT showed an increasing tendency while both BAPs showed a decrease compared with that of the BFT. BAPs-cat (total weight: 224.1 ± 6.37 g) and HP (220.3 ± 7.17 g) resulted in similar growth. However, in BAPs-eel was 187.7 ± 3.46 g due to root degradation. Water content analysis showed that BAPs-cat and BAPs-eel contained sufficient K, Ca, P, and S, which are important for crop growth. Overall, the effect of BAPs on fish growth was higher than that of FTS. This study reveals that integrating BFT with aquaponics improves productivity for high-value fish and associated crops while maintaining stable water quality. This method offers sustainable, efficient production, reduces environmental impact, and provides insights for future research in sustainable aquaculture practices. Full article
Show Figures

Figure 1

17 pages, 4825 KiB  
Article
Tea Polyphenols Mitigate TBBPA-Induced Renal Injury Through Modulation of ROS-PI3K/AKT-NF-κB Signalling in Carp (Cyprinus carpio)
by Fuxin Han, Ran Xu, Hongru Wang, Xuejiao Gao and Mengyao Guo
Animals 2025, 15(15), 2307; https://doi.org/10.3390/ani15152307 - 6 Aug 2025
Abstract
Tetrabromobisphenol A (TBBPA), a widely utilised brominated flame retardant, demonstrates toxicological effects in aquatic organisms. Tea polyphenols (TPs), natural compounds found in tea leaves, exhibit both antioxidant and anti-inflammatory activities. The kidney is one of the major metabolic organs in common carp and [...] Read more.
Tetrabromobisphenol A (TBBPA), a widely utilised brominated flame retardant, demonstrates toxicological effects in aquatic organisms. Tea polyphenols (TPs), natural compounds found in tea leaves, exhibit both antioxidant and anti-inflammatory activities. The kidney is one of the major metabolic organs in common carp and serves as a target organ for toxic substances. This study evaluated the therapeutic potential of TPs in mitigating TBBPA-induced nephrotoxicity in common carp. Common carp were exposed to 0.5 mg/L TBBPA in water and/or fed a diet supplemented with 1 g/kg TPs for 14 days. In vitro, primary renal cells were treated with 60 μM TBBPA and/or 2.5 μg/L TPs for 24 h. Methods included histopathology, TUNEL assay for apoptosis, ROS detection, and molecular analyses. Antioxidant enzymes (SOD, CAT) and inflammatory cytokines (IL-1β, IL-6, TNF-α) were quantified using ELISA kits. Results showed that TBBPA induced oxidative stress, and activated the ROS-PI3K/AKT-NF-κB pathway, thereby resulting in inflammatory responses. TBBPA upregulated apoptosis-related genes (Caspase-3, Bax, and Bcl-2) and induced apoptosis. TBBPA upregulated the expression of RIPK3/MLKL, thereby exacerbating necroptosis. TPs intervention significantly mitigated these effects by reducing ROS, suppressing NF-κB activation, and restoring antioxidant enzyme activities (SOD, CAT). Moreover, TPs attenuated apoptosis and necrosis in the carp kidney, thereby enhancing the survival ability and immunity of common carp. Full article
Show Figures

Graphical abstract

19 pages, 3586 KiB  
Article
Multi-Objective Optimization Design of Foamed Cement Mix Proportion Based on Response Surface Methodology
by Kailu Liu, Wanying Qu and Haoyang Zeng
Buildings 2025, 15(15), 2782; https://doi.org/10.3390/buildings15152782 - 6 Aug 2025
Abstract
Foam cement, as a building insulation material, encounters a major problem in practical application, which is the difficulty in achieving a balance between its strength and insulation performance. To achieve multi-objective optimization of foamed cement mix design, this study first determined the optimal [...] Read more.
Foam cement, as a building insulation material, encounters a major problem in practical application, which is the difficulty in achieving a balance between its strength and insulation performance. To achieve multi-objective optimization of foamed cement mix design, this study first determined the optimal ranges of nano-silica aerogel (NSA), foaming agent, and polypropylene (PP) fiber dosage through single-factor experiments. Then, response surface methodology (RSM) was employed to construct a quadratic polynomial regression model, systematically investigating the influence of different NSA contents, foaming agent contents, and PP fibers contents on the thermal conductivity and compressive strength of foamed cement. Finally, the optimal mix ratio was further predicted and experimentally validated. The results demonstrate that the regression model developed using RSM exhibits high accuracy and reliability. The correlation coefficients R2 of the regression models established by the response surface method are 0.9756 and 0.9684, respectively, indicating good prediction accuracy. The optimized mix ratio was determined as follows: NSA content, 9.548%; foaming agent content, 0.533%; and PP fiber content, 0.1%. Under this mix, the model predicted a thermal conductivity of 0.123 W/(m·K) and a 28-day compressive strength of 1.081 MPa. Experimental verification confirmed that the errors between predicted and measured values for all performance indicators were within 5%, demonstrating the high reliability of the predictive model. This study provides support for the practical application of foam cement as a thermal insulation material in construction projects and offers guidance for optimizing its mixture composition. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

28 pages, 2475 KiB  
Article
Optimal Scheduling of a Hydropower–Wind–Solar Multi-Objective System Based on an Improved Strength Pareto Algorithm
by Haodong Huang, Qin Shen, Wan Liu, Ying Peng, Shuli Zhu, Rungang Bao and Li Mo
Sustainability 2025, 17(15), 7140; https://doi.org/10.3390/su17157140 - 6 Aug 2025
Abstract
Under the current context of the large-scale integration of wind and solar power, the coupling of hydropower with wind and solar energy brings significant impacts on grid stability. To fully leverage the regulatory capacity of hydropower, this paper develops a multi-objective optimization scheduling [...] Read more.
Under the current context of the large-scale integration of wind and solar power, the coupling of hydropower with wind and solar energy brings significant impacts on grid stability. To fully leverage the regulatory capacity of hydropower, this paper develops a multi-objective optimization scheduling model for hydropower, wind, and solar that balances generation-side power generation benefit and grid-side peak-regulation requirements, with the latter quantified by the mean square error of the residual load. To efficiently solve this model, Latin hypercube initialization, hybrid distance framework, and adaptive mutation mechanism are introduced into the Strength Pareto Evolutionary Algorithm II (SPEAII), yielding an improved algorithm named LHS-Mutate Strength Pareto Evolutionary Algorithm II (LMSPEAII). Its efficiency is validated on benchmark test functions and a reservoir model. Typical extreme scenarios—months with strong wind and solar in the dry season and months with weak wind and solar in the flood season—are selected to derive scheduling strategies and to further verify the effectiveness of the proposed model and algorithm. Finally, K-medoids clustering is applied to the Pareto front solutions; from the perspective of representative solutions, this reveals the evolutionary trends of different objective trade-off schemes and overall distribution characteristics, providing deeper insight into the solution set’s distribution features. Full article
21 pages, 3451 KiB  
Article
Transcriptional Repression of CCL2 by KCa3.1 K+ Channel Activation and LRRC8A Anion Channel Inhibition in THP-1-Differentiated M2 Macrophages
by Miki Matsui, Junko Kajikuri, Hiroaki Kito, Yohei Yamaguchi and Susumu Ohya
Int. J. Mol. Sci. 2025, 26(15), 7624; https://doi.org/10.3390/ijms26157624 - 6 Aug 2025
Abstract
We investigated the role of the intermediate-conductance, Ca2+-activated K+ channel KCa3.1 and volume-regulatory anion channel LRRC8A in regulating C-C motif chemokine ligand 2 (CCL2) expression in THP-1-differentiated M2 macrophages (M2-MACs), which serve as a useful [...] Read more.
We investigated the role of the intermediate-conductance, Ca2+-activated K+ channel KCa3.1 and volume-regulatory anion channel LRRC8A in regulating C-C motif chemokine ligand 2 (CCL2) expression in THP-1-differentiated M2 macrophages (M2-MACs), which serve as a useful model for studying tumor-associated macrophages (TAMs). CCL2 is a potent chemoattractant involved in the recruitment of immunosuppressive cells and its expression is regulated through intracellular signaling pathways such as ERK, JNK, and Nrf2 in various types of cells including macrophages. The transcriptional expression of CCL2 was suppressed in M2-MACs following treatment with a KCa3.1 activator or an LRRC8A inhibitor via distinct signaling pathways: ERK–CREB2 and JNK–c-Jun pathways for KCa3.1, and the NOX2–Nrf2–CEBPB pathway for LRRC8A. Under in vitro conditions mimicking the elevated extracellular K+ concentration ([K+]e) characteristic of the tumor microenvironment (TME), CCL2 expression was markedly upregulated, and this increase was reversed by treatment with them in M2-MACs. Additionally, the WNK1–AMPK pathway was, at least in part, involved in the high [K+]e-induced upregulation of CCL2. Collectively, modulating KCa3.1 and LRRC8A activities offers a promising strategy to suppress CCL2 secretion in TAMs, potentially limiting the CCL2-induced infiltration of immunosuppressive cells (TAMs, Tregs, and MDSCs) in the TME. Full article
(This article belongs to the Special Issue Regulation of Ion Channels and Transporters)
Show Figures

Figure 1

22 pages, 5839 KiB  
Article
Fire Safety of Curtain Walling: Evidence-Based Critical Review and New Test Configuration Proposal for EN 1364-4
by Arritokieta Eizaguirre-Iribar, Raya Stoyanova Trifonova, Peter Ens and Xabier Olano-Azkune
Fire 2025, 8(8), 311; https://doi.org/10.3390/fire8080311 - 6 Aug 2025
Abstract
This article focuses on the fire safety risks associated with conventional glass–aluminum façades—with a particular focus on stick and unitized curtain walling systems—providing an overview of possible fire spread mechanisms, considering the role of the curtain wall in maintaining compartmentation at the spandrel [...] Read more.
This article focuses on the fire safety risks associated with conventional glass–aluminum façades—with a particular focus on stick and unitized curtain walling systems—providing an overview of possible fire spread mechanisms, considering the role of the curtain wall in maintaining compartmentation at the spandrel zone. First, it analyzes some of the relevant requirements of different European building regulations. Then, it provides a test evidence-based critical analysis of the gaps and loopholes in the relevant fire resistance standard for partial curtain wall configurations (EN 1364-4), where the evaluation of the propagation within the façade system is not necessarily considered in the fire-resistant spandrel zone. Finally, it presents a proposal for addressing these gaps in the form of a theoretical concept for a new test configuration and additional assessment criteria. This is followed by an initial experimental analysis of the concept. The standard testing campaign showed that temperature rise in mullions can exceed 180 °C after 30 min if limiting measures are not considered in the façade design. However, this can be only detected if framing is in the non-exposed area of the sample, being part of the evaluation surface. Meanwhile, differences are detected between the results from standard and new assessment criteria in the new configuration proposed, including a more rapid temperature rise for framing elements (207 K in a second level mullion at minute 90) than for the common non-exposed assessment surface of the sample (172 K at the same time) in cases where cavities are not protected. Accordingly, the proposed configuration successfully detected vertical temperature transfer within mullions, which can remain undetected in standard EN 1364-4 tests, highlighting the potential for fire spread even in EI120-rated assemblies. Full article
Show Figures

Figure 1

29 pages, 13705 KiB  
Article
Stabilization of Zwitterionic Versus Canonical Glycine by DMSO Molecules
by Verónica Martín, Alejandro Colón, Carmen Barrientos and Iker León
Pharmaceuticals 2025, 18(8), 1168; https://doi.org/10.3390/ph18081168 - 6 Aug 2025
Abstract
Background/Objectives: Understanding the stabilization mechanisms of amino acid conformations in different solvent environments is crucial for elucidating biomolecular interactions and crystallization processes. This study presents a comprehensive computational investigation of glycine, the simplest amino acid, in both its canonical and zwitterionic forms [...] Read more.
Background/Objectives: Understanding the stabilization mechanisms of amino acid conformations in different solvent environments is crucial for elucidating biomolecular interactions and crystallization processes. This study presents a comprehensive computational investigation of glycine, the simplest amino acid, in both its canonical and zwitterionic forms when interacting with dimethyl sulfoxide (DMSO) molecules. Methods: Using density functional theory (DFT) calculations at the B3LYP/6-311++G(d,p) level with empirical dispersion corrections, we examined the conformational landscape of glycine–DMSO clusters with one and two DMSO molecules, as well as implicit solvent calculations, and compared them with analogous water clusters. Results: Our results demonstrate that while a single water molecule is insufficient to stabilize the zwitterionic form of glycine, one DMSO molecule successfully stabilizes this form through specific interactions between the S=O and the methyl groups of DMSO and the NH3+ and the oxoanion group of zwitterionic glycine, respectively. Topological analysis of the electron density using QTAIM and NCI methods reveals the nature of these interactions. When comparing the relative stability between canonical and zwitterionic forms, we found that two DMSO molecules significantly reduce the energy gap to approximately 12 kJ mol−1, suggesting that increasing DMSO coordination could potentially invert this stability. Implicit solvent calculations indicate that in pure DMSO medium, the zwitterionic form becomes more stable below 150 K, while remaining less stable at room temperature, contrasting with aqueous environments where the zwitterionic form predominates. Conclusions: These findings provide valuable insights into DMSO’s unique role in biomolecular stabilization and have implications for protein crystallization protocols where DMSO is commonly used as a co-solvent. Full article
(This article belongs to the Special Issue Classical and Quantum Molecular Simulations in Drug Design)
Show Figures

Graphical abstract

Back to TopTop