Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (81,675)

Search Parameters:
Keywords = K-604

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1001 KiB  
Article
A Preliminary Evaluation of the Use of Solid Residues from the Distillation of Medicinal and Aromatic Plants as Fertilizers in Mediterranean Soils
by Anastasia-Garyfallia Karagianni, Anastasia Paraschou and Theodora Matsi
Agronomy 2025, 15(8), 1903; https://doi.org/10.3390/agronomy15081903 (registering DOI) - 7 Aug 2025
Abstract
The current study focuses on a preliminary evaluation of the use of solid residues produced from the distillation of selected medicinal and aromatic plants (MAP) as fertilizers for alkaline soils. Specifically, the residues of hemp (Cannabis sativa L.), helichrysum (Helichrysum Italicum [...] Read more.
The current study focuses on a preliminary evaluation of the use of solid residues produced from the distillation of selected medicinal and aromatic plants (MAP) as fertilizers for alkaline soils. Specifically, the residues of hemp (Cannabis sativa L.), helichrysum (Helichrysum Italicum (Roth) G. Don), lavender (Lavandula angustifolia Mill.), oregano (Origanum vulgare L.), rosemary (Rosmarinus officinalis L.) and sage (Salvia officinalis L.) were added in an alkaline and calcareous soil at the rates of 0 (control), 1, 2, 4 and 8%, in three replications (treatments), and the treated soils were analyzed. The results showed that upon application of the residues, soil electrical conductivity (EC), organic C, total N and the C/N ratio significantly increased, especially at the 4 and 8% rates. The same was found for soil available P, K, B, Cu and Mn. The effects of the residues on soil pH, cation exchange capacity (CEC) and available Zn and Fe were rather inconclusive, whereas soil available N significantly decreased, which was somewhat unexpected. From the different application rates tested, it seems that all residues could improve soil fertility (except N?) when they were applied to soil at rates of 2% and above, without exceeding the 8% rate. The reasons for the latter statement are soil EC and available Mn: the doubling of EC upon application of the residues and the excessive increase in soil available Mn in treatments with 8% residues raise concerns of soil salinization and Mn phytotoxicity risks, respectively. This work provides the first step towards the potential agronomic use of solid residues from MAP distillation in alkaline soils. However, for the establishment of such a perspective, further research is needed in respect to the effect of residues on plant growth and soil properties, by means of at least pot experiments. Based on the results of the current study, the undesirable effect of residues on soil available N should be investigated in depth, since N is the most important essential element for plant growth, and possible risks of micronutrient phytotoxicities should also be studied. In addition, application rates between 2 and 4% should be studied extensively in order to recommend optimum application rates of residues to producers. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

17 pages, 4768 KiB  
Article
New Functional Food for the Treatment of Gastric Ulcer Based on Bioadhesive Microparticles Containing Sage Extract: Anti-Ulcerogenic, Anti-Helicobacter pylori, and H+/K+-ATPase-Inhibiting Activity Enhancement
by Yacine Nait Bachir, Ryma Nait Bachir, Meriem Medjkane, Nouara Boudjema and Roberta Foligni
Foods 2025, 14(15), 2757; https://doi.org/10.3390/foods14152757 (registering DOI) - 7 Aug 2025
Abstract
Salvia officinalis is an aromatic plant of Mediterranean origin traditionally used to treat inflammatory, cardiovascular, endocrine, and digestive diseases. In this work, the ability of the Salvia officinalis extract in the treatment of gastric ulcers was evaluated, and an innovative administration system was [...] Read more.
Salvia officinalis is an aromatic plant of Mediterranean origin traditionally used to treat inflammatory, cardiovascular, endocrine, and digestive diseases. In this work, the ability of the Salvia officinalis extract in the treatment of gastric ulcers was evaluated, and an innovative administration system was proposed to increase the therapeutic effect of this plant. Salvia officinalis ethanolic extract was prepared and analyzed by HPLC/UV-DAD and encapsulated in a matrix based on gelatin and pectin using an emulsion–coacervation process. The prepared microcapsules were analyzed by laser particle size, optical microscopy, in vitro dissolution kinetics, and ex vivo bioadhesion. In order to determine the action mechanism of Salvia officinalis extract, in the treatment of gastric ulcer, the in vivo anti-ulcerogenic activity in rats, using the ulcer model induced by ethanol; the in vivo anti-Helicobacter pylori activity; and in vitro inhibitory activity of H+/K+-ATPase were carried out. These three biological activities were evaluated for ethanolic extract and microcapsules to determine the effect of formulation on biological activities. Ethanolic extract of Salvia officinalis was mainly composed of polyphenols (chlorogenic acid 7.43%, rutin 21.74%, rosmarinic acid 5.88%, and quercitrin 14.39%). Microencapsulation of this extract allowed us to obtain microcapsules of 104.2 ± 7.5 µm in diameter, an encapsulation rate of 96.57 ± 3.05%, and adequate bioadhesion. The kinetics of in vitro dissolution of the extract increase significantly after its microencapsulation. Percentages of ulcer inhibition for 100 mg/kg of extract increase from 71.71 ± 2.43% to 89.67 ± 2.54% after microencapsulation. In vitro H+/K+-ATPase-inhibiting activity resulted in an IC50 of 86.08 ± 8.69 µM/h/mg protein for free extract and 57.43 ± 5.78 µM/h/mg protein for encapsulated extract. Anti-Helicobacter pylori activity showed a similar Minimum Inhibitory Concentration (MIC) of 50 µg/mL for the extract and microcapsules. Salvia officinalis ethanolic extract has a significant efficacy for the treatment of gastric ulcer; its mechanism of action is based on its gastroprotective effect, anti-Helicobacter pylori, and H+/K+-ATPase inhibitor. Moreover, the microencapsulation of this extract increases its gastroprotective and H+/K+-ATPase-inhibiting activities significantly. Full article
Show Figures

Figure 1

22 pages, 5700 KiB  
Article
Genome-Wide Identification and Expression Analysis of the GH19 Chitinase Gene Family in Sea Island Cotton
by Jingjing Ma, Yilei Long, Jincheng Fu, Nengshuang Shen, Le Wang, Shuaijun Wu, Jing Li, Quanjia Chen, Qianli Zu and Xiaojuan Deng
Curr. Issues Mol. Biol. 2025, 47(8), 633; https://doi.org/10.3390/cimb47080633 (registering DOI) - 7 Aug 2025
Abstract
In this study, GH19 chitinase (Chi) gene family was systematically identified and characterized using genomic assemblies from four cotton species: Gossypium barbadense, G. hirsutum, G. arboreum, and G. raimondii. A suite of analyses was performed, including genome-wide gene identification, [...] Read more.
In this study, GH19 chitinase (Chi) gene family was systematically identified and characterized using genomic assemblies from four cotton species: Gossypium barbadense, G. hirsutum, G. arboreum, and G. raimondii. A suite of analyses was performed, including genome-wide gene identification, physicochemical property characterization of the encoded proteins, subcellular localization prediction, phylogenetic reconstruction, chromosomal mapping, promoter cis-element analysis, and comprehensive expression profiling using transcriptomic data and qRT-PCR (including tissue-specific expression, hormone treatments, and Fusarium oxysporum infection assays). A total of 107 GH19 genes were identified across the four species (35 in G. barbadense, 37 in G. hirsutum, 19 in G. arboreum, and 16 in G. raimondii). The molecular weights of GH19 proteins ranged from 9.9 to 97.3 kDa, and they were predominantly predicted to localize to the extracellular space. Phylogenetic analysis revealed three well-conserved clades within this family. In tetraploid cotton, GH19 genes were unevenly distributed across 12 chromosomes, often clustering in certain regions, whereas in diploid species, they were confined to five chromosomes. Promoter analysis indicated that GH19 gene promoters contain numerous stress- and hormone-responsive motifs, including those for abscisic acid (ABA), ethylene (ET), and gibberellin (GA), as well as abundant light-responsive elements. The expression patterns of GH19 genes were largely tissue-specific; for instance, GbChi23 was predominantly expressed in the calyx, whereas GbChi19/21/22 were primarily expressed in the roots and stems. Overall, this study provides the first comprehensive genomic and functional characterization of the GH19 family in G. barbadense, laying a foundation for understanding its role in disease resistance mechanisms and aiding in the identification of candidate genes to enhance plant defense against biotic stress. Full article
14 pages, 456 KiB  
Article
The Role of Anisakis sp. in α-Gal Sensitization: Implications for Parasitic-Induced Meat Allergy
by Marta Rodero, Sara Romero, Ángela Valcárcel, Juan González-Fernández, A. Sonia Olmeda, Félix Valcárcel, Alvaro Daschner and Carmen Cuéllar
Pathogens 2025, 14(8), 789; https://doi.org/10.3390/pathogens14080789 (registering DOI) - 7 Aug 2025
Abstract
Background/Objectives: This study investigates the potential of Anisakis sp. as a novel source of α-Gal (Galα1-3Galβ1-4GlcNAc-R) epitopes capable of inducing allergic sensitization in humans. While α-Gal is classically associated with delayed IgE-mediated hypersensitivity following tick bites, emerging evidence suggests that parasitic helminths such [...] Read more.
Background/Objectives: This study investigates the potential of Anisakis sp. as a novel source of α-Gal (Galα1-3Galβ1-4GlcNAc-R) epitopes capable of inducing allergic sensitization in humans. While α-Gal is classically associated with delayed IgE-mediated hypersensitivity following tick bites, emerging evidence suggests that parasitic helminths such as Anisakis sp. may also express α-Gal-containing glycoconjugates, offering an alternative sensitization pathway. Methods: Protein extracts from Anisakis sp. third-stage larvae and mammalian tissues (beef, pork) were analyzed by SDS-PAGE and Western blot using a monoclonal anti-α-Gal antibody (clone M86), and α-Gal epitopes were detected by ELISA. Sera from urticaria patients, stratified by Anisakis sp. sensitization status, were evaluated for anti-α-Gal IgG, IgE, and IgG4 antibodies. Inhibition assays assessed cross-reactivity. Results: Results confirmed the presence of α-Gal epitopes on Anisakis sp. proteins, with prominent bands at ~250 kDa and 65 kDa. Urticaria patients sensitized to Anisakis sp. exhibited significantly elevated anti-α-Gal antibody levels compared to controls. Inhibition ELISA demonstrated substantial reduction in antibody binding with Anisakis sp. extracts, indicating shared antigenic determinants with mammalian α-Gal. Conclusions: These findings establish Anisakis sp. as a source of α-Gal-containing glycoproteins capable of eliciting specific antibody responses in humans, highlighting a potential parasitic route for α-Gal sensitization. Full article
(This article belongs to the Special Issue Molecular Aspects of Host-Parasite Interactions)
16 pages, 1002 KiB  
Article
A Targeted Radiotheranostic Agent for Glioblastoma: [64Cu]Cu-NOTA-TP-c(RGDfK)
by Alireza Mirzaei, Samia Ait-Mohand, Prenitha Mercy Ignatius Arokia Doss, Étienne Rousseau and Brigitte Guérin
Brain Sci. 2025, 15(8), 844; https://doi.org/10.3390/brainsci15080844 (registering DOI) - 7 Aug 2025
Abstract
Glioblastoma multiforme (GBM) remains one of the most aggressive and treatment-resistant brain tumors, with poor prognosis and limited therapeutic options. Background/Objectives: Integrin αvβ3, a cell surface receptor overexpressed in GBM, specifically binds to cyclic arginine-glycine-aspartate-D-phenylalanine-lysine (c(RGDfK)) motif, making [...] Read more.
Glioblastoma multiforme (GBM) remains one of the most aggressive and treatment-resistant brain tumors, with poor prognosis and limited therapeutic options. Background/Objectives: Integrin αvβ3, a cell surface receptor overexpressed in GBM, specifically binds to cyclic arginine-glycine-aspartate-D-phenylalanine-lysine (c(RGDfK)) motif, making it a valuable target for tumor-specific delivery and PET imaging. This study explores a novel radiotheranostic agent, [64Cu]Cu-NOTA-TP-c(RGDfK), which combines the imaging and therapeutic capabilities of copper-64 (64Cu) and the cytotoxic activity of a terpyridine-platinum (TP) complex, conjugated to c(RGDfK). Methods: A robust protocol was developed for the small-scale preparation of NOTA-TP-c(RGDfK). Comparative cellular studies were conducted using U87 MG glioblastoma (GBM) cells and SVG p12 human astrocytes to evaluate the performance of [64Cu]Cu-NOTA-TP-c(RGDfK) relative to [64Cu]Cu-NOTA-c(RGDfK), [64Cu]Cu-NOTA-TP, natCu-NOTA-TP-c(RGDfK), cisplatin, and temozolomide. Results: 64Cu-radiolabeling of NOTA-TP-c(RGDfK) was achieved with >99% radiochemical purity, and competition assays confirmed high binding affinity to integrin αvβ3 (IC50 = 16 ± 8 nM). Cellular uptake, internalization, and retention studies demonstrated significantly higher accumulation of [64Cu]Cu-NOTA-TP-c(RGDfK) in U87 MG cells compared to control compounds, with 38.8 ± 1.8% uptake and 28.0 ± 1.0% internalization at 24 h. Nuclear localization (6.0 ± 0.5%) and stable intracellular retention further support its therapeutic potential for inducing localized DNA damage. Importantly, [64Cu]Cu-NOTA-TP-c(RGDfK) exhibited the highest cytotoxicity in U87 MG cells (IC50 = 10 ± 2 nM at 48 h), while maintaining minimal toxicity in normal SVG p12 astrocytes. Conclusions: These results highlight [64Cu]Cu-NOTA-TP-c(RGDfK) as a promising targeted radiotheranostic agent for GBM, warranting further preclinical development Full article
Show Figures

Figure 1

15 pages, 9399 KiB  
Article
Analysis of 3D-Printed Zirconia Implant Overdenture Bars
by Les Kalman and João Paulo Mendes Tribst
Appl. Sci. 2025, 15(15), 8751; https://doi.org/10.3390/app15158751 (registering DOI) - 7 Aug 2025
Abstract
Dental implant components are typically fabricated using subtractive manufacturing, often involving metal materials that can be costly, inefficient, and time-consuming. This study explores the use of additive manufacturing (AM) with zirconia for dental implant overdenture bars, focusing on mechanical performance, stress distribution, and [...] Read more.
Dental implant components are typically fabricated using subtractive manufacturing, often involving metal materials that can be costly, inefficient, and time-consuming. This study explores the use of additive manufacturing (AM) with zirconia for dental implant overdenture bars, focusing on mechanical performance, stress distribution, and fit. Solid and lattice-structured bars were designed in Fusion 360 and produced using LithaCon 210 3Y-TZP zirconia (Lithoz GmbH, Vienna, Austria) on a CeraFab 8500 printer. Post-processing included cleaning, debinding, and sintering. A 3D-printed denture was also fabricated to evaluate fit. Thermography and optical imaging were used to assess adaptation. Custom fixtures were developed for flexural testing, and fracture loads were recorded to calculate stress distribution using finite element analysis (ANSYS R2025). The FEA model assumed isotropic, homogeneous, linear-elastic material behavior. Bars were torqued to 15 Ncm on implant analogs. The average fracture loads were 1.2240 kN (solid, n = 12) and 1.1132 kN (lattice, n = 5), with corresponding stress values of 147 MPa and 143 MPa, respectively. No statistically significant difference was observed (p = 0.578; α = 0.05). The fracture occurred near high-stress regions at fixture support points. All bars demonstrated a clinically acceptable fit on the model; however, further validation and clinical evaluation are still needed. Additively manufactured zirconia bars, including lattice structures, show promise as alternatives to conventional superstructures, potentially offering reduced material use and faster production without compromising mechanical performance. Full article
(This article belongs to the Special Issue Recent Advances in Digital Dentistry and Oral Implantology)
Show Figures

Figure 1

18 pages, 3248 KiB  
Article
Evaluation Model of Climatic Suitability for Olive Cultivation in Central Longnan, China
by Li Liu, Ying Na and Yun Ma
Atmosphere 2025, 16(8), 948; https://doi.org/10.3390/atmos16080948 (registering DOI) - 7 Aug 2025
Abstract
Longnan is the largest olive cultivation area in China. The unique microclimates in Longnan make it an ideal testing ground for climate-resilient cultivation strategies with broader applications across similar regions, yet predictive models linking weather to oil quality remain scarce. This study establishes [...] Read more.
Longnan is the largest olive cultivation area in China. The unique microclimates in Longnan make it an ideal testing ground for climate-resilient cultivation strategies with broader applications across similar regions, yet predictive models linking weather to oil quality remain scarce. This study establishes a climate suitability evaluation model for olive cultivation in central Longnan based on meteorological data and olive quality data in the Fotanggou planting base. Four key climatic factors are identified: cumulative sunshine hours during the fruit coloring to ripening period, average temperature during the fruit coloring to harvesting period, number of cloudy and rainy days during the harvesting period, and relative humidity during the fruit setting to fruit enlargement period. Olive oil quality is graded into three levels (Excellent III, Good II, Fair I) based on acidity, linoleic acid, and peroxide value using K-means clustering. A climate suitability index is developed by integrating these factors, with weights determined via principal component analysis. The model is validated against an olive quality report from the Dabao planting base, showing an 80% match rate. From 1991 to 2023, 87.9% of years exhibit suitable or moderately suitable conditions, with 100% of years in the past decade (2014–2023) reaching “Good” or “Excellent” levels. This model provides a scientific basis for evaluating and predicting olive oil quality, supporting sustainable olive industry development in Longnan. This model provides policymakers and farmers with actionable insights to ensure the long-term sustainability of olive industry amid climate uncertainty. Full article
32 pages, 2262 KiB  
Article
A Cellular Automata-Based Crossover Operator for Binary Chromosome Population Genetic Algorithms
by Doru Constantin and Costel Bălcău
Appl. Sci. 2025, 15(15), 8750; https://doi.org/10.3390/app15158750 (registering DOI) - 7 Aug 2025
Abstract
In this paper, we propose a crossover operator for genetic algorithms with binary chromosomes populations based on the cellular automata (CGACell). After presenting the fundamental elements regarding cellular automata with specific examples for one- and two- dimensional cases, the the most [...] Read more.
In this paper, we propose a crossover operator for genetic algorithms with binary chromosomes populations based on the cellular automata (CGACell). After presenting the fundamental elements regarding cellular automata with specific examples for one- and two- dimensional cases, the the most widely used crossover operators in applications with genetic algorithms are described, and the crossover operator based on cellular automata is defined. Specific forms of the crossover operator based on the ECA and 2D CA cases are described and exemplified. The CGACell crossover operator is used in the genetic structure to improved the KNN algorithm in terms of the parameter represented by the number of nearest neighbors selected by the data classification method. Validity and practical performance testing are performed on image data classification problems by optimizing the nearest-neighbors-based algorithm. The experimental study on the proposed crossover operator, by comparing a GA algorithm based on CGACell with GA algorithms based on other crossover methods, including classical GAs and permutation-based, heuristic, and hybrid methods, attests to good qualitative performance in terms of correctness percentages in the recognition of new images, as well as in classification and recognition applications of facial image classes corresponding to several persons. Full article
(This article belongs to the Special Issue Applications of Genetic and Evolutionary Computation)
16 pages, 1826 KiB  
Article
Epigenetic Signatures of Dental Stem Cells: Insights into DNA Methylation and Noncoding RNAs
by Rosanna Guarnieri, Agnese Giovannetti, Giulia Marigliani, Michele Pieroni, Tommaso Mazza, Ersilia Barbato and Viviana Caputo
Appl. Sci. 2025, 15(15), 8749; https://doi.org/10.3390/app15158749 (registering DOI) - 7 Aug 2025
Abstract
Tooth development (odontogenesis) is regulated by interactions between epithelial and mesenchymal tissues through signaling pathways such as Bone Morphogenetic Protein (BMP), Wingless-related integration site (Wnt), Sonic Hedgehog (SHH), and Fibroblast Growth Factor (FGF). Mesenchymal stem cells (MSCs) derived from dental tissues—including dental pulp [...] Read more.
Tooth development (odontogenesis) is regulated by interactions between epithelial and mesenchymal tissues through signaling pathways such as Bone Morphogenetic Protein (BMP), Wingless-related integration site (Wnt), Sonic Hedgehog (SHH), and Fibroblast Growth Factor (FGF). Mesenchymal stem cells (MSCs) derived from dental tissues—including dental pulp stem cells (DPSCs), periodontal ligament stem cells (PDLSCs), and dental follicle progenitor cells (DFPCs)—show promise for regenerative dentistry due to their multilineage differentiation potential. Epigenetic regulation, particularly DNA methylation, is hypothesized to underpin their distinct regenerative capacities. This study reanalyzed publicly available DNA methylation data generated with Illumina Infinium HumanMethylation450 BeadChip arrays (450K arrays) from DPSCs, PDLSCs, and DFPCs. High-confidence CpG sites were selected based on detection p-values, probe variance, and genomic annotation. Principal Component Analysis (PCA) and hierarchical clustering identified distinct methylation profiles. Functional enrichment analyses highlighted biological processes and pathways associated with specific methylation clusters. Noncoding RNA analysis was integrated to construct regulatory networks linking DNA methylation patterns with key developmental genes. Distinct epigenetic signatures were identified for DPSCs, PDLSCs, and DFPCs, characterized by differential methylation across specific genomic contexts. Functional enrichment revealed pathways involved in odontogenesis, osteogenesis, and neurodevelopment. Network analysis identified central regulatory nodes—including genes, such as PAX6, FOXC2, NR2F2, SALL1, BMP7, and JAG1—highlighting their roles in tooth development. Several noncoding RNAs were also identified, sharing promoter methylation patterns with developmental genes and being implicated in regulatory networks associated with stem cell differentiation and tissue-specific function. Altogether, DNA methylation profiling revealed that distinct epigenetic landscapes underlie the developmental identity and differentiation potential of dental-derived mesenchymal stem cells. This integrative analysis highlights the relevance of noncoding RNAs and regulatory networks, suggesting novel biomarkers and potential therapeutic targets in regenerative dentistry and orthodontics. Full article
Show Figures

Figure 1

28 pages, 3533 KiB  
Article
Sustainable Integration of Prosumers’ Battery Energy Storage Systems’ Optimal Operation with Reduction in Grid Losses
by Tomislav Markotić, Damir Šljivac, Predrag Marić and Matej Žnidarec
Sustainability 2025, 17(15), 7165; https://doi.org/10.3390/su17157165 (registering DOI) - 7 Aug 2025
Abstract
Driven by the need for sustainable and efficient energy systems, the optimal management of distributed generation, including photovoltaic systems and battery energy storage systems within prosumer households, is of crucial importance. This requires a comprehensive cost–benefit analysis to assess their viability. In this [...] Read more.
Driven by the need for sustainable and efficient energy systems, the optimal management of distributed generation, including photovoltaic systems and battery energy storage systems within prosumer households, is of crucial importance. This requires a comprehensive cost–benefit analysis to assess their viability. In this study, an optimization model formulated as a mixed-integer linear programming problem is proposed to evaluate the integration of battery storage systems for 10 prosumers on the radial feeder in Croatia and to quantify the benefits both from the prosumers’ perspective and that of the reduction in grid losses. The results show significant annual cost reductions for prosumers, totaling EUR 1798.78 for the observed feeder, with some achieving a net profit. Grid losses are significantly reduced by 1172.52 kWh, resulting in an annual saving of EUR 216.25 for the distribution system operator. However, under the current Croatian market conditions, the integration of battery storage systems is not profitable over the entire lifetime due to the high initial investment costs of EUR 720/kWh. The break-even analysis reveals that investment cost needs to decrease by 52.78%, or an inflation rate of 4.87% is required, to reach prosumer profitability. This highlights the current financial barriers to the widespread adoption of battery storage systems and emphasizes the need for significant cost reductions or targeted incentives. Full article
18 pages, 1307 KiB  
Article
Unveiling a Shift in the Rotavirus Strains in Benin: Emergence of Reassortment Intergenogroup and Equine-like G3P[8] Strains in the Post-Vaccination Era
by Jijoho M. Agbla, Milton T. Mogotsi, Alban G. Zohoun, Nkosazana D. Shange, Annick Capochichi, Ayodeji E. Ogunbayo, Rolande Assogba, Shainey Khakha, Aristide Sossou, Hlengiwe Sondlane, Jason M. Mwenda, Mathew D. Esona and Martin M. Nyaga
Viruses 2025, 17(8), 1091; https://doi.org/10.3390/v17081091 (registering DOI) - 7 Aug 2025
Abstract
While a global downward trend in rotavirus diarrhea cases has been observed following vaccine introduction, reassortment, genetic drift, and vaccine-escaping strains remain a concern, particularly in Sub-Saharan Africa. Here, we provide genomic insights into three equine-like G3P[8] rotavirus strains detected in Benin during [...] Read more.
While a global downward trend in rotavirus diarrhea cases has been observed following vaccine introduction, reassortment, genetic drift, and vaccine-escaping strains remain a concern, particularly in Sub-Saharan Africa. Here, we provide genomic insights into three equine-like G3P[8] rotavirus strains detected in Benin during the post-vaccine era. Whole-genome sequencing was performed using the Illumina MiSeq platform, and genomic analysis was conducted using bioinformatics tools. The G3 of the study strains clustered within the recently described lineage IX, alongside the human-derived equine-like strain D388. The P[8] is grouped within the lineage III, along with cognate strains from the GenBank database. Both the structural and non-structural gene segments of these study strains exhibited genetic diversity, highlighting the ongoing evolution of circulating strains. Notably, we identified a novel NSP2 lineage, designated NSP2-lineage VI. Amino acid comparisons of the G3 gene showed two conservative substitutions at positions 156 (A156V) and 260 (I260V) and one radical substitution at position 250 (K250E) relative to the prototype equine-like strain D388, the equine strain Erv105, and other non-equine-like strains. In the P[8] gene, three conservative (N195G, N195D, N113D) and one radical (D133N) substitutions were observed when compared with vaccine strains Rotarix and RotaTeq. These findings suggest continuous viral evolution, potentially driven by vaccine pressure. Ongoing genomic surveillance is essential to monitor genotype shifts as part of the efforts to evaluate the impact of emerging strains and to assess vaccine effectiveness in Sub-Saharan Africa. Full article
(This article belongs to the Section General Virology)
Show Figures

Figure 1

25 pages, 3114 KiB  
Article
Design and Experiment of DEM-Based Layered Cutting–Throwing Perimeter Drainage Ditcher for Rapeseed Fields
by Xiaohu Jiang, Zijian Kang, Mingliang Wu, Zhihao Zhao, Zhuo Peng, Yiti Ouyang, Haifeng Luo and Wei Quan
Agriculture 2025, 15(15), 1706; https://doi.org/10.3390/agriculture15151706 (registering DOI) - 7 Aug 2025
Abstract
To address compacted soils with high power consumption and waterlogging risks in rice–rapeseed rotation areas of the Yangtze River, this study designed a ditching machine combining a stepped cutter head and trapezoidal cleaning blade, where the mechanical synergy between components minimizes energy loss [...] Read more.
To address compacted soils with high power consumption and waterlogging risks in rice–rapeseed rotation areas of the Yangtze River, this study designed a ditching machine combining a stepped cutter head and trapezoidal cleaning blade, where the mechanical synergy between components minimizes energy loss during soil-cutting and -throwing processes. We mathematically modeled soil cutting–throwing dynamics and blade traction forces, integrating soil rheological properties to refine parameter interactions. Discrete Element Method (DEM) simulations and single-factor experiments analyzed impacts of the inner/outer blade widths, blade group distance, and blade opening on power consumption. Results indicated that increasing the inner/outer blade widths (200–300 mm) by expanding the direct cutting area significantly reduced the cutter torque by 32% and traction resistance by 48.6% from reduced soil-blockage drag; larger blade group distance (0–300 mm) initially decreased but later increased power consumption due to soil backflow interference, with peak efficiency at 200 mm spacing; the optimal blade opening (586 mm) minimized the soil accumulation-induced power loss, validated by DEM trajectory analysis showing continuous soil flow. Box–Behnken experiments and genetic algorithm optimization determined the optimal parameters: inner blade width: 200 mm; outer blade width: 300 mm; blade group distance: 200 mm; and blade opening: 586 mm, yielding a simulated power consumption of 27.07 kW. Field tests under typical 18.7% soil moisture conditions confirmed a <10% error between simulated and actual power consumption (28.73 kW), with a 17.3 ± 0.5% reduction versus controls. Stability coefficients for the ditch depth, top/bottom widths exceeded 90%, and the backfill rate was 4.5 ± 0.3%, ensuring effective drainage for rapeseed cultivation. This provides practical theoretical and technical support for efficient ditching equipment in rice–rapeseed rotations, enabling resource-saving design for clay loam soils. Full article
(This article belongs to the Section Agricultural Technology)
22 pages, 1682 KiB  
Review
Histone Modifications as Individual-Specific Epigenetic Regulators: Opportunities for Forensic Genetics and Postmortem Analysis
by Sheng Yang, Liqin Chen, Miaofang Lin, Chengwan Shen and Aikebaier Reheman
Genes 2025, 16(8), 940; https://doi.org/10.3390/genes16080940 (registering DOI) - 7 Aug 2025
Abstract
Histone post-translational modifications (PTMs) have emerged as promising epigenetic biomarkers with increasing forensic relevance. Unlike conventional genetic markers such as short tandem repeats (STRs), histone modifications can offer additional layers of biological information, capturing individual-specific regulatory states and remaining detectable even in degraded [...] Read more.
Histone post-translational modifications (PTMs) have emerged as promising epigenetic biomarkers with increasing forensic relevance. Unlike conventional genetic markers such as short tandem repeats (STRs), histone modifications can offer additional layers of biological information, capturing individual-specific regulatory states and remaining detectable even in degraded forensic samples. This review highlights recent advances in understanding histone PTMs in forensic contexts, focusing on three key domains: analysis of degraded biological evidence, differentiation of monozygotic (MZ) twins, and postmortem interval (PMI) estimation. We summarize experimental findings from human cadavers, animal models, and typical forensic samples including bone, blood, and muscle, illustrating the stability and diagnostic potential of marks such as H3K4me3, H3K27me3, and γ-H2AX. Emerging technologies including CUT&Tag, MALDI imaging, and nanopore-based sequencing offer novel opportunities to profile histone modifications at high resolution and low input. Despite technical challenges, these findings support the feasibility of histone-based biomarkers as complementary tools for forensic identification and temporal analysis. Future work should prioritize methodological standardization, inter-laboratory validation, and integration into forensic workflows. However, the forensic applicability of these modifications remains largely unvalidated, and further studies are required to assess their reliability in casework contexts. Full article
(This article belongs to the Section Epigenomics)
Show Figures

Figure 1

19 pages, 3872 KiB  
Article
Sr-Nd-Hf Isotopic Characteristics of Ore-Bearing Intrusive Rocks in the Chating Cu-Au Deposit and Magushan Cu-Mo Deposit of Nanling-Xuancheng Ore Concentration Area and Their Geological Significance
by Linsen Jin, Xiaochun Xu, Xinyue Xu, Ruyu Bai, Zhongyang Fu, Qiaoqin Xie and Zhaohui Song
Minerals 2025, 15(8), 837; https://doi.org/10.3390/min15080837 (registering DOI) - 7 Aug 2025
Abstract
The Chating Cu-Au and Magushan Cu-Mo deposits in Anhui province are two representative deposits within the recently defined Nanling-Xuancheng ore concentration area in the Middle and Lower Yangtze River Metallogenic Belt (MLYB). Magmatism and mineralization for the area are not well known at [...] Read more.
The Chating Cu-Au and Magushan Cu-Mo deposits in Anhui province are two representative deposits within the recently defined Nanling-Xuancheng ore concentration area in the Middle and Lower Yangtze River Metallogenic Belt (MLYB). Magmatism and mineralization for the area are not well known at present due to a lack of in-depth studies on the petrogenesis of ore-bearing intrusive rocks and their relationship with deposits. Here, the ore-bearing intrusive rocks of the two deposits are investigated through analyses of whole-rock geochemistry and Sr-Nd isotopes, zircon U-Pb ages, and zircon Hf isotopes. The results reflect the two intrusions, both formed in the Early Cretaceous (138.9 ± 0.8 Ma and 132.2 ± 1.3 Ma). They belong to the sub-alkaline high-K calc-alkaline series, while trace elements are enriched in LILEs and LREE and depleted in HFSEs. However, the intrusions of the Chating deposit (Isr = 0.7064–0.7068; εNd(t) = −8.5–−7.3; εHf(t) = −11.9–−7.0) have obviously different Sr-Nd-Hf isotopic compositions from the intrusions of the Magushan deposit (Isr = 0.7079–0.7081; εNd(t) = −5.7–−5.4; εHf(t) = −5.4–−3.6). The characteristics indicate that the two intrusions were formed in the same diagenetic ages and tectonic settings and derived from a crust–mantle mixture with predominant mantle-derived materials. But the crust materials of sources are different, which further leads to different metallogenic elements, showing that the Chating deposit is enriched in Cu and Au, while the Magushan deposit is enriched in Mo. Moreover, the characteristics and magma sources of two intrusions and metallogenic elements correspond respectively to the Tongling Cu-Au polymetallic ore concentration area in the MLYB and the southern Anhui Mo polymetallic ore concentration area in the Jiangnan orogen. The correlation implies differences in magmatism and mineralization between the northwestern and southeastern parts of the Nanling-Xuancheng ore concentration area, demarcated by the Jiangnan Deep Fault. These variations were mainly controlled by the Pre-Sinian crustal basement. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

15 pages, 2189 KiB  
Article
Synthesis, Crystal Structures and Magnetic Properties of Lanthanide Complexes with Rhodamine Benzoyl Hydrazone Ligands
by Lin Miao, Dong-Mei Zhu, Cai-Ming Liu, Yi-Quan Zhang and Hui-Zhong Kou
Magnetochemistry 2025, 11(8), 68; https://doi.org/10.3390/magnetochemistry11080068 - 7 Aug 2025
Abstract
Given the outstanding magnetic characteristics of lanthanide ions, the development of mononuclear or multinuclear lanthanide complexes becomes imperative. Previous research showed that a series of mononuclear Dy(III) complexes of rhodamine benzoyl hydrazone Schiff base ligands exhibit remarkable single-molecule magnetic properties and fluorescence. In [...] Read more.
Given the outstanding magnetic characteristics of lanthanide ions, the development of mononuclear or multinuclear lanthanide complexes becomes imperative. Previous research showed that a series of mononuclear Dy(III) complexes of rhodamine benzoyl hydrazone Schiff base ligands exhibit remarkable single-molecule magnetic properties and fluorescence. In this study, we used analogous ligands to synthesize lanthanide complexes [Dy(HL1-o)(NO3)2(CH3OH)2]NO3·CH3OH (complex 1·MeOH) and tetranuclear complexes [Ln4(L1-c)2(L2)23-OH)2(NO3)2(CH3OH)4](NO3)2·2CH3CN·5CH3OH·2H2O (Ln = Dy, complex 2; Ln = Gd, complex 3). Magnetic susceptibility measurements show that 1·2H2O is a single-molecule magnet, 2 shows slow magnetic relaxation and 3 is a magnetic cooling material with the magnetic entropy change of 9.81 J kg−1 K−1 at 2 K and 5 T. The theoretical calculations on 1·MeOH indicate that it shows good magnetic anisotropy with the calculated energy barrier of 194.6 cm−1. Full article
Show Figures

Figure 1

Back to TopTop