Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,319)

Search Parameters:
Keywords = Isotherm modelling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 4496 KiB  
Article
Non-Isothermal Process of Liquid Transfer Molding: Transient 3D Simulations of Fluid Flow Through a Porous Preform Including a Sink Term
by João V. N. Sousa, João M. P. Q. Delgado, Ricardo S. Gomez, Hortência L. F. Magalhães, Felipe S. Lima, Glauco R. F. Brito, Railson M. N. Alves, Fernando F. Vieira, Márcia R. Luiz, Ivonete B. Santos, Stephane K. B. M. Silva and Antonio G. B. Lima
J. Manuf. Mater. Process. 2025, 9(7), 243; https://doi.org/10.3390/jmmp9070243 - 18 Jul 2025
Abstract
Resin Transfer Molding (RTM) is a widely used composite manufacturing process where liquid resin is injected into a closed mold filled with a fibrous preform. By applying this process, large pieces with complex shapes can be produced on an industrial scale, presenting excellent [...] Read more.
Resin Transfer Molding (RTM) is a widely used composite manufacturing process where liquid resin is injected into a closed mold filled with a fibrous preform. By applying this process, large pieces with complex shapes can be produced on an industrial scale, presenting excellent properties and quality. A true physical phenomenon occurring in the RTM process, especially when using vegetable fibers, is related to the absorption of resin by the fiber during the infiltration process. The real effect is related to the slowdown in the advance of the fluid flow front, increasing the mold filling time. This phenomenon is little explored in the literature, especially for non-isothermal conditions. In this sense, this paper does a numerical study of the liquid injection process in a closed and heated mold. The proposed mathematical modeling considers the radial, three-dimensional, and transient flow, variable injection pressure, and fluid viscosity, including the effect of liquid fluid absorption by the reinforcement (fiber). Simulations were carried out using Computational Fluid Dynamic tools. The numerical results of the filling time were compared with experimental results, and a good approximation was obtained. Further, the pressure, temperature, velocity, and volumetric fraction fields, as well as the transient history of the fluid front position and injection fluid volumetric flow rate, are presented and analyzed. Full article
Show Figures

Figure 1

28 pages, 4382 KiB  
Article
Chlorella vulgaris-Derived Biochars for Metribuzin Removal: Influence of Thermal Processing Pathways on Sorption Properties
by Margita Ščasná, Alexandra Kucmanová, Maroš Sirotiak, Lenka Blinová, Maroš Soldán, Jan Hajzler, Libor Ďuriška and Marián Palcut
Materials 2025, 18(14), 3374; https://doi.org/10.3390/ma18143374 - 18 Jul 2025
Abstract
Carbonaceous sorbents were prepared from Chlorella vulgaris via hydrothermal carbonization (200 °C and 250 °C) and slow pyrolysis (300–500 °C) to assess their effectiveness in removing the herbicide metribuzin from water. The biomass was cultivated under controlled laboratory conditions, allowing for consistent feedstock [...] Read more.
Carbonaceous sorbents were prepared from Chlorella vulgaris via hydrothermal carbonization (200 °C and 250 °C) and slow pyrolysis (300–500 °C) to assess their effectiveness in removing the herbicide metribuzin from water. The biomass was cultivated under controlled laboratory conditions, allowing for consistent feedstock quality and traceability throughout processing. Using a single microalgal feedstock for both thermal methods enabled a direct comparison of hydrochar and pyrochar properties and performance, eliminating variability associated with different feedstocks and allowing for a clearer assessment of the influence of thermal conversion pathways. While previous studies have examined algae-derived biochars for heavy metal adsorption, comprehensive comparisons targeting organic micropollutants, such as metribuzin, remain scarce. Moreover, few works have combined kinetic and isotherm modeling to evaluate the underlying adsorption mechanisms of both hydrochars and pyrochars produced from the same algal biomass. Therefore, the materials investigated in the present work were characterized using a combination of standard physicochemical and structural techniques (FTIR, SEM, BET, pH, ash content, and TOC). The kinetics of sorption were also studied. The results show better agreement with the pseudo-second-order model, consistent with chemisorption, except for the hydrochar produced at 250 °C, where physisorption provided a more accurate fit. Freundlich isotherms better described the equilibrium data, indicating heterogeneous adsorption. The hydrochar obtained at 200 °C reached the highest adsorption capacity, attributed to its intact cell structure and abundance of surface functional groups. The pyrochar produced at 500 °C exhibited the highest surface area (44.3 m2/g) but a lower affinity for metribuzin due to the loss of polar functionalities during pyrolysis. This study presents a novel use of Chlorella vulgaris-derived carbon materials for metribuzin removal without chemical activation, which offers practical benefits, including simplified production, lower costs, and reduced chemical waste. The findings contribute to expanding the applicability of algae-based sorbents in water treatments, particularly where low-cost, energy-efficient materials are needed. This approach also supports the integration of carbon sequestration and wastewater remediation within a circular resource framework. Full article
Show Figures

Figure 1

18 pages, 3500 KiB  
Article
Cellulose Acetate–PHB Biocomposite from Saccharum officinarum for Ni (II) Adsorption: Equilibrium and Kinetics
by Candelaria Tejada-Tovar, Ángel Villabona-Ortíz, Oscar Toro-Madrid, Rodrigo Ortega-Toro and Humberto Bonilla Mancilla
J. Compos. Sci. 2025, 9(7), 376; https://doi.org/10.3390/jcs9070376 - 18 Jul 2025
Abstract
This research work focused on the development of an adsorbent biocomposite material based on polyhydroxybutyrate (PHB) and cellulose acetate derived from sugarcane (Saccharum officinarum) fibre, through cellulose acetylation. The resulting material represents both an accessible and effective alternative for the treatment [...] Read more.
This research work focused on the development of an adsorbent biocomposite material based on polyhydroxybutyrate (PHB) and cellulose acetate derived from sugarcane (Saccharum officinarum) fibre, through cellulose acetylation. The resulting material represents both an accessible and effective alternative for the treatment and remediation of water contaminated with heavy metals, such as Ni (II). The biocomposite was prepared by blending cellulose acetate (CA) with the biopolymer PHB using the solvent-casting method. The resulting biocomposite exhibited a point of zero charge (pHpzc) of 5.6. The material was characterised by FTIR, TGA-DSC, and SEM analyses. The results revealed that the interaction between Ni (II) ions and the biocomposite is favoured by the presence of functional groups, such as –OH, C=O, and N–H, which act as active adsorption sites on the material’s surface, enabling efficient interaction with the metal ions. Adsorption kinetics studies revealed that the biocomposite achieved an optimal adsorption capacity of 5.042 mg/g at pH 6 and an initial Ni (II) concentration of 35 mg/L, corresponding to a removal efficiency of 86.44%. Finally, an analysis of the kinetic and isotherm models indicated that the experimental data best fit the pseudo-second-order kinetic model and the Freundlich isotherm. Full article
(This article belongs to the Special Issue Sustainable Biocomposites, 3rd Edition)
Show Figures

Figure 1

21 pages, 4823 KiB  
Article
Thermo-Mechanical Behavior of Polymer-Sealed Dual-Cavern Hydrogen Storage in Heterogeneous Rock Masses
by Chengguo Hu, Xiaozhao Li, Bangguo Jia, Lixin He and Kai Zhang
Energies 2025, 18(14), 3797; https://doi.org/10.3390/en18143797 - 17 Jul 2025
Abstract
Underground hydrogen storage (UHS) in geological formations offers a promising solution for large-scale energy buffering, but its long-term safety and mechanical stability remain concerns, particularly in fractured rock environments. This study develops a fully coupled thermo-mechanical model to investigate the cyclic response of [...] Read more.
Underground hydrogen storage (UHS) in geological formations offers a promising solution for large-scale energy buffering, but its long-term safety and mechanical stability remain concerns, particularly in fractured rock environments. This study develops a fully coupled thermo-mechanical model to investigate the cyclic response of a dual-cavern hydrogen storage system with polymer-based sealing layers. The model incorporates non-isothermal gas behavior, rock heterogeneity via a Weibull distribution, and fracture networks represented through stochastic geometry. Two operational scenarios, single-cavern and dual-cavern cycling, are simulated to evaluate stress evolution, displacement, and inter-cavity interaction under repeated pressurization. Results reveal that simultaneous operation of adjacent caverns amplifies tensile and compressive stress concentrations, especially in inter-cavity rock bridges (i.e., the intact rock zones separating adjacent caverns) and fracture-dense zones. Polymer sealing layers remain under compressive stress but exhibit increased residual deformation under cyclic loading. Contour analyses further show that fracture orientation and spatial distribution significantly influence stress redistribution and deformation localization. The findings highlight the importance of considering thermo-mechanical coupling and rock fracture mechanics in the design and operation of multicavity UHS systems. This modeling framework provides a robust tool for evaluating storage performance and informing safe deployment in complex geological environments. Full article
(This article belongs to the Special Issue Advances in Hydrogen Energy IV)
Show Figures

Figure 1

17 pages, 2219 KiB  
Article
Oil Spill Recovery of Petroleum-Derived Fuels Using a Bio-Based Flexible Polyurethane Foam
by Fabrizio Olivito, Zul Ilham, Wan Abd Al Qadr Imad Wan-Mohtar, Goldie Oza, Antonio Procopio and Monica Nardi
Polymers 2025, 17(14), 1959; https://doi.org/10.3390/polym17141959 - 17 Jul 2025
Abstract
In this study, we tested a flexible polyurethane (PU) foam, synthesized from bio-based components, for the removal of petroleum-derived fuels from water samples. The PU was synthesized via the prepolymer method through the reaction of PEG 400 with L-lysine ethyl ester diisocyanate (L-LDI), [...] Read more.
In this study, we tested a flexible polyurethane (PU) foam, synthesized from bio-based components, for the removal of petroleum-derived fuels from water samples. The PU was synthesized via the prepolymer method through the reaction of PEG 400 with L-lysine ethyl ester diisocyanate (L-LDI), followed by chain extension with 2,5-bis(hydroxymethyl)furan (BHMF), a renewable platform molecule derived from carbohydrates. Freshwater and seawater samples were artificially contaminated with commercial diesel, gasoline, and kerosene. Batch adsorption experiments revealed that the total sorption capacity (S, g/g) of the PU was slightly higher for diesel in both water types, with values of 67 g/g in freshwater and 70 g/g in seawater. Sorption kinetic analysis indicated that the process follows a pseudo-second-order kinetic model, suggesting strong chemical interactions. Equilibrium data were fitted using Langmuir and Freundlich isotherm models, with the best fit achieved by the Langmuir model, supporting a monolayer adsorption mechanism on homogeneous surfaces. The PU foam can be regenerated up to 50 times by centrifugation, maintaining excellent performance. This study demonstrates a promising application of this sustainable and bio-based polyurethane foam for environmental remediation. Full article
Show Figures

Figure 1

18 pages, 1944 KiB  
Article
Experimental Study on the Adsorption Performance of Metal–Organic Framework MIL-101 (Cr) for Indoor Toluene
by Zirong Zhao, Jinzhe Nie, Honghao Huang, Fuqun He, Kaiqiao Wang and Pu Yang
Buildings 2025, 15(14), 2506; https://doi.org/10.3390/buildings15142506 - 17 Jul 2025
Abstract
In this study, MIL-101 (Cr) was synthesized and characterized in terms of its physical properties. The adsorption breakthrough curves for toluene were measured and compared to those of conventional adsorbents (i.e., silica gel and activated carbon) at typical indoor concentrations of toluene. The [...] Read more.
In this study, MIL-101 (Cr) was synthesized and characterized in terms of its physical properties. The adsorption breakthrough curves for toluene were measured and compared to those of conventional adsorbents (i.e., silica gel and activated carbon) at typical indoor concentrations of toluene. The results show that MIL-101 (Cr) exhibits a 5–8 times higher adsorption capacity for toluene compared to silica gel at low concentrations. The adsorption isotherm of MIL-101 (Cr) for toluene conforms to the Langmuir model. Increasing temperature reduces the adsorption breakthrough time and saturation time, but it leads to a significant decrease in the adsorption capacity. During the breakthrough experiment, flow rate had little effect on adsorption capacity, but higher flow rates notably decreased the breakthrough and saturation times. The negative values of ΔG, ΔH, and ΔS indicate that the adsorption of toluene on MIL-101 (Cr) is a spontaneous and exothermic process. Compared to traditional adsorbents, MIL-101 (Cr) exhibits desirable performance in toluene adsorption in indoor environments. It shows significant potential for indoor air purification applications. Full article
Show Figures

Figure 1

18 pages, 1709 KiB  
Article
Fluid and Dynamic Analysis of Space–Time Symmetry in the Galloping Phenomenon
by Jéssica Luana da Silva Santos, Andreia Aoyagui Nascimento and Adailton Silva Borges
Symmetry 2025, 17(7), 1142; https://doi.org/10.3390/sym17071142 - 17 Jul 2025
Abstract
Energy generation from renewable sources has increased exponentially worldwide, particularly wind energy, which is converted into electricity through wind turbines. The growing demand for renewable energy has driven the development of horizontal-axis wind turbines with larger dimensions, as the energy captured is proportional [...] Read more.
Energy generation from renewable sources has increased exponentially worldwide, particularly wind energy, which is converted into electricity through wind turbines. The growing demand for renewable energy has driven the development of horizontal-axis wind turbines with larger dimensions, as the energy captured is proportional to the area swept by the rotor blades. In this context, the dynamic loads typically observed in wind turbine towers include vibrations caused by rotating blades at the top of the tower, wind pressure, and earthquakes (less common). In offshore wind farms, wind turbine towers are also subjected to dynamic loads from waves and ocean currents. Vortex-induced vibration can be an undesirable phenomenon, as it may lead to significant adverse effects on wind turbine structures. This study presents a two-dimensional transient model for a rigid body anchored by a torsional spring subjected to a constant velocity flow. We applied a coupling of the Fourier pseudospectral method (FPM) and immersed boundary method (IBM), referred to in this study as IMERSPEC, for a two-dimensional, incompressible, and isothermal flow with constant properties—the FPM to solve the Navier–Stokes equations, and IBM to represent the geometries. Computational simulations, solved at an aspect ratio of ϕ=4.0, were analyzed, considering Reynolds numbers ranging from Re=150 to Re = 1000 when the cylinder is stationary, and Re=250 when the cylinder is in motion. In addition to evaluating vortex shedding and Strouhal number, the study focuses on the characterization of space–time symmetry during the galloping response. The results show a spatial symmetry breaking in the flow patterns, while the oscillatory motion of the rigid body preserves temporal symmetry. The numerical accuracy suggested that the IMERSPEC methodology can effectively solve complex problems. Moreover, the proposed IMERSPEC approach demonstrates notable advantages over conventional techniques, particularly in terms of spectral accuracy, low numerical diffusion, and ease of implementation for moving boundaries. These features make the model especially efficient and suitable for capturing intricate fluid–structure interactions, offering a promising tool for analyzing wind turbine dynamics and other similar systems. Full article
Show Figures

Figure 1

25 pages, 6069 KiB  
Article
NaCl as a Simple Yet Unique Activator of Kaolin: Surface Engineering for Enhanced Heavy Metal Adsorption
by Amos K. Avornyo, Vasileios E. Katzourakis, Shadi W. Hasan, Fawzi Banat and Constantinos V. Chrysikopoulos
Water 2025, 17(14), 2120; https://doi.org/10.3390/w17142120 - 16 Jul 2025
Viewed by 128
Abstract
This study investigates the effects of NaCl activation on the structural and chemical properties of kaolin for the adsorption of Zn2+ from solution. Kaolin was treated with NaCl solution at varying concentrations (0.5, 1.0, 2.0, and 4.0 M), and ultrasonication was used [...] Read more.
This study investigates the effects of NaCl activation on the structural and chemical properties of kaolin for the adsorption of Zn2+ from solution. Kaolin was treated with NaCl solution at varying concentrations (0.5, 1.0, 2.0, and 4.0 M), and ultrasonication was used as a means of agitation. Scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and dynamic light scattering (DLS) were employed to characterize the physical and chemical effects of the NaCl activation and its subsequent influence on the kaolin’s heavy metal removal efficiency. The kaolin activated with 0.5 M NaCl solution yielded the optimal performance with a 13% increase in Zn2+ removal compared to the unmodified clay. The adsorption data best matched the pseudo-second-order kinetic model and the Langmuir isotherm. This indicates a monolayer adsorption on a homogeneous surface, with chemisorption as the dominant adsorption mechanism. Thermodynamic analysis also revealed that the adsorption process was endothermic and spontaneous. Furthermore, NaCl activation slightly enhanced the microstructural properties of the kaolin and moderated the surface charge, creating a more favorable electrostatic environment for improved heavy metal ion adsorption. The findings further highlight the potential of NaCl activation to introduce exchangeable Na+ onto the kaolin surface in a pH-neutral environment and promise a clean, mechanistically clear, and practical route for ion exchange with heavy metals such as Zn2+. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

18 pages, 20927 KiB  
Article
Numerical and Experimental Study on the Deformation of Adaptive Elastomer Fibre-Reinforced Composites with Embedded Shape Memory Alloy Wire Actuators
by Holger Böhm, Andreas Hornig, Chokri Cherif and Maik Gude
J. Compos. Sci. 2025, 9(7), 371; https://doi.org/10.3390/jcs9070371 - 16 Jul 2025
Viewed by 59
Abstract
In this work, a finite element modelling methodology is presented for the prediction of the bending behaviour of a glass fibre-reinforced elastomer composite with embedded shape memory alloy (SMA) wire actuators. Three configurations of a multi-layered composite with differences in structural stiffness and [...] Read more.
In this work, a finite element modelling methodology is presented for the prediction of the bending behaviour of a glass fibre-reinforced elastomer composite with embedded shape memory alloy (SMA) wire actuators. Three configurations of a multi-layered composite with differences in structural stiffness and thickness are experimentally and numerically analysed. The bending experiments are realised by Joule heating of the SMA, resulting in deflection angles of up to 58 deg. It is shown that a local degradation in the structural stiffness in the form of a hinge significantly increases the amount of deflection. Modelling is fully elaborated in the finite element software ANSYS, based on material characterisation experiments of the composite and SMA materials. The thermomechanical material behaviour of the SMA is modelled via the Souza–Auricchio model, based on differential scanning calorimetry (DSC) and isothermal tensile experiments. The methodology allows for the consideration of an initial pre-stretch for straight-line positioned SMA wires and an evaluation of their phase transformation state during activation. The results show a good agreement of the bending angle for all configurations at the activation temperature of 120 °C reached in the experiments. The presented methodology enables an efficient design and evaluation process for soft robot structures with embedded SMA actuator wires. Full article
(This article belongs to the Special Issue Theoretical and Computational Investigation on Composite Materials)
Show Figures

Figure 1

19 pages, 3699 KiB  
Article
Development of Poly(diallyldimethylammonium) Chloride-Modified Activated Carbon for Efficient Adsorption of Methyl Red in Aqueous Systems
by Simeng Li and Madjid Mohseni
Clean Technol. 2025, 7(3), 61; https://doi.org/10.3390/cleantechnol7030061 - 15 Jul 2025
Viewed by 136
Abstract
A modified activated carbon (AC) was developed by modifying with poly(diallyldimethylammonium) chloride (PDADMAC) to enhance its adsorption performance for water treatment applications. Different PDADMAC concentrations were explored and evaluated using methyl red as a model contaminant, with 8 w/v% PDADMAC [...] Read more.
A modified activated carbon (AC) was developed by modifying with poly(diallyldimethylammonium) chloride (PDADMAC) to enhance its adsorption performance for water treatment applications. Different PDADMAC concentrations were explored and evaluated using methyl red as a model contaminant, with 8 w/v% PDADMAC yielding the best adsorption performance. The kinetics data were well described by the pseudo-first-order equation and homogeneous surface diffusion model. The Freundlich isotherm fit the equilibrium data well, indicating multilayer adsorption and diverse interaction types. The removal efficiency remained similar across a pH range of 5–9 and in the presence of background inorganic (NaCl)/organic compounds (sodium acetate) at different concentrations. Rapid small-scale column tests were performed to simulate continuous flow conditions, and the PDADMAC-modified AC effectively delayed the breakthrough of the contaminant compared to raw AC. Regeneration experiments showed that 0.1 M NaOH with 70% methanol effectively restored the adsorption capacity, retaining 80% of the initial efficiency after five cycles. Quantum chemical analysis revealed that non-covalent interactions, including electrostatic and Van der Waals forces, governed the adsorption mechanism. Overall, the results of this study prove that PDADMAC-AC shows great potential for enhanced organic contaminant removal in water treatment systems. Full article
Show Figures

Graphical abstract

22 pages, 3003 KiB  
Article
Engineering Fe-Modified Zeolitic Imidazolate Frameworks (Fe-ZIF-8 and Fe-ZIF-67) via In Situ Thermal Synthesis for Enhanced Adsorption of Malachite Green from Aqueous Solutions: A Comprehensive Study of Isotherms, Kinetics, and Thermodynamics
by Alireza Pourvahabi Anbari, Shima Rahmdel Delcheh, Muhammad Kashif, Alireza Ranjbari, Mohammad Karbalaei Akbari, Serge Zhuiykov, Philippe M. Heynderickx and Francis Verpoort
Nanomaterials 2025, 15(14), 1097; https://doi.org/10.3390/nano15141097 - 15 Jul 2025
Viewed by 192
Abstract
Given the adverse effects of organic dyes from aqueous solutions on human physiology and the ecological system, establishing an effective system for their elimination is imperative. This study employs the in situ thermal (IST) method to synthesize nanocomposites comprising zeolitic imidazole frameworks, specifically [...] Read more.
Given the adverse effects of organic dyes from aqueous solutions on human physiology and the ecological system, establishing an effective system for their elimination is imperative. This study employs the in situ thermal (IST) method to synthesize nanocomposites comprising zeolitic imidazole frameworks, specifically Fe-ZIF-8 and Fe-ZIF-67. The investigation offers a comprehensive evaluation of the properties of these nano-adsorbents for the removal of malachite green (MG). The results indicate a significantly increased adsorption capacity of up to 495 and 552 mg g−1 for Fe-ZIF-8 and Fe-ZIF-67, respectively. Furthermore, they demonstrate removal efficiencies of up to 90% and 95% for MG, respectively. Parameters associated with the adsorption process are derived from isotherms and removal kinetics, specifically the Freundlich model and the pseudo-second-order kinetics model, respectively. The enhanced adsorption capacity observed in Fe-ZIF-8 and Fe-ZIF-67 can be attributed to π–π stacking interactions, hydrogen bonding, and electrostatic attraction. After undergoing three cycles, both adsorbents consistently exhibit a high removal efficiency of approximately 85%, indicating notable structural integrity and outstanding potential for repeated use. The examined adsorbents display exceptional efficacy, favorable stability, and substantial specific surface area, underscoring their remarkable adsorption capabilities. The nanocomposites comprising Fe-ZIF-8 and Fe-ZIF-67 demonstrate considerable potential as highly favorable options for the elimination of MG and other cationic organic dyes from aqueous environments. Full article
(This article belongs to the Special Issue The Interaction of Electron Phenomena on the Mesoscopic Scale)
Show Figures

Graphical abstract

21 pages, 3570 KiB  
Article
Fatigue Life Analysis of Cylindrical Roller Bearings Considering Elastohydrodynamic Lubrications
by Ke Zhang, Zhitao Huang, Qingsong Li and Ruiyu Zhang
Appl. Sci. 2025, 15(14), 7867; https://doi.org/10.3390/app15147867 - 14 Jul 2025
Viewed by 104
Abstract
Cylindrical roller bearings are widely used in industrial machinery, automotive systems, and aerospace applications, where their reliability directly affects the performance and safety of mechanical systems. The fatigue life of cylindrical roller bearings is significantly affected by their elastohydrodynamic lubrication condition, with variations [...] Read more.
Cylindrical roller bearings are widely used in industrial machinery, automotive systems, and aerospace applications, where their reliability directly affects the performance and safety of mechanical systems. The fatigue life of cylindrical roller bearings is significantly affected by their elastohydrodynamic lubrication condition, with variations potentially reaching multiple times. However, conventional quasi-static models often neglect lubrication effects. This study establishes a quasi-static analysis model for cylindrical roller bearings that incorporates the effects of elastohydrodynamic lubrication by integrating elastohydrodynamic lubrication theory with the Lundberg–Palmgren life model. The isothermal line contact elastohydrodynamic lubrication equations are solved using the multigrid method, and the contact load distribution is determined through nonlinear iterative techniques to calculate bearing fatigue life. Taking the N324 support bearing on the main shaft of an SFW250-8/850 horizontal hydro-generator as an example, the influences of radial load, inner race speed, and lubricant viscosity on fatigue life are comparatively analyzed. Experimental validation is conducted under both light-load and heavy-load operating conditions. The results demonstrate that elastohydrodynamic lubrication markedly increases contact loads, leading to a reduced predicted fatigue life compared with that of the De Mul model (which ignores lubrication). The proposed lubrication-integrated model achieves an average deviation of 5.3% from the experimental data, representing a 16.1% improvement in prediction accuracy over the De Mul model. Additionally, increased rotational speed and lubricant viscosity accelerate fatigue life degradation. Full article
(This article belongs to the Special Issue Advances and Applications in Mechanical Fatigue and Life Assessment)
Show Figures

Figure 1

21 pages, 5958 KiB  
Article
Removal of As from Tambo River Using Sodium Alginate from Lessonia trabeculata (Aracanto)
by Diana M. Villanueva, Aldo G. Gonzales, Claudio A. Saez and Antonio M. Lazarte
Plants 2025, 14(14), 2173; https://doi.org/10.3390/plants14142173 - 14 Jul 2025
Viewed by 204
Abstract
Arsenic (As) contamination in the Tambo River (Perú), linked to mining activities and volcanic eruptions, poses significant health and agricultural risks. This study evaluated sodium alginate extracted from the brown macroalgae Lessonia trabeculata (LT) as a biosorbent for As removal. Water samples from [...] Read more.
Arsenic (As) contamination in the Tambo River (Perú), linked to mining activities and volcanic eruptions, poses significant health and agricultural risks. This study evaluated sodium alginate extracted from the brown macroalgae Lessonia trabeculata (LT) as a biosorbent for As removal. Water samples from three river points revealed As concentrations up to 0.309 mg/L, exceeding regulatory limits (0.1 mg/L). Sodium alginate was obtained via a simplified alkaline method, yielding an average of 21.44% (w/w relative to dry algae biomass) and characterized by Fourier Transform Infrared Spectroscopy (FTIR), showing structural similarity to industrial alginate (A1). Biosorption assays under simulated environmental conditions (neutral pH, 20 °C) demonstrated that LT alginate (A2) reduced As by 99% at 48 h with a 1.0 g/L dose, outperforming A1. Langmuir (qmax = 0.0012 mmol/g; b = 506.9 L/mg) and Freundlich (n = 1.94) isotherms confirmed favorable adsorption, while kinetics followed a Pseudo-Second-Order Model, suggesting physisorption. These results highlight LT alginate as a sustainable and scalable solution for remediating As-contaminated water, promoting the conservation of a vulnerable marine resource. This study underscores the potential of algal biopolymers in bioremediation strategies aligned with environmental and socioeconomic needs. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

26 pages, 5689 KiB  
Article
Insights into the Adsorption of Carbon Dioxide in Zeolites ITQ-29 and 5A Based on Kinetic Measurements and Molecular Simulations
by Magdy Abdelghany Elsayed, Shixue Zhou, Xiaohui Zhao, Gumawa Windu Manggada, Zhongyuan Chen, Fang Wang and Zhijuan Tang
Nanomaterials 2025, 15(14), 1077; https://doi.org/10.3390/nano15141077 - 11 Jul 2025
Viewed by 299
Abstract
Understanding the adsorption mechanism is essential for developing efficient technologies to capture carbon dioxide from industrial flue gases. In this work, laboratory measurements, density functional theory calculations, and molecular dynamics simulations were employed to study CO2 adsorption and diffusion behavior in LTA-type [...] Read more.
Understanding the adsorption mechanism is essential for developing efficient technologies to capture carbon dioxide from industrial flue gases. In this work, laboratory measurements, density functional theory calculations, and molecular dynamics simulations were employed to study CO2 adsorption and diffusion behavior in LTA-type zeolites. The CO2 adsorption isotherms measured in zeolite 5A are best described by the Toth model. Thermodynamic analysis indicates that the adsorption process is spontaneous and exothermic, with an enthalpy change of −44.04 kJ/mol, an entropy change of −115.23 J/(mol·K), and Gibbs free energy values ranging from −9.68 to −1.03 kJ/mol over the temperature range of 298–373 K. The isosteric heat of CO2 adsorption decreases from 40.35 to 21.75 kJ/mol with increasing coverage, reflecting heterogeneous interactions at Ca2+ and Na+ sites. The adsorption kinetics follow a pseudo-first-order model, with an activation energy of 2.24 kJ/mol, confirming a physisorption mechanism. The intraparticle diffusion model indicates that internal diffusion is the rate-limiting step, supported by a significant reduction in the diffusion rate. The DFT calculations demonstrated that CO2 exhibited a −35 kJ/mol more negative adsorption energy in zeolite 5A than in zeolite ITQ-29, attributable to strong interactions with Ca2+/Na+ cations in 5A that were absent in the pure silica ITQ-29 framework. The molecular dynamics simulations based on molecular force fields indicate that CO2 diffuses more rapidly in ITQ-29, with a diffusion coefficient measuring 2.54 × 10−9 m2/s at 298 K, whereas it was 1.02 × 10−9 m2/s in zeolite 5A under identical conditions. The activation energy for molecular diffusion reaches 5.54 kJ/mol in zeolite 5A, exceeding the 4.12 kJ/mol value in ITQ-29 by 33%, which accounts for the slower diffusion kinetics in zeolite 5A. There is good agreement between experimental measurements and molecular simulation results for zeolite 5A across the studied temperature and pressure ranges. This confirms the accuracy and reliability of the selected simulation parameters and allows for the study of zeolite ITQ under similar simulation conditions. This research provides insights into CO2 adsorption energetics and diffusion within LTA-type zeolite frameworks, supporting the rational design of high-performance adsorbents for industrial gas separation. Full article
Show Figures

Figure 1

21 pages, 8745 KiB  
Article
Global Warming-Driven Changes in the Suitable Habitat of Ostryopsis davidiana (Betulaceae) Shrubs
by Huayong Zhang, Xinxing Cui, Yihe Zhang, Zhongyu Wang and Zhao Liu
Sustainability 2025, 17(14), 6332; https://doi.org/10.3390/su17146332 - 10 Jul 2025
Viewed by 156
Abstract
Ostryopsis davidiana shrubs, widely distributed in northern China, have been significantly affected by global warming. Based on the current geographical distribution data of O. davidiana in China, this study used climate data, soil data, topographic data, human activity data, and the “biomod2” integrated [...] Read more.
Ostryopsis davidiana shrubs, widely distributed in northern China, have been significantly affected by global warming. Based on the current geographical distribution data of O. davidiana in China, this study used climate data, soil data, topographic data, human activity data, and the “biomod2” integrated model to conduct an integrated study on the suitable habitat of O. davidiana under the current scenario and three future climate scenarios (SSP126, SSP370, and SSP585). The results showed the following: (1) The suitable habitats of O. davidiana are mainly concentrated in the northwest and north China regions, accounting for about 9.09% of the national area, centered in Shanyin County, Shuozhou City, Shanxi Province. (2) The suitable habitats of O. davidiana are mainly influenced by temperature and precipitation, with precipitation of wettest quarter (Bio16), isothermality (Bio3), and maximum temperature of warmest month (Bio5) being the key driving factors, with contribution rates of 25.69%, 24.31%, and 14.45%, respectively. (3) Under the three future climate scenarios, the suitable habitats of O. davidiana are expected to contract significantly, with only the low suitability areas expanding, while the rest would be contracting, showing a trend of losing most of their original habitat. The centroid of the suitable habitat would be shifting westward, and the suitable habitats would be generally migrating to higher elevation areas. (4) Climate change reduces the aggregation of O. davidiana, leading to gradual habitat fragmentation. This study provides a theoretical basis for the conservation of O. davidiana. Full article
Show Figures

Figure 1

Back to TopTop