Global Warming-Driven Changes in the Suitable Habitat of Ostryopsis davidiana (Betulaceae) Shrubs
Abstract
1. Introduction
2. Data Integration and Calculation Methods
2.1. Data Collection and Processing
2.2. Model Integration
2.3. Classification of Suitable Habitat
2.4. Identification of Driving Factors
2.5. Contraction and Expansion of Suitable Habitat
2.6. Calculation of Centroid and Elevation Changes
2.7. Calculation of Habitat Fragmentation
3. Results
3.1. Current Suitable Habitat of O. davidiana
3.2. Driving Factors
3.3. Contraction and Expansion of Suitable Habitat
3.4. Centroid Migration and Elevation Changes
3.5. Fragmentation Assessment of O. davidiana
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Messier, C.; Bauhus, J.; Doyon, F.; Maure, F.; Sousa-Silva, R.; Noler, P.; Mina, M.; Aquilue, N.; Fortin, M.-J.; Puettmann, K. The functional complex network approach to foster forest resilience to global changes. For. Ecosyst. 2019, 6, 21. [Google Scholar] [CrossRef]
- Barreto, J.R.; Pardini, R.; Metzger, J.P.; Silva, F.A.B.; Nichols, E.S. When forest loss leads to biodiversity gain: Insights from the Brazilian Atlantic Forest. Biol. Conserv. 2023, 279, 109957. [Google Scholar] [CrossRef]
- Li, G.; Wen, Z.; Guo, K.; Du, S. Simulating the Effect of Climate Change on Vegetation Zone Distribution on the Loess Plateau, Northwest China. Forests 2015, 6, 2092. [Google Scholar] [CrossRef]
- Naranjo, A.A.; Melton, A.E.; Soltis, D.E.; Soltis, P.S. Endemism, projected climate change, and identifying species of critical concern in the Scrub Mint clade (Lamiaceae). Conserv. Sci. Pract. 2022, 4, e621. [Google Scholar] [CrossRef]
- Cong, M.; Li, Y.; Yang, W. Potential Distribution of Bryophyte, Entodon challengeri (Entodontaceae), under Climate Warming in China. Diversity 2023, 15, 871. [Google Scholar] [CrossRef]
- Gan, Y.; Cheng, L.; Tang, J.; Han, H.; Gan, X. Evaluating the vulnerability of Tetracentron sinense habitats to climate-induced latitudinal shifts. Ecol. Evol. 2024, 14, e11710. [Google Scholar] [CrossRef]
- Huang, P.; Xiao, Y.; Sun, Y.; Huang, H.; Gong, Z.; Zhu, Y. Distribution changes of Ormosia microphylla under different climatic scenarios. Sci. Rep. 2025, 15, 2607. [Google Scholar] [CrossRef]
- Wang, Z.J.; Gai, Z.S.; Yang, T.G.; Zhai, J.T.; Wu, Z.H.; Guo, X.F.; Chen, X.X.; Sun, J.H.; Jiao, P.P.; Li, Z.J. Prediction of The Distribution Area and Environmental Variables of Populus euphratica and Populus pruinosa in China Based on the optimized Maxent Model. Appl. Ecol. Environ. Res. 2023, 21, 3223–3241. [Google Scholar] [CrossRef]
- Yan, Q.; Zhang, X.; Li, M.; Zhang, G.; Huang, L.-F. Global climate change promotes aboveground growth and high-latitude species distribution in medicinal plants: Insights from the genus Panax. J. Clean. Prod. 2024, 478, 143863. [Google Scholar] [CrossRef]
- Yao, W.; Wang, Z.; Fan, Y.; Liu, D.; Ding, Z.; Zhou, Y.; Hu, S.; Zhang, W.; Ou, J. Prediction of Potential Habitat Distributions and Climate Change Impacts on the Rare Species Woonyoungia septentrionalis (Magnoliaceae) in China Based on MaxEnt. Plants 2024, 14, 86. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Q.; Zhang, J.; Yao, Z.; Zhou, Q.; Liu, P.; Liu, W.; Liu, H. Prediction of potential distributions of Morina kokonorica and Morina chinensis in China. Ecol. Evol. 2024, 14, e11121. [Google Scholar] [CrossRef]
- Chawengkul, P.; Tiwutanon, P.; Sanevas, N.; Kraichak, E. Predicting the Future Distribution of Leucobryum aduncum under Climate Change. Diversity 2024, 16, 125. [Google Scholar] [CrossRef]
- Bao, X.; Zhou, P.; Zhang, M.; Fang, Y.; Zhang, Q. MaxEnt-Based Habitat Suitability Assessment for Vaccinium mandarinorum: Exploring Industrial Cultivation Opportunities. Forests 2024, 15, 2254. [Google Scholar] [CrossRef]
- Shangguan, T.; Zhang, F. On Synecological Features and biomass of Ostryopsis davidiana Bush-Wood in Yunding Mountain, Shanxi Province. J. Shanxi Univ. (Nat. Sci. Ed.) 1989, 12, 347–352. [Google Scholar] [CrossRef]
- Hou, J.; Li, B. Cultivation techniques of Ostryopsis davidiana, an excellent plant for desert control. For. By-Prod. Spec. China 2009, 24, 56–57. [Google Scholar] [CrossRef]
- Yan, W.; Han, X.; Bai, S.; Shao, D. Research on Drought Resistance Mechanism to Different Mycorrhizal Seedlings of Ostyopsis davidiana. Sci. Silvae Sin. 2006, 42, 73–76. [Google Scholar] [CrossRef]
- Xue, L.; Zhao, H.; Yao, Q.; Zhang, W.; Yan, W. Studies on the Tissue Culture and Mycorrhizal Technology of Ostryopsis davidiana. Chin. Agric. Sci. Bull. 2012, 28, 17–21. [Google Scholar] [CrossRef]
- Yao, Z.; Shi, Y.; Ma, W.; Zhao, L.; Juhua; Haoren, T.; Su, C.; Zhang, X.; Liang, C. Community characteristics of Ostryopsis davidiana alliance in Nei Mongol, China. Chin. J. Plant Ecol. 2022, 46, 1342–1349. [Google Scholar] [CrossRef]
- Bai, Z. Survey and Ecological Evaluation of Ostryopsis davidiana Community in Liaoning Qinglong River National Nature Reserve. Spec. Econ. Anim. Plant 2023, 26, 166–168. [Google Scholar] [CrossRef]
- Elith, J.; Leathwick, J.R. Species Distribution Models: Ecological Explanation and Prediction Across Space and Time. Annu. Rev. Ecol. Evol. Syst. 2009, 40, 677–697. [Google Scholar] [CrossRef]
- Guo, Y.; Zhao, F.; Qiao, H.; Wang, R.; Wei, H.; Wang, L.; Gu, W.; Li, X. Challenges and Development Trend of Species Distribution Model. Adv. Earth Sci. 2020, 35, 1292–1305. [Google Scholar] [CrossRef]
- Whitford, A.M.; Shipley, B.R.; McGuire, J.L. The influence of the number and distribution of background points in presence-background species distribution models. Ecol. Model. 2024, 488, 110604. [Google Scholar] [CrossRef]
- Thuiller, W.; Lafourcade, B.; Engler, R.; Araujo, M.B. BIOMOD—A platform for ensemble forecasting of species distributions. Ecography 2009, 32, 369–373. [Google Scholar] [CrossRef]
- Hao, T.; Elith, J.; Guillera-Arroita, G.; Lahoz-Monfort, J.J. A review of evidence about use and performance of species distribution modelling ensembles like BIOMOD. Divers. Distrib. 2019, 25, 839–852. [Google Scholar] [CrossRef]
- Cai, H.; Zhang, G. Predicting the Potential Distribution of Rare and Endangered Emmenopterys henryi in China Under Climate Change. Ecol. Evol. 2024, 14, e70403. [Google Scholar] [CrossRef]
- Cong, Y.; Gu, Y.; Wang, W.J.; Wang, L.; Xue, Z.; Chen, Y.; Jin, Y.; Xu, J.; Li, M.-H.; He, H.S.; et al. The interaction between temperature and precipitation on the potential distribution range of Betula ermanii in the alpine treeline ecotone on the Changbai Mountain. For. Ecosyst. 2024, 11, 100166. [Google Scholar] [CrossRef]
- Igawa, T.K.; de Toledo, P.M.; Anjos, L.J.S. Climate change could reduce and spatially reconfigure cocoa cultivation in the Brazilian Amazon by 2050. PLoS ONE 2022, 17, e0262729. [Google Scholar] [CrossRef]
- Park, C.; Byeon, J.; Park, J.; Lee, S.; Park, B.; Kim, J.; Woo, H. Impact of Climate Change on Species Distribution of Picea jezoensis Carrire in Baekdudaegan Using Ensemble Modeling. Sens. Mater. 2022, 34, 4629–4637. [Google Scholar] [CrossRef]
- Yang, M.; Zhao, H.; Xian, X.; Qi, Y.; Li, Q.; Guo, J.; Chen, L.; Liu, W. Reconstructed Global Invasion and Spatio-Temporal Distribution Pattern Dynamics of Sorghum halepense under Climate and Land-Use Change. Plants 2023, 12, 3128. [Google Scholar] [CrossRef]
- Gu, R.; Wei, S.; Li, J.; Zheng, S.; Li, Z.; Liu, G.; Fan, S. Predicting the impacts of climate change on the geographic distribution of moso bamboo in China based on biomod2 model. Eur. J. For. Res. 2024, 143, 1499–1512. [Google Scholar] [CrossRef]
- Zhao, G.; Cui, X.; Sun, J.; Li, T.; Wang, Q.; Ye, X.; Fan, B. Analysis of the distribution pattern of Chinese Ziziphus jujuba under climate change based on optimized biomod2 and MaxEnt models. Ecol. Indic. 2021, 132, 108256. [Google Scholar] [CrossRef]
- Zhang, H.; Zheng, S.; Huang, T.; Liu, J.; Yue, J. Estimation of Potential Suitable Habitats for the Relict Plant Euptelea pleiosperma in China via Comparison of Three Niche Models. Sustainability 2023, 15, 11035. [Google Scholar] [CrossRef]
- Ma, D.; Lun, X.; Li, C.; Zhou, R.; Zhao, Z.; Wang, J.; Zhang, Q.; Liu, Q. Predicting the Potential Global Distribution of Amblyomma americanum (Acari: Ixodidae) under Near Current and Future Climatic Conditions, Using the Maximum Entropy Model. Biology 2021, 10, 1057. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, J.; Wang, M.; Li, Z.; Lin, S.; Chen, H. Potential distribution prediction of Amaranthus palmeri S. Watson in China under current and future climate scenarios. Ecol. Evol. 2022, 12, e9505. [Google Scholar] [CrossRef]
- He, X.; Gao, J.; Zhu, L.; Hao, R.; Huang, L.; Zhu, J.; Cheng, L.; Zhou, J. Response of Potential Geographic Distribution of Amygdalus mongolica to Climate Change. Bull. Bot. Res. 2024, 44, 180–191. [Google Scholar] [CrossRef]
- Allouche, O.; Tsoar, A.; Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 2006, 43, 1223–1232. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, H.; Xu, J.; Yu, S.; Huang, Y.; Zhang, Y.; He, X.; Chen, W. Prediction of suitable planting areas of Rubia cordifolia in China based on a species distribution model and analysis of specific secondary metabolites. Ind. Crops Prod. 2023, 206, 117651. [Google Scholar] [CrossRef]
- Luo, M.; Wang, H.; Lyu, Z. Evaluating the performance of species distribution models Biomod2 and MaxEnt using the giant panda distribution data. Chin. J. Appl. Ecol. 2017, 28, 4001–4006. [Google Scholar] [CrossRef]
- Zhan, P.; Wang, F.; Xia, P.; Zhao, G.; Wei, M.; Wei, F.; Han, R. Assessment of suitable cultivation region for Panax notoginseng under different climatic conditions using MaxEnt model and high-performance liquid chromatography in China. Ind. Crops Prod. 2022, 176, 114416. [Google Scholar] [CrossRef]
- Guga, S.; Xu, J.; Riao, D.; Li, k.; Han, A.; Zhang, J. Combining MaxEnt model and landscape pattern theory for analyzing interdecadal variation of sugarcane climate suitability in Guangxi, China. Ecol. Indic. 2021, 131, 108152. [Google Scholar] [CrossRef]
- Li, R.; Hu, X.; Li, Q.; Liu, L.; He, Y.; Chen, C. Gap analysis of Firmiana danxiaensis, a rare tree species endemic to southern China. Ecol. Indic. 2024, 158, 111606. [Google Scholar] [CrossRef]
- Zhu, G.; Qiao, H. Effect of the Maxent model’s complexity on the prediction of species potential distributions. Biodivers. Sci. 2016, 24, 1189–1196. [Google Scholar] [CrossRef]
- Zhang, C.; Guo, Y.; Li, M. Review of Development and Application of Artificial Neural Network Models. Comput. Eng. Appl. 2021, 57, 57–69. [Google Scholar] [CrossRef]
- Yang, Q.; Wu, W.; Liu, H. Prediction of spatial distribution of soil available iron in a typical hilly farmland using terrain attributes and random forest model. Chin. J. Eco-Agric. 2018, 26, 422–431. [Google Scholar] [CrossRef]
- Kuemmerlen, M.; Schmalz, B.; Guse, B.; Cai, Q.; Fohrer, N.; Jähnig, S.C. Integrating catchment properties in small scale species distribution models of stream macroinvertebrates. Ecol. Model. 2014, 277, 77–86. [Google Scholar] [CrossRef]
- Araújo, M.B.; Peterson, A.T. Uses and misuses of bioclimatic envelope modeling. Ecology 2012, 93, 1527–1539. [Google Scholar] [CrossRef]
- Thuiller, W. Editorial commentary on ‘BIOMOD-optimizing predictions of species distributions and projecting potential future shifts under global change. Glob. Change Biol. 2014, 20, 3591–3592. [Google Scholar] [CrossRef]
- Xie, C.; Liu, C.; Wang, H.; Liu, D.; Jim, C.Y. Distribution pattern of large old Ginkgo biloba in China under climate change scenarios. Ecol. Evol. 2024, 14, e11367. [Google Scholar] [CrossRef]
- Gaal, M.; Moriondo, M.; Bindi, M. Modelling the Impact of Climate Change on the Hungarian Wine Regions Using Random Forest. Appl. Ecol. Environ. Res. 2012, 10, 121–140. [Google Scholar] [CrossRef]
- Araújo, M.B.; Guisan, A. Five (or so) challenges for species distribution modelling. J. Biogeogr. 2006, 33, 1677–1688. [Google Scholar] [CrossRef]
- Li, H.; Guo, J.; Wang, Y.; Wang, W.; Jia, Q.; Wan, H.; Li, F.Y. Boundary migration between zonal vegetation types in Inner Mongolia over the past two decades. Catena 2024, 246, 108354. [Google Scholar] [CrossRef]
- Wang, N.; He, X.; Zhao, F.; Wang, D.; Jiao, J. Soil seed bank in different vegetation types in the Loess Plateau region and its role in vegetation restoration. Restor. Ecol. 2020, 28, A5–A12. [Google Scholar] [CrossRef]
- Wen, G.; Ye, X.; Lai, W.; Shi, C.; Huang, Q.; Ye, L.; Zhang, G. Dynamic analysis of mixed forest species under climate change scenarios. Ecol. Indic. 2021, 133, 108350. [Google Scholar] [CrossRef]
- Bellard, C.; Bertelsmeier, C.; Leadley, P.; Thuiller, W.; Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 2012, 15, 365–377. [Google Scholar] [CrossRef]
- Silva, T.; Whitley, B.S.; Biersma, E.M.; Abermann, J.; Raundrup, K.; de Vere, N.; Høye, T.T.; Schöner, W. Bio-climatic factors drive spectral vegetation changes in Greenland. EGUsphere 2024, 2024, 1–31. [Google Scholar] [CrossRef]
- Zhao, Y.; Cao, H.; Xu, W.; Chen, G.; Lian, J.; Du, Y.; Ma, K. Contributions of precipitation and temperature to the large scale geographic distribution of fleshy-fruited plant species: Growth form matters. Sci. Rep. 2018, 8, 17017. [Google Scholar] [CrossRef]
- Ma, Z.; Liu, H.; Mi, Z.; Zhang, Z.; Wang, Y.; Xu, W.; Jiang, L.; He, J.-S. Climate warming reduces the temporal stability of plant community biomass production. Nat. Commun. 2017, 8, 15378. [Google Scholar] [CrossRef]
- Zhang, C.; Lei, S.; Wu, H.; Liao, L.; Wang, X.; Zhang, L.; Liu, G.; Wang, G.; Fang, L.; Song, Z. Simplified microbial network reduced microbial structure stability and soil functionality in alpine grassland along a natural aridity gradient. Soil Biol. Biochem. 2024, 191, 109366. [Google Scholar] [CrossRef]
- Xi, X.; Tian, Y.; He, Y. Photosynthetic Characteristics of Ostryopsis davidiana Decaisne and Relationship with Main Influencing Factor. J. Art Coll. Inn. Mong. Univ. 2012, 9, 81–86. [Google Scholar] [CrossRef]
- Bai, S.; Bai, Y.e.; Fang, L.; Liu, Y. Mycorrhiza of Cenococcum geophilum (Fr.) Formed on Ostryopsis daidiana and Mycorrhizal Affection on the Growth of Ostryopsis davidiana. Sci. Silvae Sin. 2004, 40, 194–196. [Google Scholar] [CrossRef]
- Maharjan, S.K.; Sterck, F.J.; Raes, N.; Zhao, Y.; Poorter, L. Climate change induced elevational range shifts of Himalayan tree species. Biotropica 2023, 55, 53–69. [Google Scholar] [CrossRef]
- Shao, D.; Han, R.; Ning, X.; Bai, S.; Fang, L.; Ren, Q. The Study on Soil Enzyme Activity in the Pinus tabulaeformis and Ostryopsis davidiana Rhizosphere in Daqingshan Mountain, Inner Mongolia. J. Arid Land Resour. Environ. 2008, 22, 190–193. [Google Scholar] [CrossRef]
- Zheng, L.; Zhang, Y.; Lu, C.; Zhang, W.; Tan, B.; Jiang, L.; Zhang, Y.; An, C. Response of forest belt on the south slope of Tianshan Mountains in China to global warming during 1990–2020. Front. Earth Sci. 2024, 18, 831–848. [Google Scholar] [CrossRef]
- Varol, T.; Canturk, U.; Cetin, M.; Ozel, H.B.; Sevik, H. Impacts of climate change scenarios on European ash tree (Fraxinus excelsior L.) in Turkey. For. Ecol. Manag. 2021, 491, 119199. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, S.; Li, J.; Liao, L.; Jiang, X.; Xu, Y.; Yu, X.; Wu, L.; Zhao, L.; Fu, J.; et al. “Two zones and three centers” distribution and suitable areas shift of an evergreen oak in subtropical China under climate scenarios. Ecol. Evol. 2024, 14, e70300. [Google Scholar] [CrossRef]
- Liu, L.; Li, F.; Hai, L.; Sa, R.; Gao, M.; Wang, Z.; Tie, N. Priority Conservation Area of Quercus mongolica Under Climate Change: Application of an Ensemble Modeling. Sustainability 2024, 16, 9816. [Google Scholar] [CrossRef]
- Zhang, H.; Wei, Y.; Yue, J.; Wang, Z.; Zou, H.; Ji, X.; Zhang, S.; Liu, Z. Prediction of Potential Suitable Areas and Priority Protection for Cupressus gigantea on the Tibetan Plateau. Plants 2024, 13, 896. [Google Scholar] [CrossRef]
- Li, C.; Luo, G.; Yue, C.; Zhang, L.; Duan, Y.; Liu, Y.; Yang, S.; Wang, Z.; Chen, P. Distribution patterns and potential suitable habitat prediction of Ceracris kiangsu (Orthoptera: Arcypteridae) under climate change-a case study of China and Southeast Asia. Sci. Rep. 2024, 14, 20580. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, X.; Shen, S.; Zhao, Y.; Hao, S.; Jiang, J.; Zhang, D. Analyzing the distribution patterns and dynamic niche of Magnolia grandiflora L. in the United States and China in response to climate change. Front. Plant Sci. 2024, 15, 1440610. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Y.; Wang, R.; Guo, L.; Ji, Y.; Chen, Y.; Hao, L.; Lin, K. Impacts of Human Activity and Climate Change on the Suitable Habitats for Xanthium spinosum in China. Plants 2025, 14, 306. [Google Scholar] [CrossRef]
- Wilson, M.C.; Chen, X.-Y.; Corlett, R.T.; Didham, R.K.; Ding, P.; Holt, R.D.; Holyoak, M.; Hu, G.; Hughes, A.C.; Jiang, L.; et al. Habitat fragmentation and biodiversity conservation: Key findings and future challenges. Landsc. Ecol. 2016, 31, 219–227. [Google Scholar] [CrossRef]
- Yuan, R.; Zhang, N.; Zhang, Q. The impact of habitat loss and fragmentation on biodiversity in global protected areas. Sci. Total Environ. 2024, 931, 173004. [Google Scholar] [CrossRef]
- Lemordant, L.; Gentine, P. Vegetation Response to Rising CO2 Impacts Extreme Temperatures. Geophys. Res. Lett. 2019, 46, 1383–1392. [Google Scholar] [CrossRef]
- Yu, X.; Luo, T.; Zhou, H. Distribution of carabid beetles among 40-year-old regenerating plantations and 100-year-old naturally regenerated forests in Southwestern China. For. Ecol. Manag. 2008, 255, 2617–2625. [Google Scholar] [CrossRef]
- Chhetri, P.K.; Gaddis, K.D.; Cairns, D.M. Predicting the Suitable Habitat of Treeline Species in the Nepalese Himalayas Under Climate Change. Mt. Res. Dev. 2018, 38, 153–163. [Google Scholar] [CrossRef]
- Rawat, B.; Gairola, S.; Tewari, L.M.; Rawal, R.S. Long-term forest vegetation dynamics in Nanda Devi Biosphere Reserve, Indian west Himalaya: Evidence from repeat studies on compositional patterns. Environ. Monit. Assess. 2021, 193, 459. [Google Scholar] [CrossRef]
- Praticò, S.; Solano, F.; Di Fazio, S.; Modica, G. Machine Learning Classification of Mediterranean Forest Habitats in Google Earth Engine Based on Seasonal Sentinel-2 Time-Series and Input Image Composition Optimisation. Remote Sens. 2021, 13, 586. [Google Scholar] [CrossRef]
- Zhang, K.; Yao, L.; Meng, J.; Tao, J. Maxent modeling for predicting the potential geographical distribution of two peony species under climate change. Sci. Total Environ. 2018, 634, 1326–1334. [Google Scholar] [CrossRef]
Models | AUC | TSS | KAPPA |
---|---|---|---|
GLM | 0.972 | 0.907 | 0.9 |
GBM | 0.967 | 0.913 | 0.909 |
GAM | 0.976 | 0.916 | 0.912 |
CTA | 0.965 | 0.938 | 0.934 |
ANN | 0.972 | 0.89 | 0.885 |
SRE | 0.822 | 0.644 | 0.66 |
FDA | 0.97 | 0.896 | 0.89 |
MARS | 0.973 | 0.908 | 0.9 |
RF | 0.978 | 0.917 | 0.908 |
MAXENT.1 | 0.958 | 0.847 | 0.845 |
MAXENT.2 | 0.982 | 0.897 | 0.891 |
XGBOOST | 0.982 | 0.919 | 0.904 |
myBiomodEM | 0.989 | 0.94 | 0.928 |
Types of Variables | Environmental Variables (Code) | Units | Contribution Rate (%) |
---|---|---|---|
Climatic factors | Mean diurnal range (bio2) | °C | 3.84 |
Isothermality (bio3 = (bio1/bio7) × 100) | - | 24.31 | |
Maximum temperature of warmest month (bio5) | °C | 14.45 | |
Mean temperature of coldest quarter (bio11) | °C | 10.07 | |
Precipitation of the driest month (bio14) | mm | 3.23 | |
Variation of precipitation seasonality (bio15) | C of V | 11.22 | |
Precipitation of wettest quarter (bio16) | mm | 25.69 | |
Terrain factors | Slope | ° | 1.92 |
Aspect | - | 0.15 | |
Soil factors | Top soil pH | - | 2.1 |
Human factors | Human footprint | - | 3.02 |
Climate Scenarios | NP | AI |
---|---|---|
Current | 248 | 94.04 |
SSP126_2041–2060 | 536 | 87.54 |
SSP126_2061–2080 | 668 | 87.74 |
SSP126_2081–2100 | 776 | 81.05 |
SSP370_2041–2060 | 729 | 84.56 |
SSP370_2061–2080 | 907 | 75.27 |
SSP370_2081–2100 | 980 | 76.42 |
SSP585_2041–2060 | 869 | 81.97 |
SSP585_2061–2080 | 979 | 75.21 |
SSP585_2081–2100 | 1015 | 71.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Cui, X.; Zhang, Y.; Wang, Z.; Liu, Z. Global Warming-Driven Changes in the Suitable Habitat of Ostryopsis davidiana (Betulaceae) Shrubs. Sustainability 2025, 17, 6332. https://doi.org/10.3390/su17146332
Zhang H, Cui X, Zhang Y, Wang Z, Liu Z. Global Warming-Driven Changes in the Suitable Habitat of Ostryopsis davidiana (Betulaceae) Shrubs. Sustainability. 2025; 17(14):6332. https://doi.org/10.3390/su17146332
Chicago/Turabian StyleZhang, Huayong, Xinxing Cui, Yihe Zhang, Zhongyu Wang, and Zhao Liu. 2025. "Global Warming-Driven Changes in the Suitable Habitat of Ostryopsis davidiana (Betulaceae) Shrubs" Sustainability 17, no. 14: 6332. https://doi.org/10.3390/su17146332
APA StyleZhang, H., Cui, X., Zhang, Y., Wang, Z., & Liu, Z. (2025). Global Warming-Driven Changes in the Suitable Habitat of Ostryopsis davidiana (Betulaceae) Shrubs. Sustainability, 17(14), 6332. https://doi.org/10.3390/su17146332