Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (44)

Search Parameters:
Keywords = IGCC

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
54 pages, 10463 KB  
Article
Reduced-Order Modeling (ROM) of a Segmented Plug-Flow Reactor (PFR) for Hydrogen Separation in Integrated Gasification Combined Cycles (IGCC)
by Osama A. Marzouk
Processes 2025, 13(5), 1455; https://doi.org/10.3390/pr13051455 - 9 May 2025
Cited by 2 | Viewed by 1818
Abstract
In an integrated gasification combined cycle (IGCC), a gasification process produces a gas stream from a solid fuel, such as coal or biomass. This gas (syngas or synthesis gas) resulting from the gasification process contains carbon monoxide, molecular hydrogen, and carbon dioxide (other [...] Read more.
In an integrated gasification combined cycle (IGCC), a gasification process produces a gas stream from a solid fuel, such as coal or biomass. This gas (syngas or synthesis gas) resulting from the gasification process contains carbon monoxide, molecular hydrogen, and carbon dioxide (other gaseous components may also be present depending on the gasified solid fuel and the gasifying agent). Separating hydrogen from this syngas stream has advantages. One of the methods to separate hydrogen from syngas is selective permeation through a palladium-based metal membrane. This separation process is complicated as it depends nonlinearly on various variables. Thus, it is desirable to develop a simplified reduced-order model (ROM) that can rapidly estimate the separation performance under various operational conditions, as a preliminary stage of computer-aided engineering (CAE) in chemical processes and sustainable industrial operations. To fill this gap, we present here a proposed reduced-order model (ROM) procedure for a one-dimensional steady plug-flow reactor (PFR) and use it to investigate the performance of a membrane reactor (MR), for hydrogen separation from syngas that may be produced in an integrated gasification combined cycle (IGCC). In the proposed model, syngas (a feed stream) enters the membrane reactor from one side into a retentate zone, while nitrogen (a sweep stream) enters the membrane reactor from the opposite side into a neighbor permeate zone. The two zones are separated by permeable palladium membrane surfaces that are selectively permeable to hydrogen. After analyzing the hydrogen permeation profile in a base case (300 °C uniform temperature, 40 atm absolute retentate pressure, and 20 atm absolute permeate pressure), the temperature of the module, the retentate-side pressure, and the permeate-side pressure are varied individually and their influence on the permeation performance is investigated. In all the simulation cases, fixed targets of 95% hydrogen recovery and 40% mole-fraction of hydrogen at the permeate exit are demanded. The module length is allowed to change in order to satisfy these targets. Other dependent permeation-performance variables that are investigated include the logarithmic mean pressure-square-root difference, the hydrogen apparent permeance, and the efficiency factor of the hydrogen permeation. The contributions of our study are linked to the fields of membrane applications, hydrogen production, gasification, analytical modeling, and numerical analysis. In addition to the proposed reduced-order model for hydrogen separation, we present various linear and nonlinear regression models derived from the obtained results. This work gives general insights into hydrogen permeation via palladium membranes in a hydrogen membrane reactor (MR). For example, the temperature is the most effective factor to improve the permeation performance. Increasing the absolute retentate pressure from the base value of 40 atm to 120 atm results in a proportional gain in the permeated hydrogen mass flux, with about 0.05 kg/m2.h gained per 1 atm increase in the retentate pressure, while decreasing the absolute permeate pressure from the base value of 20 bar to 0.2 bar causes the hydrogen mass flux to increase exponentially from 1.15 kg/m2.h. to 5.11 kg/m2.h. This study is linked with the United Nations Sustainable Development Goal (SDG) numbers 7, 9, 11, and 13. Full article
Show Figures

Figure 1

50 pages, 8468 KB  
Review
Advanced Gas Turbine Cooling for the Carbon-Neutral Era
by Kenichiro Takeishi and Robert Krewinkel
Int. J. Turbomach. Propuls. Power 2023, 8(3), 19; https://doi.org/10.3390/ijtpp8030019 - 24 Jun 2023
Cited by 20 | Viewed by 13054
Abstract
In the coming carbon-neutral era, industrial gas turbines (GT) will continue to play an important role as energy conversion equipment with high thermal efficiency and as stabilizers of the electric power grid. Because of the transition to a clean fuel, such as hydrogen [...] Read more.
In the coming carbon-neutral era, industrial gas turbines (GT) will continue to play an important role as energy conversion equipment with high thermal efficiency and as stabilizers of the electric power grid. Because of the transition to a clean fuel, such as hydrogen or ammonia, the main modifications will lie with the combustor. It can be expected that small and medium-sized gas turbines will burn fewer inferior fuels, and the scope of cogeneration activities they are used for will be expanded. Industrial gas turbine cycles including CCGT appropriate for the carbon-neutral era are surveyed from the viewpoint of thermodynamics. The use of clean fuels and carbon capture and storage (CCS) will inevitably increase the unit cost of power generation. Therefore, the first objective is to present thermodynamic cycles that fulfil these requirements, as well as their verification tests. One conclusion is that it is necessary to realize the oxy-fuel cycle as a method to utilize carbon-heavy fuels and biomass and not generate NOx from hydrogen combustion at high temperatures. The second objective of the authors is to show the required morphology of the cooling structures in airfoils, which enable industrial gas turbines with a higher efficiency. In order to achieve this, a survey of the historical development of the existing cooling methods is presented first. CastCool® and wafer and diffusion bonding blades are discussed as turbine cooling technologies applicable to future GTs. Based on these, new designs already under development are shown. Most of the impetus comes from the development of aviation airfoils, which can be more readily applied to industrial gas turbines because the operation will become more similar. Double-wall cooling (DWC) blades can be considered for these future industrial gas turbines. It will be possible in the near future to fabricate the DWC structures desired by turbine cooling designers using additive manufacturing (AM). Another conclusion is that additively manufactured DWC is the best cooling technique for these future gas turbines. However, at present, research in this field and the data generated are scattered, and it is not yet possible for heat transfer designers to fabricate cooling structures with the desired accuracy. Full article
(This article belongs to the Special Issue Advances in Critical Aspects of Turbomachinery Components and Systems)
Show Figures

Figure 1

24 pages, 6526 KB  
Article
Land Use/Land Cover Optimized SAR Coherence Analysis for Rapid Coastal Disaster Monitoring: The Impact of the Emma Storm in Southern Spain
by Pedro Andrés Garzo and Tomás Fernández-Montblanc
Remote Sens. 2023, 15(13), 3233; https://doi.org/10.3390/rs15133233 - 22 Jun 2023
Cited by 8 | Viewed by 2705
Abstract
The high exposure of coastal areas worldwide to natural and anthropogenic disasters emphasizes the relevance of disaster management processes that ensure a prompt damage detection and identification of affected areas. This paper aimed to develop a novel approach for disaster monitoring in coastal [...] Read more.
The high exposure of coastal areas worldwide to natural and anthropogenic disasters emphasizes the relevance of disaster management processes that ensure a prompt damage detection and identification of affected areas. This paper aimed to develop a novel approach for disaster monitoring in coastal areas using SAR data. The method was based on an interferometric coherence difference analysis of Sentinel 1 data. To calibrate and validate the method, the Emma Storm, a severe coastal storm that affected the southwest coast of the Iberian Peninsula in 2018, was chosen as a case study. A coastal land use/land cover method optimization by optical and UAV field data resulted in an overall improvement of about 20% in the identification of disaster-affected areas by reducing false alarms by up to 33%. Finally, the method achieved hit and false alarm rates of about 80% and 20%, respectively, leading to the identification of approximately 30% (7000 ha) of the study area as being affected by the storm. Marshes and vegetated dunes were the most significantly impacted covers. In addition, SAR data enabled the impact assessment with a time lag of 2 days, contrasting the 25-day delay of optical data. The proposed method stands out as a valuable tool for regional-scale coastal disaster monitoring. In addition, it can be automated and operated at a low cost, making it a valuable tool for decision-making support. Full article
(This article belongs to the Special Issue Remote Sensing and GIS Based Coastal Disaster Monitoring)
Show Figures

Figure 1

26 pages, 4737 KB  
Article
Synchronous Design of Membrane Material and Process for Pre-Combustion CO2 Capture: A Superstructure Method Integrating Membrane Type Selection
by Zhiqiang Ni, Yue Cao, Xiaopeng Zhang, Ning Zhang, Wu Xiao, Junjiang Bao and Gaohong He
Membranes 2023, 13(3), 318; https://doi.org/10.3390/membranes13030318 - 9 Mar 2023
Cited by 10 | Viewed by 2418
Abstract
Membrane separation technology for CO2 capture in pre-combustion has the advantages of easy operation, minimal land use and no pollution and is considered a reliable alternative to traditional technology. However, previous studies only focused on the H2-selective membrane (HM) or [...] Read more.
Membrane separation technology for CO2 capture in pre-combustion has the advantages of easy operation, minimal land use and no pollution and is considered a reliable alternative to traditional technology. However, previous studies only focused on the H2-selective membrane (HM) or CO2-selective membrane (CM), paying little attention to the combination of different membranes. Therefore, it is hopeful to find the optimal process by considering the potential combination of H2-selective and CO2-selective membranes. For the CO2 capture process in pre-combustion, this paper presents an optimization model based on the superstructure method to determine the best membrane process. In the superstructure model, both CO2-selective and H2-selective commercial membranes are considered. In addition, the changes in optimal membrane performance and capture cost are studied when the selectivity and permeability of membrane change synchronously based on the Robeson upper bound. The results show that when the CO2 purity is 96% and the CO2 recovery rate is 90%, the combination of different membrane types achieves better results. The optimal process is the two-stage membrane process with recycling, using the combination of CM and HM in all situations, which has obvious economic advantages compared with the Selexol process. Under the condition of 96% CO2 purity and 90% CO2 recovery, the CO2 capture cost can be reduced to 11.75$/t CO2 by optimizing the process structure, operating parameters, and performance of membranes. Full article
(This article belongs to the Special Issue Development and Application of Membrane Separation Processes)
Show Figures

Figure 1

18 pages, 1785 KB  
Article
Techno-Economic Efficiency Estimation of Promising Integrated Oxyfuel Gasification Combined-Cycle Power Plants with Carbon Capture
by Igor Donskoy
Clean Technol. 2023, 5(1), 215-232; https://doi.org/10.3390/cleantechnol5010013 - 6 Feb 2023
Cited by 10 | Viewed by 5848
Abstract
The study concerns promising coal-fired power plants that can gain an advantage over traditional options in the context of decarbonization. The calculations show that combined-cycle plants with integrated coal gasification and carbon dioxide recirculation may have better technical and economic characteristics compared to [...] Read more.
The study concerns promising coal-fired power plants that can gain an advantage over traditional options in the context of decarbonization. The calculations show that combined-cycle plants with integrated coal gasification and carbon dioxide recirculation may have better technical and economic characteristics compared to existing gasification processes (one- and two-stage). The recirculation of carbon dioxide improves the efficiency of the gasification process (the combustible gases yield and the fuel carbon conversion degree) and reduces the energy costs of the flue gas cleaning and carbon capture unit, thereby improving the economic performance of the plant. The estimates show that the decrease in the efficiency of electricity production associated with the removal of carbon dioxide is approximately 8% for the recirculation of combustion products and 15–16% for traditional processes, and the increase in the cost of electricity is 20–25% versus 35–40%, respectively. Full article
Show Figures

Figure 1

25 pages, 6611 KB  
Article
Thermal Design of a Biohydrogen Production System Driven by Integrated Gasification Combined Cycle Waste Heat Using Dynamic Simulation
by Mohammad Fakhrulrezza, Joon Ahn and Hyun-Jin Lee
Energies 2022, 15(9), 2976; https://doi.org/10.3390/en15092976 - 19 Apr 2022
Cited by 2 | Viewed by 2523
Abstract
Utilizing biological processes for hydrogen production via gasification is a promising alternative method to coal gasification. The present study proposes a dynamic simulation model that uses a one-dimensional heat-transfer analysis method to simulate a biohydrogen production system. The proposed model is based on [...] Read more.
Utilizing biological processes for hydrogen production via gasification is a promising alternative method to coal gasification. The present study proposes a dynamic simulation model that uses a one-dimensional heat-transfer analysis method to simulate a biohydrogen production system. The proposed model is based on an existing experimental design setup. It is used to simulate a biohydrogen production system driven by the waste heat from an integrated gasification combined cycle (IGCC) power plant equipped with carbon capture and storage technologies. The data from the simulated results are compared with the experimental measurement data to validate the developed model’s reliability. The results show good agreement between the experimental data and the developed model. The relative root-mean-square error for the heat storage, feed-mixing, and bioreactor tanks is 1.26%, 3.59%, and 1.78%, respectively. After the developed model’s reliability is confirmed, it is used to simulate and optimize the biohydrogen production system inside the IGCC power plant. The bioreactor tank’s time constant can be improved when reducing the operating volume of the feed-mixing tank by the scale factors of 0.75 and 0.50, leading to a 15.76% and 31.54% faster time constant, respectively, when compared with the existing design. Full article
(This article belongs to the Special Issue Renewable Energy Integration into Power Grids and Buildings)
Show Figures

Figure 1

22 pages, 3836 KB  
Article
Design and System Evaluation of Mixed Waste Plastic Gasification Process Based on Integrated Gasification Combined Cycle System
by Hui Xu and Bin Shi
Processes 2022, 10(3), 499; https://doi.org/10.3390/pr10030499 - 2 Mar 2022
Cited by 18 | Viewed by 7511
Abstract
Plastic products are widely used due to their superior performance, but there are still limitations in the current methods and technologies for recycling and processing of waste plastics, resulting in a huge wasting of resources and environmental pollution. The element composition of waste [...] Read more.
Plastic products are widely used due to their superior performance, but there are still limitations in the current methods and technologies for recycling and processing of waste plastics, resulting in a huge wasting of resources and environmental pollution. The element composition of waste plastics determines its great gasification potential. In this paper, three different waste plastic gasification processes are designed in a process simulator based on the conventional Integrated Gasification Combined Cycle (IGCC) system to achieve waste conversion and utilization as well as carbon capture. Design 1 is based on the cryogenic air separation (CAS) process to obtain oxygen, which is sent to the gasifier together with steam and pretreated waste plastics. The synthesis gas is purified and synthesized into methanol, and the residual gas is passed to the gas turbine and steam turbine to achieve multiple production of heat, electricity, and methanol. Design 2 uses a Vacuum Pressure Swing Adsorption (VPSA) process to produce oxygen, which reduces the energy consumption by 56.3% compared to Design 1. Design 3 adds a calcium-looping (CaL) reaction coupled with a steam conversion reaction to produce high-purity hydrogen as a product, while capturing the generated CO2 to improve the conversion rate of the reaction. Full article
(This article belongs to the Topic Sustainable Energy Technology)
Show Figures

Figure 1

24 pages, 5023 KB  
Article
CO2 Capture from IGCC by Low-Temperature Synthesis Gas Separation
by David Berstad, Geir Skaugen, Simon Roussanaly, Rahul Anantharaman, Petter Nekså, Kristin Jordal, Stian Trædal and Truls Gundersen
Energies 2022, 15(2), 515; https://doi.org/10.3390/en15020515 - 12 Jan 2022
Cited by 12 | Viewed by 4218
Abstract
Capture conditions for CO2 vary substantially between industrial point sources. Depending on CO2 fraction and pressure level, different capture technologies will be required for cost- and energy-efficient decarbonisation. For decarbonisation of shifted synthesis gas from coal gasification, several studies have identified [...] Read more.
Capture conditions for CO2 vary substantially between industrial point sources. Depending on CO2 fraction and pressure level, different capture technologies will be required for cost- and energy-efficient decarbonisation. For decarbonisation of shifted synthesis gas from coal gasification, several studies have identified low-temperature CO2 capture by condensation and phase separation as an energy- and cost-efficient option. In the present work, a process design is proposed for low-temperature CO2 capture from an Integrated Gasification Combined Cycle (IGCC) power plant. Steady-state simulations were carried out and the performance of the overall process, as well as major process components, were investigated. For the baseline capture unit layout, delivering high-pressure CO2 at 150 bar, the net specific power requirement was estimated to 273 kJe/kgCO2, and an 85% CO2 capture ratio was obtained. The impact of 12 different process parameters was studied in a sensitivity analysis, the results of which show that compressor and expander efficiencies, as well as synthesis gas separation temperature, have the highest impact on power requirements. Modifying the process to producing cold liquid CO2 for ship transport resulted in 16% increase in net power requirements and is well suited for capturing CO2 for ship transport. Full article
(This article belongs to the Special Issue Advances in Carbon Capture and Storage (CCS) Deployment)
Show Figures

Figure 1

14 pages, 1761 KB  
Article
Conceptual Process Design, Energy and Economic Analysis of Solid Waste to Hydrocarbon Fuels via Thermochemical Processes
by Hossam A. Gabbar and Mohamed Aboughaly
Processes 2021, 9(12), 2149; https://doi.org/10.3390/pr9122149 - 28 Nov 2021
Cited by 9 | Viewed by 5782
Abstract
Thermochemical processes use heat and series of endothermic chemical reactions that achieve thermal cracking and convert a wide range of solid waste deposits via four thermochemical processes to hydrocarbon gaseous and liquid products such as syngas, gasoline, and diesel. The four thermochemical reactions [...] Read more.
Thermochemical processes use heat and series of endothermic chemical reactions that achieve thermal cracking and convert a wide range of solid waste deposits via four thermochemical processes to hydrocarbon gaseous and liquid products such as syngas, gasoline, and diesel. The four thermochemical reactions investigated in this research article are: incineration, pyrolysis, gasification, and integrated gasification combined cycle (IGCC). The mentioned thermochemical processes are evaluated for energy recovery pathways and environmental footprint based on conceptual design and Aspen HYSYS energy simulation. This paper also provides conceptual process design for four thermochemical processes as well as process evaluation and techno-economic analysis (TEA) including energy consumption, process optimization, product yield calculations, electricity generation and expected net revenue per tonne of feedstock. The techno-economic analysis provides results for large scale thermochemical process technologies at an industrial level and key performance indicators (KPIs) including greenhouse gaseous emissions, capital and operational costs per tonne, electrical generation per tonne for the four mentioned thermochemical processes. Full article
Show Figures

Figure 1

24 pages, 2195 KB  
Article
Optimization of Integrated Gasification Combined-Cycle Power Plant for Polygeneration of Power and Chemicals
by Ammar Bany Ata, Peter Maximilian Seufert, Christian Heinze, Falah Alobaid and Bernd Epple
Energies 2021, 14(21), 7285; https://doi.org/10.3390/en14217285 - 3 Nov 2021
Cited by 13 | Viewed by 3792
Abstract
Efficient and flexible operation is essential for competitiveness in the energy market. However, the CO2 emissions of conventional power plants have become an increasingly significant environmental dilemma. In this study, the optimization of a steam power process of an IGCC was carried [...] Read more.
Efficient and flexible operation is essential for competitiveness in the energy market. However, the CO2 emissions of conventional power plants have become an increasingly significant environmental dilemma. In this study, the optimization of a steam power process of an IGCC was carried out, which improved the overall performance of the plant. CCPP with a subcritical HRSG was modelled using EBSILON Professional. The numerical results of the model were validated by measurements for three different load cases (100, 80, and 60%). The results are in agreement with the measured data, with deviations of less than 5% for each case. Based on the model validation, the model was modified for the use of syngas as feed and the integration of heat into an IGCC process. The integration was optimized with respect to the performance of the CCPP by varying the extraction points, adjusting the steam parameters of the extractions and modifying the steam cycle. For the 100% load case, a steam turbine power achieved increase of +34.2%. Finally, the optimized model was subjected to a sensitivity analysis to investigate the effects of varying the extraction mass flows on the output. Full article
Show Figures

Figure 1

20 pages, 1612 KB  
Article
Multi-Attribute Rating Method for Selecting a Clean Coal Energy Generation Technology
by Wioletta Lipka and Cezary Szwed
Energies 2021, 14(21), 7228; https://doi.org/10.3390/en14217228 - 2 Nov 2021
Cited by 10 | Viewed by 2522
Abstract
The process of technology management contains various stages, such as the identification, selection, acquisition, implementation, and maintenance of technologies. In the case of power generation companies, a key aspect of the selection stage is the choice of generation technologies for newly commissioned units. [...] Read more.
The process of technology management contains various stages, such as the identification, selection, acquisition, implementation, and maintenance of technologies. In the case of power generation companies, a key aspect of the selection stage is the choice of generation technologies for newly commissioned units. The investment decision depends on many factors, primarily economic, environmental, social, technological, and legal, and represents a complex multi-criteria problem. Currently, the decision is further complicated by the often unpredictable tightening of environmental standards, forcing the closure of conventional sources, on which many countries have so far based their energy security. The paper analyzes the problem of choosing one of the so-called clean coal technologies to be implemented in conditions of transformation of the power sector. In this paper, five selected clean coal technologies are characterized, and the SMART method is adopted to technology selection. The following technologies were considered: supercritical coal-fired power plant (with and without CCS), IGCC power plant (with and without CCS), and IGCC power plant with CCS and integrated hydrogen production. Nine practical criteria (in three main groups: environmental, technological, economic) for comparing technologies are defined, computational experiments performed, and conclusions from the research presented. The work was based on the literature study of multi-criteria decision support and an analysis of power sector needs based on the example of the Polish power sector. The conducted research, apart from the technology recommendation, led to the conclusion that the chosen method may be applied to decision-making in the field of power generation technology management. The study also indicated the potential direction of the development of a power generation structure in a situation where a component of ensuring energy security is the use of available coal fuels. Full article
(This article belongs to the Special Issue Energy Decision Making: Problems, Methods, and Tools)
Show Figures

Figure 1

16 pages, 5146 KB  
Article
Synthesis of ZnO-CuO and ZnO-Co3O4 Materials with Three-Dimensionally Ordered Macroporous Structure and Its H2S Removal Performance at Low-Temperature
by Tao Yu, Zhuo Chen, Yundong Wang and Jianhong Xu
Processes 2021, 9(11), 1925; https://doi.org/10.3390/pr9111925 - 27 Oct 2021
Cited by 9 | Viewed by 3548
Abstract
H2S is a common but hazardous impurity in syngas, biogas, or natural gas. For some advanced power generation technologies, such as integrated gasification combined cycle (IGCC), solid oxide fuel cells, H2S content needs to be reduced to an acceptable [...] Read more.
H2S is a common but hazardous impurity in syngas, biogas, or natural gas. For some advanced power generation technologies, such as integrated gasification combined cycle (IGCC), solid oxide fuel cells, H2S content needs to be reduced to an acceptable level. In this work, a series of highly porous Zn-Cu and Zn-Co composites with three-dimensionally ordered macropores (3DOM) structure were synthesized via the colloidal crystal template method and used to remove H2S at 150 °C and one atm. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen adsorption studies, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) were carried out to analyze the fresh and spent adsorbents. The results show that all the adsorbents possess well-ordered macropores, a large surface area, and a highly dispersed active phase. The relative content of Zn and (Cu or Co) has a significant influence on the desulfurization performance of adsorbents. The addition of CuO significantly increases the sulfur capacity and 3DOM-Zn0.5Cu0.5 shows the largest sulfur capacity of all the adsorbents, reaching up to 102.5 mg/g. The multiple adsorption/regeneration cycles of 3DOM-Zn0.5Cu0.5 and 3DOM-Zn0.5Co0.5 indicate that the as-prepared adsorbents are stable, and the sulfur capacity can still exceed 65% of the fresh adsorbents after six cycles. Full article
Show Figures

Figure 1

10 pages, 2573 KB  
Article
Investigation on the Cause of the SO2 Generation during Hot Gas Desulfurization (HGD) Process
by Byungwook Hwang, Jung Hwan Kim, Doyeon Lee, Hyungseok Nam, Ha Na Kim, Jeom In Baek and Ho-Jung Ryu
Catalysts 2021, 11(8), 985; https://doi.org/10.3390/catal11080985 - 17 Aug 2021
Cited by 3 | Viewed by 2299
Abstract
In the integrated gasification combined cycle (IGCC) process, the sulfur compounds present in coal are converted to hydrogen sulfide (H2S) when the coal is gasified. Due to its harmful effects on sorbent/solvent and environmental regulations, H2S needs to be [...] Read more.
In the integrated gasification combined cycle (IGCC) process, the sulfur compounds present in coal are converted to hydrogen sulfide (H2S) when the coal is gasified. Due to its harmful effects on sorbent/solvent and environmental regulations, H2S needs to be removed from the product gas stream. To simulate the H2S removal process, desulfurization was carried out using a dry sorbent as a fluidizing material within a bubbling, high-temperature fluidized bed reactor. The ZnO-based sorbent showed not only an excellent capacity of H2S removal but also long-term stability. However, unexpected SO2 gas at a concentration of several hundred ppm was detected during the desulfurization reaction. Thus, we determined that there is an unknown source that supplies oxygen to ZnS, and identified the oxygen supplier through three possibilities: oxygen by reactant (fresh sorbent, ZnO), byproduct (ZnSO4), and product (H2O). From the experiment results, we found that the H2O produced from the reaction reacts with ZnS, resulting in SO2 gas being generated during desulfurization. The unknown oxygen source during desulfurization was deduced to be oxygen from H2O produced during desulfurization. That is, the oxygen from produced H2O reacts with ZnS, leading to SO2 generation at high temperature. Full article
(This article belongs to the Special Issue Exhaust Gas Control Catalysis)
Show Figures

Figure 1

24 pages, 4815 KB  
Article
Techno-Economic Assessment of IGCC Power Plants Using Gas Switching Technology to Minimize the Energy Penalty of CO2 Capture
by Szabolcs Szima, Carlos Arnaiz del Pozo, Schalk Cloete, Szabolcs Fogarasi, Ángel Jiménez Álvaro, Ana-Maria Cormos, Calin-Cristian Cormos and Shahriar Amini
Clean Technol. 2021, 3(3), 594-617; https://doi.org/10.3390/cleantechnol3030036 - 10 Aug 2021
Cited by 8 | Viewed by 5697
Abstract
Cost-effective CO2 capture and storage (CCS) is critical for the rapid global decarbonization effort recommended by climate science. The increase in levelized cost of electricity (LCOE) of plants with CCS is primarily associated to the large energy penalty involved in CO2 [...] Read more.
Cost-effective CO2 capture and storage (CCS) is critical for the rapid global decarbonization effort recommended by climate science. The increase in levelized cost of electricity (LCOE) of plants with CCS is primarily associated to the large energy penalty involved in CO2 capture. This study therefore evaluates three high-efficiency CCS concepts based on integrated gasification combined cycles (IGCC): (1) gas switching combustion (GSC), (2) GSC with added natural gas firing (GSC-AF) to increase the turbine inlet temperature, and (3) oxygen production pre-combustion (OPPC) that replaces the air separation unit (ASU) with more efficient gas switching oxygen production (GSOP) reactors. Relative to a supercritical pulverized coal benchmark, these options returned CO2 avoidance costs of 37.8, 22.4 and 37.5 €/ton (including CO2 transport and storage), respectively. Thus, despite the higher fuel cost and emissions associated with added natural gas firing, the GSC-AF configuration emerged as the most promising solution. This advantage is maintained even at CO2 prices of 100 €/ton, after which hydrogen firing can be used to avoid further CO2 cost escalations. The GSC-AF case also shows lower sensitivity to uncertain economic parameters such as discount rate and capacity factor, outperforms other clean energy benchmarks, offers flexibility benefits for balancing wind and solar power, and can achieve significant further performance gains from the use of more advanced gas turbine technology. Based on all these insights, the GSC-AF configuration is identified as a promising solution for further development. Full article
(This article belongs to the Special Issue CO2 Capture and Sequestration)
Show Figures

Figure 1

12 pages, 2448 KB  
Article
Loss Characterization of a Conventional Variable Inlet Guide Vane
by Roman G. Frank, Christian Wacker and Reinhard Niehuis
Int. J. Turbomach. Propuls. Power 2021, 6(3), 30; https://doi.org/10.3390/ijtpp6030030 - 26 Jul 2021
Cited by 5 | Viewed by 10137
Abstract
Variable inlet guide vanes (VIGVs) are most commonly used as the major control unit of integrally geared centrifugal compressors (IGCCs). In order to enhance the efficient operating range of the compressor, the loss mechanisms and utilization limits of state-of-the-art VIGVs need to be [...] Read more.
Variable inlet guide vanes (VIGVs) are most commonly used as the major control unit of integrally geared centrifugal compressors (IGCCs). In order to enhance the efficient operating range of the compressor, the loss mechanisms and utilization limits of state-of-the-art VIGVs need to be better understood. Field measurements in the wake of a typical, commercially used configuration were therefore conducted at the VIGV test facility of the Bundeswehr University Munich. The investigations were carried out at application oriented subsonic flow conditions and stagger angles from 50 to 90 covering the full low-loss operating range, including the limits of efficient operation. For a precise local loss characterization, an inflow correlation was developed and applied to consider total pressure inhomogeneities caused by the radial inflow velocity profile and minor circumferential velocity deviations. Contrary to previous research efforts, not only the profile losses, but also the secondary flow losses induced by the open blade tips and wall-blade interactions were resolved in full detail. For this reason, a more precise and comprehensive loss assessment of realistic VIGV cascades is acquired. Full article
Show Figures

Figure 1

Back to TopTop