Techno-Economic Efficiency Estimation of Promising Integrated Oxyfuel Gasification Combined-Cycle Power Plants with Carbon Capture
Abstract
:1. Introduction
2. A Brief Review of Coal-Fired IGCC Plants
3. Calculation of Technical and Economic Characteristics of Coal-Fired IGCC Plants with CO2 Capture
4. Initial Data and Calculation Results
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Filippov, S.P.; Dil’man, M.D. Renewable Energy: System Effects. In Proceedings of the 12th International Conference “Modeling of Large Systems Development MLSD’2019”, Moscow, Russia, 1–3 October 2019; pp. 558–567. (In Russian). [Google Scholar] [CrossRef]
- Leung, D.Y.C.; Caramanna, G.; Maroto-Valer, M.M. An overview of current status of carbon dioxide capture and storage technologies. Renew. Sustain. Energy Rev. 2014, 39, 426–443. [Google Scholar] [CrossRef]
- Cau, G.; Tola, V.; Ferrara, F.; Porcu, A.; Pettinau, A. CO2-free coal-fired power generation by partial oxy-fuel and post-combustion CO2 capture: Techno-economic analysis. Fuel 2018, 214, 423–435. [Google Scholar] [CrossRef]
- Yadav, S.; Mondal, S.S. A review on the progress and prospects of oxy-fuel carbon capture and sequestration (CCS) technology. Fuel 2022, 308, 122057. [Google Scholar] [CrossRef]
- Ryzhkov, A.F.; Bogatova, T.F.; Maslennikov, G.E.; Osipov, P.V.; Nizov, V.A. Creation of energy-efficient and environmentally friendly energy sources on fossil fuels to address global climate issues. J. Phys. Conf. Ser. 2020, 1677, 012115. [Google Scholar] [CrossRef]
- Ringrose, P. How to Store CO2 Underground: Insights from Early-Mover CCS Projects; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Feron, P.H.M.; Cousins, A.; Jiang, K.; Zhai, R.; Garcia, M. An update of the benchmark post-combustion CO2-capture technology. Fuel 2020, 273, 117776. [Google Scholar] [CrossRef]
- Ryzhkov, A.F.; Bogatova, T.F.; Maslennikov, G.E.; Osipov, P.V. A new approach to the development of zero-emission power generation system. J. Phys. Conf. Ser. 2020, 1675, 012121. [Google Scholar] [CrossRef]
- Chen, W.-H.; Tsai, C.-W.; Lin, Y.-L.; Chein, R.-Y.; Yu, C.-T. Reaction phenomena of high-temperature water gas shift reaction in a membrane reactor. Fuel 2017, 199, 358–371. [Google Scholar] [CrossRef]
- Ryzhkov, A.; Bogatova, T.; Gordeev, S. Technological solutions for an advanced IGCC plant. Fuel 2018, 214, 63–72. [Google Scholar] [CrossRef]
- Allam, R.; Palmer, M.R.; Brown, G.W., Jr.; Fetvedt, J.; Freed, D.; Nomoto, H.; Itoh, M.; Okita, N.; Jones, C., Jr. High Efficiency and Low Cost of Electricity Generation from Fossil Fuels While Eliminating Atmospheric Emissions, Including Carbon Dioxide. Energy Proc. 2013, 37, 1135–1149. [Google Scholar] [CrossRef]
- Allam, R.; Martin, S.; Forrest, B.; Fetvedt, J.; Lu, X.; Freed, D.; Brown Jr., G. W.; Sasaki, T.; Itoh, M.; Manning, J. Demonstration of the Allam Cycle: An Update on the Development Status of a High Efficiency Supercritical Carbon Dioxide Power Process Employing Full Carbon Capture. Energy Proc. 2017, 114, 5948–5966. [Google Scholar] [CrossRef]
- Kosoi, A.S.; Zeigarnik, Y.A.; Popel, O.S.; Sinkevich, M.V.; Filippov, S.P.; Shterenberg, V.Y. The Conceptual Process Arrangement of a Steam–Gas Power Plant with Fully Capturing Carbon Dioxide from Combustion Products. Therm. Eng. 2018, 65, 597–605. [Google Scholar] [CrossRef]
- Shchinnikov, P.A.; Sadkin, I.S.; Shchinnikov, A.P.; Cheganova, N.F.; Vorogushina, N.I. Influence of the initial parameters on the thermodynamic efficiency of carbon dioxide power cycles. J. Phys. Conf. Ser. 2022, 2150, 012011. [Google Scholar] [CrossRef]
- Oki, Y.; Hara, S.; Umemoto, S.; Kidoguchi, K.; Hamada, H.; Kobayashi, M.; Nakao, Y. Development of high-efficiency oxy-fuel IGCC system. Energy Proc. 2014, 63, 471–475. [Google Scholar] [CrossRef]
- Ishi, H.; Hayashi, T.; Tada, H.; Yokohama, K.; Takashima, R.; Hayashi, J. Critical assessment of oxy-fuel integrated coal gasification combined cycles. Appl. Energy 2019, 233, 156–169. [Google Scholar] [CrossRef]
- Oki, Y.; Hamada, H.; Kobayashi, M.; Nakao, Y.; Hara, S. Development of high-efficiency oxy-fuel IGCC system. Mech. Eng. J. 2016, 3, 16-00351. [Google Scholar] [CrossRef]
- Oki, Y.; Hamada, H.; Kobayashi, M.; Yuri, I.; Hara, S. Development of High-Efficiency Oxy-Fuel IGCC System. In Proceedings of the ASME 2017 Power Conference Joint with ICOPE-17, Charlotte, CA, USA, 26–30 June 2017; p. 3024. [Google Scholar] [CrossRef]
- Svishchev, D.A.; Keiko, A.V. A thermodynamic analysis of operating conditions under which coal-water fuel is gasified in flow. Therm. Eng. 2010, 57, 490–494. [Google Scholar] [CrossRef]
- Nikitin, A.D. Influence of Water Vapours on Physico-Chemical Processes in IGCC. Ph.D. Thesis, Ural Federal Univ., Ekaterinburg, Russia, 2021. (In Russian). [Google Scholar]
- Donskoy, I.G. How water vapor and carbon dioxide additives affect oxygen gasification of pulverized coal fuel. Bull. South Ural. St. Univ. Ser. Power Eng. 2021, 21, 21–28. [Google Scholar] [CrossRef]
- Donskoy, I.G. Influence of coal-biomass fuel composition on the efficiency of its conversion in entrained-flow gasifiers. Solid. Fuel Chem. 2019, 53, 113–119. [Google Scholar] [CrossRef]
- Chen, Y.; Sheng, C. Modeling of a single char particle burning in oxygen-enriched O2/N2 and O2/CO2 environment with single film model. Fuel 2016, 184, 905–914. [Google Scholar] [CrossRef]
- Liu, S.; Wen, L.; Niu, Y.; Yan, B.; Lei, Y.; Wang, D.; Hui, S. Separate physicochemical effects of CO2 on the coal char combustion: An experimental and kinetic study. Combust. Flame 2022, 235, 111717. [Google Scholar] [CrossRef]
- Botero, C.; Field, R.P.; Herzog, H.J.; Ghoniem, A.F. Impact of finite-rate kinetics on carbon conversion in a high-pressure, single-stage entrained flow gasifier with coal-CO2 slurry feed. Appl. Energy 2013, 104, 408–417. [Google Scholar] [CrossRef]
- Watanabe, H.; Ahn, S.; Tanno, K. Numerical investigation of effects of CO2 recirculation in an oxy-fuel IGCC on gasification characteristics of a two-stage entrained flow coal gasifier. Energy 2017, 118, 181–189. [Google Scholar] [CrossRef]
- Donskoy, I. A Numerical Study of the Influence of Process Parameters on the Efficiency of Staged Coal Gasification Using Mixtures of Oxygen and Carbon Dioxide. Energy Syst. Res. 2021, 4, 27–34. [Google Scholar] [CrossRef]
- Higman, C.; Tam, S. Advances in Coal Gasification, Hydrogenation, and Gas Treating for the Production of Chemicals and Fuels. Chem. Rev. 2014, 114, 1673–1708. [Google Scholar] [CrossRef] [PubMed]
- Taamallah, S.; Vogiatzaki, K.; Alzahrani, F.M.; Mokheimer, E.M.A.; Habib, M.A.; Ghoniem, A.F. Fuel flexibility, stability and emissions in premixed hydrogen-rich gas turbine combustion: Technology, fundamentals, and numerical simulations. Appl. Energy 2015, 154, 1020–1047. [Google Scholar] [CrossRef]
- Ryzhkov, A.F.; Bogatova, T.F.; Levin, E.I. Solid Fuel Combined Cycle Technologies; Ural Federal Univ.: Ekaterinburg, Russia, 2018. (In Russian) [Google Scholar]
- Tumanovskii, A.G. Prospects for the development of coal-steam plants in Russia. Therm. Eng. 2017, 64, 399–407. [Google Scholar] [CrossRef]
- Cormos, A.-M.; Dinca, C.; Cormos, C.-C. Multi-fuel multi-product operation of IGCC power plants with carbon capture and storage (CCS). Appl. Therm. Eng. 2015, 74, 20–27. [Google Scholar] [CrossRef]
- Nozdrenko, G.V. Efficiency of Environmentally Promising Energo-Technology Power Plants with New Coal Technologies Use in Kansko-Achinsk Fuel Energy Complex; Novosibirsk Electro-Technical Institute: Novosibirsk, Russia, 1992. (In Russian) [Google Scholar]
- Kler, A.M.; Tyurina, E.A.; Mednikov, A.S. A plant for methanol and electricity production: Technical-economic analysis. Energy 2018, 165B, 890–899. [Google Scholar] [CrossRef]
- Yang, Z.; Wu, Y.; Zhang, Z.; Li, H.; Li, X.; Egorov, R.I.; Strizhak, P.A.; Gao, X. Recent advances in co-thermochemical conversions of biomass with fossil fuels focusing on the synergistic effects. Renew. Sustain. Energy Rev. 2019, 103, 384–398. [Google Scholar] [CrossRef]
- Glushkov, D.O.; Strizhak, P.A.; Chernetskii, M.Y. Organic coal-water fuel: Problems and advances (Review). Therm. Eng. 2016, 63, 707–717. [Google Scholar] [CrossRef]
- Ouyang, Z.; Ding, H.; Liu, W.; Li, S.; Cao, X. Effect of the staged secondary air on NOx emission of pulverized semi-coke flameless combustion with coal preheating technology. Fuel 2021, 291, 120137. [Google Scholar] [CrossRef]
- Messerle, V.E.; Ustimenko, A.B.; Lavrischev, O.A. Comparative study of coal plasma gasification: Simulation and experiment. Fuel 2016, 164, 172–179. [Google Scholar] [CrossRef]
- Burdukov, A.P.; Popov, V.I.; Chernetskiy, M.Y.; Dekterev, A.A.; Hanjalic, K. Mechanical activation of micronized coal: Prospects for new combustion applications. Appl. Therm. Eng. 2015, 74, 174–181. [Google Scholar] [CrossRef]
- Chernetskiy, M.; Dekterev, A.; Chernetskaya, N.; Hanjalic, K. Effects of reburning mechanically-activated micronized coal on reduction of NOx: Computational study of a real-scale tangentially-fired boiler. Fuel 2018, 214, 215–229. [Google Scholar] [CrossRef]
- Kuznetsov, V.; Chernetskiy, M.; Abaimov, N.; Ryzhkov, A. Study of the two-stage gasification process of pulverized coal with a combined countercurrent and concurrent flow system. MATEC Web Conf. 2017, 115, 03008. [Google Scholar] [CrossRef]
- Anufriev, I.S.; Strizhak, P.A.; Chernetskii, M.Y.; Shadrin, E.Y.; Sharypov, O.V. Aerodynamics of a promising vortex furnace design. Tech. Phys. Lett. 2015, 41, 727–730. [Google Scholar] [CrossRef]
- Di Giuliano, A.; Capone, S.; Anatone, M.; Galluchi, K. Chemical Looping Combustion and Gasification: A Review and a Focus on European Research Projects. Ind. Eng. Chem. Res. 2022, 61, 14403–14432. [Google Scholar] [CrossRef]
- Kuznetsov, B.N. Catalysis of Chemical Reactions of Coal and Biomass; Nauka: Novosibirsk, Russia, 1990. (In Russian) [Google Scholar]
- Zhou, H.; Guo, X.; Zhou, M.; Ma, W.; Dahri, M.W.; Cen, K. Optimization of ammonia injection grid in hybrid selective non-catalyst reduction and selective catalyst reduction system to achieve ultra-low NOx emissions. J. Energy Inst. 2018, 91, 984–996. [Google Scholar] [CrossRef]
- Nitskevich, E.A. Use of high-temperature nuclear reactors for technological aims. Teploenergetika 1984, 31, 71–72. (In Russian) [Google Scholar]
- Inaba, Y.; Fumizava, M.; Tonogouchi, M.; Takenaka, Y. Coal gasification system using nuclear heat for ammonia production. Appl. Energy 2000, 67, 395–406. [Google Scholar] [CrossRef]
- Wheeler, V.M.; Bader, R.; Kreider, P.B.; Hangi, M.; Haussener, S.; Lipinski, W. Modelling of solar thermochemical reaction systems. Sol. Energy 2017, 156, 149–168. [Google Scholar] [CrossRef]
- Duan, T.; Lu, C.; Xiong, S.; Fu, Z.; Zhang, B. Evaluation method of the energy conversion efficiency of coal gasification and related applications. Int. J. Energy Res. 2016, 40, 168–180. [Google Scholar] [CrossRef]
- thyssenkrupp Industrial Solutions AG. Gasification Technologies; thyssenkrupp Industrial Solutions AG: Essen, Germany, 2019. [Google Scholar]
- Laugwitz, A.; Grabner, M.; Meyer, B. Availability analysis of integrated gasification combined cycle (IGCC) power plants. In Power Plant Life Management and Performance Improvement; Woodhead Publ.: Cambridge, UK, 2011; pp. 110–142. [Google Scholar] [CrossRef]
- Stiegel, G.J.; Maxwell, R.C. Gasification technologies: The path to clean, affordable energy in the 21st century. Fuel Proc. Technol. 2001, 71, 79–97. [Google Scholar] [CrossRef]
- Lako, P. Coal-Fired Power Technologies. Coal-Fired Power Options on The Brink of Climate Policies (ECN-C-04-076); ECN: Petten, The Netherlands, 2004. [Google Scholar]
- Akimoto, K.; Tomoda, T.; Fujii, Y. Development of a mixed integer programming for technology development strategy and its application to IGCC technologies. Energy 2005, 30, 1176–1191. [Google Scholar] [CrossRef]
- Melchior, T.; Madlener, R. Economic evaluation of IGCC plants with hot gas cleaning. Appl. Energy 2012, 97, 170–184. [Google Scholar] [CrossRef]
- Brouwer, A.S.; van der Broek, M.; Seebregts, A.; Faaij, A. Operational flexibility and economics of power plants in future low-carbon power systems. Appl. Energy 2015, 156, 107–128. [Google Scholar] [CrossRef]
- Olkhovskii, G.G. New projects for CCGTs with coal gasification (Review). Therm. Eng. 2016, 63, 679–689. [Google Scholar] [CrossRef]
- Phillips, J.N.; Booras, G.S.; Marasigan, J. The History of Integrated Gasification Combined-Cycle Power Plants. In Proceedings of the ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition GT 2017, Charlotte, NC, USA, 26–30 June 2017; p. V003T03A007. [Google Scholar] [CrossRef]
- Campbell, P.E.; Mcmullan, J.T.; Williams, B.C. Concept of a competitive coal fired integrated gasification combined cycle power plant. Fuel 2000, 79, 1031–1040. [Google Scholar] [CrossRef]
- Feng, W. China’s national demonstration project achieves around 50% net efficiency with 600 °C class materials. Fuel 2018, 223, 344–353. [Google Scholar] [CrossRef]
- Wang, L.; Yang, Y.; Dong, C.; Morosuk, T.; Tsartsaronis, G. Multi-objective optimization of coal-fired power plants using differential evolution. Appl. Energy 2014, 115, 254–264. [Google Scholar] [CrossRef]
- Kler, A.M.; Zharkov, P.V.; Epishkin, N.O. Parametric optimization of supercritical power plants using gradient methods. Energy 2019, 189, 116230. [Google Scholar] [CrossRef]
- Lin, X.; Li, Q.; Wang, L.; Guo, Y.; Liu, Y. Thermo-economic analysis of typical thermal systems and corresponding novel system for a 1000 MW single reheat ultra-supercritical thermal power plant. Energy 2020, 201, 117560. [Google Scholar] [CrossRef]
- Li, S.; Zhang, X.; Gao, L.; Jin, H. Learning rates and future cost curves for fossil fuel energy systems with CO2 capture: Methodology and case studies. Appl. Energy 2012, 93, 348–356. [Google Scholar] [CrossRef]
- Giuffrida, A.; Romano, M.C.; Lozza, G. Thermodynamic analysis of air-blown gasification for IGCC applications. Appl. Energy 2011, 88, 3949–3958. [Google Scholar] [CrossRef]
- Shi, B.; Xu, W.; Wu, E.; Wu, W.; Kuo, P.-C. Novel design of integrated gasification combined cycle (IGCC) power plants with CO2 capture. J. Clean. Prod. 2018, 195, 176–186. [Google Scholar] [CrossRef]
- Wu, F.; Argyle, M.D.; Dellenback, P.A.; Fan, M. Progress in O2 separation for oxy-fuel combustion—A promising way for cost-effective CO2 capture: A review. Prog. Energy Combust. Sci. 2018, 67, 188–205. [Google Scholar] [CrossRef]
- Tsuji, H.; Gupta, A.K.; Hasewaga, T.; Katsuki, M.; Kishimoto, K.; Morita, M. High Temperature Air Combustion. From Energy Conservation to Pollution Reduction; CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar] [CrossRef]
- Kobayashi, H.; Yoshikawa, K.; Tuji, K.; Shioda, S. Analysis of power generation system on gasification of coal and solid wastes using high temperature air. In International Conference on MHD Power Generation and High Temperature Technologies; PRC: Beijing, China, 1999; pp. 12–15. [Google Scholar]
- Yoshikawa, K. High Temperature Gasification of Coal, Biomass, and Solid Wastes. In Proceedings of the 2nd International Seminar on High Temperature Air Combustion, Stockholm, Sweden, 17–18 January 2000. [Google Scholar]
- Kler, A.M.; Marinchenko, A.Y.; Potanina, Y.M. Development of mathematical model of the system of high-temperature ceramic heat exchangers of periodic action. Bull. Tomsk. Polytechnic. Univ. 2019, 329, 26–35. [Google Scholar] [CrossRef]
- Kunze, C.; Riedl, K.; Spliethoff, H. Structured exergy analysis of an integrated gasification combined cycle (IGCC) plant with carbon capture. Energy 2011, 36, 1480–1487. [Google Scholar] [CrossRef]
- Kunze, C.; De, S.; Spliethoff, H. A novel IGCC plant with membrane oxygen separation and carbon capture by carbonation-calcination loop. Int. J. Greenh. Gas Control. 2011, 5, 1176–1183. [Google Scholar] [CrossRef]
- Kagramanov, Y.; Tuponogov, V.; Ryzhkov, A.; Nikitin, A. Multiple Gas-Solid Reactions in a Porous Sorbent Applied to Warm Gas Desulfurization. Ind. Eng. Chem. Res. 2020, 59, 12943–12954. [Google Scholar] [CrossRef]
- Giuffrida, A.; Romano, M.C.; Lozza, G.G. Thermodynamic assessment of IGCC power plants with hot fuel gas desulfurization. Appl. Energy 2010, 87, 3374–3383. [Google Scholar] [CrossRef]
- Muller, M. Integration of hot gas cleaning at temperatures above the ash melting point in IGCC. Fuel 2013, 108, 37–41. [Google Scholar] [CrossRef]
- Lykova, S.A. Highly efficient hydrid power generation based on fuel cells. Therm. Eng. 2002, 49, 54–60. [Google Scholar]
- Ghosh, S.; De, S. Energy analysis of a cogeneration plant using coal gasification and solid oxide fuel cell. Energy 2006, 31, 345–363. [Google Scholar] [CrossRef]
- Grigoruk, D.G.; Kasilova, E.V. Parametric study of hydrid thermal plant schemes with fuel cells fed by coal gasification products and with CO2 capture. Energetik 2012, 12, 39–41. (In Russian) [Google Scholar]
- Thattai, A.T.; Oldenbroek, V.; Schoenmakers, L.; Woudstra, T.; Aravind, P.V. Towards retrofitting integrated gasification combined cycle (IGCC) power plants with solid oxide fuel cells (SOFC) and CO2 capture—A thermodynamic case study. Appl. Therm. Eng. 2017, 114, 170–185. [Google Scholar] [CrossRef]
- Zhang, X. Current status of stationary fuel cells for coal power generation. Clean Energy 2018, 2, 126–139. [Google Scholar] [CrossRef]
- Peng, S. Current status of national integrated gasification fuel cell projects in China. Int. J. Coal Sci. Technol. 2021, 8, 327–334. [Google Scholar] [CrossRef]
- Wei, C.; Liu, Z.; Li, C.; Singh, S.; Lu, H.; Gong, Y.; Li, P.; Wang, H.; Yang, X.; Xu, M.; et al. Status of an MWth integrated gasification fuel cell power-generation system in China. Int. J. Coal Sci. Technol. 2021, 8, 401–411. [Google Scholar] [CrossRef]
- Bogatova, T.F.; Busorgin, V.A.; Ruzhkov, A.F. Solid fuel IGCC with partial gasification. Vopr. Sovrem. Nauk. I Prakt. 2007, 2, 174–180. (In Russian) [Google Scholar]
- Zhang, G.; Yang, Y.; Jin, H.; Xu, G.; Zhang, K. Proposed combined-cycle power system based on oxygen-blown coal partial gasification. Appl. Energy 2013, 102, 735–745. [Google Scholar] [CrossRef]
- Aslanyan, G.S.; Ivanov, P.P.; Medin, S.A. Analysis of efficiency if combined power cycle power plants with two-stage coal combustion. Teploenergetika 1995, 6, 44–47. (In Russian) [Google Scholar]
- Blokhin, A.I.; Karev, A.N.; Keneman, F.E.; Stel’makh, G.P. Internal coal pyrolysis combined cycle mini-power plants. Elektr. Stantsii 2005, 7, 25–33. (In Russian) [Google Scholar]
- Nakoryakov, V.E.; Nozdrenko, G.V.; Kuzmin, A.G. Investigation of coal fired combined-cycle cogeneration plants for power, heat, syngas, and hydrogen. Thermophys. Aeromech. 2009, 16, 515–520. [Google Scholar] [CrossRef]
- Kler, A.M.; Tyurina, E.A.; Mednikov, A.S. Energy-technology installations for combined production of hydrogen and electricity with CO2 removal systems. Int. J. Hydrogen Energy 2011, 36, 1230–1235. [Google Scholar] [CrossRef]
- Cormos, C.-C. Integrated assessment of IGCC power generation technology with carbon capture and storage. Energy 2012, 42, 434–445. [Google Scholar] [CrossRef]
- Tyurina, E.; Mednikov, A.; Zharkov, P. Clean Coal Technologies for Electricity and Synthetic Liquid Fuel Production for Distributed Generation. Environ. Clim. Technol. 2020, 24, 124–135. [Google Scholar] [CrossRef]
- Cormos, A.-M.; Cormos, C.-C. Techno-economic assessment of combined hydrogen & power co-generation with carbon capture: The case of coal gasification. Appl. Therm. Eng. 2019, 147, 29–39. [Google Scholar] [CrossRef]
- Meerman, J.C.; Ramirez, A.; Turkenburg, W.C.; Faaij, A.P.C. Performance of simulated flexible integrated gasification polygeneration facilities, Part B: Economic evaluation. Renew. Sustain. Energy Rev. 2012, 16, 6083–6102. [Google Scholar] [CrossRef]
- Perez-Fortes, M.; Bojarski, A.D.; Puigjuaner, L. Advanced simulation environment for clean power production in IGCC plants. Comp. Chem. Eng. 2011, 35, 1501–1520. [Google Scholar] [CrossRef]
- Syrodoy, S.V.; Kuznetsov, G.V.; Malyshev, D.Y.; Kostoreva, Z.A.; Purin, M.V. Flame Propagation Characteristics in the Boundary Layer of the Bio-Water-Coal Fuel Particle During its Ignition. Combust. Sci. Technol. 2022. [Google Scholar] [CrossRef]
- Sofia, D.; Llano, P.C.; Giuliano, A.; Hernandez, M.I.; Pena, F.G.; Barletta, D. Co-gasification of coal-petcoke and biomass in the Puertollano IGCC power plant. Chem. Eng. Res. Des. 2014, 92, 1428–1440. [Google Scholar] [CrossRef]
- van Dongen, A.; Kamaar, M. Co-gasification at the Buggenum IGCC power plant. DGMK-Fachbereichstagung Energetische Nutz. Von Biomassen 2006, 24, 26. [Google Scholar]
- Olivieri, A.; Ravelli, S. Cogasification of Coal and Biomass in an Integrated Gasification Combined Cycle Power Plant: Effects on Thermodynamic Performance and Gas Composition. J. Energy Eng. 2020, 146, 04020071. [Google Scholar] [CrossRef]
- Long III, H.A.; Wang, T. Parametric techno-economic studies of coal/biomass co-gasification for IGCC plants with carbon capture using various coal ranks, fuel-feeding schemes, and syngas cooling methods. Int. J. Energy Res. 2016, 40, 473–496. [Google Scholar] [CrossRef]
- Trop, P.; Agrez, M.; Urbancl, D.; Goricanec, D. Co-gasification of torrefied wood biomass and sewage sludge. Comp. Chem. Eng. 2016, 38, 2229–2234. [Google Scholar] [CrossRef]
- Ali, D.A.; Gadalla, M.A.; Abdelaziz, O.Y.; Hulteberg, C.P.; Ashour, F.H. Co-gasification of coal and biomass wastes in an entrained flow gasifier: Modelling, simulation and integration opportunities. J. Nat. Gas Sci. Eng. 2017, 37, 126–137. [Google Scholar] [CrossRef]
- Kanniche, M.; Le Moullec, Y.; Authier, O.; Hagi, H.; Bontemps, D.; Neveux, T.; Louis-Louisy, M. Up-to-date CO2 Capture in Thermal Power Plants. Energy Proc. 2017, 114, 95–103. [Google Scholar] [CrossRef]
- Clean Coal’ Technologies, Carbon Capture & Sequestration. Available online: https://world-nuclear.org/information-library/energy-and-the-environment/clean-coal-technologies.aspx (accessed on 20 January 2023).
- Kunze. C.; Spliethoff. H. Modelling of an IGGC plant with carbon capture for 2020. Fuel Proc. Technol. 2010, 91, 934–941. [Google Scholar] [CrossRef]
- Majoumerd, M.M.; De, S.; Assadi, M.; Breuhaus, P. An EU initiative for future generation of IGCC power plants using hydrogen-rich syngas: Simulation results for the baseline configuration. Appl. Energy 2012, 99, 280–290. [Google Scholar] [CrossRef]
- Martelli, E.; Kreutz, T.; Consonni, S. Comparison of coal IGCC with and without CO2 capture and storage: Shell gasification with standard vs. partial water quench. Energy Proc. 2009, 1, 607–614. [Google Scholar] [CrossRef] [Green Version]
- Moioli, S.; Giuffrida, A.; Romano, M.C.; Pellegrini, L.A.; Lozza, G. Assessment of MDEA absorption process for sequential H2S removal and CO2 capture in air-blown IGCC plants. Appl. Energy 2016, 183, 1452–1470. [Google Scholar] [CrossRef]
- Descamps, C.; Bouallou, C.; Kanniche, M. Efficiency of an integrated gasification combined cycle (IGCC) power plant including CO2 removal. Energy 2008, 33, 874–881. [Google Scholar] [CrossRef]
- Chen, C.; Rubin, E.S. CO2 control technology effects on IGCC preformance and cost. Energy Policy 2009, 37, 915–924. [Google Scholar] [CrossRef]
- Liszka, M.; Malik, T.; Budnik, M.; Ziebik, A. Comparison of IGCC (integrated gasification combined cycle) and CFB (circulating fluidized bed) cogeneration plants equipped with CO2 removal. Energy 2013, 58, 86–96. [Google Scholar] [CrossRef]
- Supekar, S.D.; Skerlos, S.J. Reassessing the Efficiency Penalty from Carbon Capture in Coal-Fired Power Plants. Environ. Sci. Technol. 2015, 49, 12576–12584. [Google Scholar] [CrossRef] [PubMed]
- Tola, V.; Pettinau, A. Power generation plants with carbon capture and storage: A techno-economic comparison between coal combustion and gasification technologies. Appl. Energy 2014, 113, 1461–1474. [Google Scholar] [CrossRef]
- Xia, C.; Ye, B.; Jiang, J.; Shu, Y. Prospect of near-zero-emission IGCC power plants to decarbonize coal-fired power generation in China: Implications from the GreenGen project. J. Clean. Prod. 2020, 271, 122615. [Google Scholar] [CrossRef]
- Ishida, K. Out Line of the Osaki CoolGen Project. In Proceedings of the ASME 2017 Power Conference, Charlotte, NC, USA, 26–30 June 2017; p. V001T04A031. [Google Scholar] [CrossRef]
- Martins, S.; Forrest, B.; Rafati, N.; Lu, X.; Fetvedt, J.; McGroddy, M.; Brown, B.; Allam, R.; Beauchamp, D.; Freed, D. Progress Update on the Allam Cycle: Commercialization of Net Power and the Net Power Demonstration Facility. In Proceedings of the 14th Greenhouse Gas Control. Technologies Conference GHGT-14, Melbourne, Australia, 21–26 October 2018. [Google Scholar] [CrossRef]
- Park, S.H.; Kim, J.Y.; Yoon, M.K.; Rhim, D.R.; Yeom, C.S. Thermodynamic and economic investigation of coal-fired power plant combined with various supercritical CO2 Brayton power cycle. Appl. Therm. Eng. 2018, 130, 611–623. [Google Scholar] [CrossRef]
- Weiland, N.T.; White, C.W. Techno-economic analysis of an integrated gasification direct-fired supercritical CO2 power cycle. Fuel 2018, 212, 613–625. [Google Scholar] [CrossRef]
- International Energy Agency. Energy Technology Perspectives 2020; International Energy Agency, 2021; Available online: https://www.iea.org/reports/energy-technology-perspectives-2020 (accessed on 19 December 2022).
- Tollefson, J. US government abandons carbon-capture demonstration. Nature 2015. [Google Scholar] [CrossRef]
- Roddy, D.J.; Younger, P.L. Underground coal gasification with CCS: A pathway to decarbonising industry. Energy Environ. Sci. 2010, 3, 400–407. [Google Scholar] [CrossRef]
- Lee, W.-S.; Lee, J.-C.; Oh, H.-T.; Baek, S.-W.; Oh, M.; Lee, C.-H. Performance, economic and exergy analyses of carbon capture processes for a 300 MW class integrated gasification combined cycle power plant. Energy 2017, 134, 731–742. [Google Scholar] [CrossRef]
- Oh, H.-T.; Lee, W.-S.; Ju, Y.; Lee, C.-H. Performance evaluation and carbon assessment of IGCC power plant with coal quality. Energy 2019, 188, 116063. [Google Scholar] [CrossRef]
- Fu, L.; Ren, Z.; Si, W.; Ma, Q.; Huang, W.; Liao, K.; Huang, Z.; Wang, Y.; Li, J.; Xu, P. Research progress on CO2 capture and utilization technology. J. CO2 Util. 2022, 66, 102260. [Google Scholar] [CrossRef]
- Shen, Y. Preparation of renewable porous carbons for CO2 capture—A review. Fuel Proc. Technol. 2022, 236, 107437. [Google Scholar] [CrossRef]
- Rezvani, S.; Huang, Y.; McIlveen-Wright, D.; Hewitt, N.; Mondol, J.D. Comparative assesment of coal fired IGCC systems with CO2 parture using physical absorption, membrane reactors and chemical looping. Fuel 2009, 88, 2463–2472. [Google Scholar] [CrossRef]
- Merkel, T.C.; Zhou, M.; Baker, R.W. Carbon dioxide capture with membranes at an IGCC power plant. J. Memb. Sci. 2012, 389, 441–450. [Google Scholar] [CrossRef]
- Rosner, F.; Chen, Q.; Rao, A.; Samuelsen, S. Thermo-economic analyses of isothermal water gas shift reactor integrations into IGCC power plant. Appl. Energy 2020, 277, 115500. [Google Scholar] [CrossRef]
- Giuffrida, A.; Moioli, S.; Romano, M.C.; Lozza, G. Lignite-fired air-blown IGCC systems with pre-combustion CO2 capture. Int. J. Energy Res. 2016, 40, 831–845. [Google Scholar] [CrossRef]
- Chen, L.; Yong, S.Z.; Ghoniem, A.F. Oxy-fuel combustion of pulverized coal: Characterization, fundamentals, stabilization and CFD-modeling. Prog. Energy Combust. Sci. 2012, 38, 156–214. [Google Scholar] [CrossRef]
- Romano, M.C.; Lozza, G.G. Long-term coal gasification-based power with near-zero emissions. Part B: Zecomag and oxy-fuel IGCC cycles. Int. J. Greenhouse Gas Control. 2010, 4, 469–477. [Google Scholar] [CrossRef]
- Naidu, V.S.; Aghalayam, P.; Jayanti, S. Improving efficiency of CCS-enabled IGCC power plant through the use of recycle flue gas for coal gasification. Clean Technol. Environ. Policy 2018, 20, 1207–1218. [Google Scholar] [CrossRef]
- Ye, C.; Ye, Z.; Zhu, Z.; Wang, Q. Thermodynamic and Economic Analysis of Oxy-Fuel-Integrated Coal Partial Gasification Combined Cycle. ACS Omega 2021, 6, 4262–4272. [Google Scholar] [CrossRef]
- Thattai, A.T.; Oldenboek, V.; Schoenmakers, L.; Woudstra, T.; Aravind, P.V. Experimental model validation and thermodynamic assessment on high percentage (up to 70%) biomass co-gasification at the 253 MWe integrated gasification combined cycle power plant in Buggenum, The Netherlands. Appl. Energy 2016, 168, 381–393. [Google Scholar] [CrossRef]
- Rubin, E.S. Understanding the pitfalls of CCS cost estimates. Int. J. Greenhouse Gas Control. 2012, 10, 181–190. [Google Scholar] [CrossRef]
- Ryzhkov, A.F.; Filippov, P.S.; Bogatova, T.F. Analysis of Integrated Gasification Combined Cycle Power Units; Ural University Publ.: Ekaterinburg, Russia, 2019. (In Russian) [Google Scholar]
- Metz, B.; Davidson, O.; de Coninck, H.; Loos, M.; Meyer, L. (Eds.) Carbon Dioxide Capture and Storage. Intergovernment Panel of Climate Chang. Special Report; Cambridge University Press: New York, NY, USA, 2005. [Google Scholar]
- Jin, B.; Zhao, H.; Zheng, C. Optimization and control for CO2 compression and purification unit in oxy-combustion power plants. Energy 2015, 83, 416–430. [Google Scholar] [CrossRef]
- Jin, B.; Zhao, H.; Zheng, C. Thermoeconomic cost analysis of CO2 compression and purification unit in oxy-combustion power plants. Energy Conv. Manag. 2015, 106, 53–60. [Google Scholar] [CrossRef]
- Farmer, T.C.; Doherty, M.F. Thermodynamic assessment of carbon dioxide emission reduction during fossil fuel derived energy production. Energy 2019, 177, 565–573. [Google Scholar] [CrossRef]
- Yadav, S.; Mondal, S.S. A complete review based on various aspects of pulverized coal combustion. Int. J. Energy Res. 2019, 43, 3134–3165. [Google Scholar] [CrossRef]
- Mularski, J.; Pawlak-Kruczek, H.; Modlinski, N. A review of recent studies of the CFD modelling of coal gasification in entrained flow gasifiers, covering devolatilization, gas-phase reactions, surface reactions, models and kinetics. Fuel 2020, 271, 117620. [Google Scholar] [CrossRef]
- Donskoi, I.G. Mathematical modeling of the reaction zone of a Shell-Prenflo gasifier with the use of the models of sequential equilibrium. Solid. Fuel Chem. 2016, 50, 191–196. [Google Scholar] [CrossRef]
- Ryzhkov, A.F.; Abaimov, N.A.; Donskoy, I.G.; Svishchev, D.A. Modernization of Air-Blown Entrained-Flow Gasifier of Integrated Gasification Combined Cycle Plant. Combust. Explos. Shock Waves. 2018, 54, 337–344. [Google Scholar] [CrossRef]
- Alsultannty, Y.A.; Al-Shammari, N.N. Oxygen Specific Power Consumption Comparison for Air Separation Units. Eng. J. 2014, 18, 67. [Google Scholar] [CrossRef]
- Aneke, M.; Wang, M. Potential for improving the energy efficiency of cryogenic air separation unit (ASU) using binary heat recovery cycles. Appl. Therm. Eng. 2015, 81, 223–231. [Google Scholar] [CrossRef]
- Fu, C.; Gundersen, T. Using exergy analysis to reduce power consumption in air separation units for oxy-combustion processes. Energy 2012, 44, 60–68. [Google Scholar] [CrossRef]
- Jones, D.; Bhattacharyya, D.; Turton, R.; Zitney, S.E. Optimal design and integration of an air separation unit (ASU) for an integrated gasification combined cycle (IGCC) power plant with CO2 capture. Fuel Proc. Technol. 2011, 92, 1685–1695. [Google Scholar] [CrossRef]
- Taniguchi, M.; Asoaka, H.; Ayuhara, T. Energy saving air-separation plant based on exergy analysis. Kobelco Technol. Rev. 2015, 33, 34–38. [Google Scholar]
- Tranier, J.-P.; Dubettier, R.; Darde, A.; Perrin, N. Air separation, flue gas compression and purification units for oxy-coal combustion systems. Energy Proc. 2011, 4, 966–971. [Google Scholar] [CrossRef]
- van der Ham, L.V.; Kjelstrup, S. Exergy analysis of two cryogenic separation processes. Energy 2010, 35, 4731–4739. [Google Scholar] [CrossRef]
- Knedsen, J.N.; Jensen, J.N.; Vilhelmsen, P.-J.; Biede, O. Experience with CO2 capture from coal flue gas in pilot-scale: Testing of different amine solvents. Energy Proc. 2009, 1, 783–790. [Google Scholar] [CrossRef]
- Bellotti, D.; Sorce, A.; Rivarolo, M.; Magistru, L. Techno-economic analysis for the integration of a power to fuel system with a CCS coal power plant. J. CO2 Util. 2019, 33, 262–272. [Google Scholar] [CrossRef]
- Keith, D.W.; Holmes, G.; Angelo, D.S.; Heidel, K. A Process for Capturing CO2 from the Atmosphere. Joule 2018, 2, 1573–1594. [Google Scholar] [CrossRef]
- Lee, W.-S.; Oh, H.-T.; Lee, J.-C.; Oh, M.; Lee, C.-H. Performance analysis and carbon reduction assessment of an integrated syngas purification process for the co-production of hydrogen and power in an integrated gasification combined cycle plant. Energy 2019, 171, 910–927. [Google Scholar] [CrossRef]
- Falcke, T.J.; Hoadley, A.F.A.; Brennan, D.J.; Sinclair, S.E. The sustainable of clean coal technology: IGCC with/without CCS. Process. Saf. Environ. Protect. 2011, 89, 41–52. [Google Scholar] [CrossRef]
- Hoya, R.; Fushimi, C. Thermal efficiency of advanced integrated coal gasification combined cycle power generation systems with low-temperature gasifier, gas cleaning and CO2 capturing units. Fuel Proc. Technol. 2017, 164, 80–91. [Google Scholar] [CrossRef]
- Prins, M.; van der Berg, R.; van Holthoon, E.; van Dorst, E.; Geuzebroek, F. Technological developments IGCC for carbon capture. Chem. Eng. Technol. 2012, 35, 413–419. [Google Scholar] [CrossRef]
- Svishchev, D. Thermodynamic Analysis of Air-Blown Staged Gasification of Coal in a Flow. Energy Syst. Res. 2021, 4, 38–43. [Google Scholar] [CrossRef]
- Kler, A.; Zharkov, P.; Potanina, Y.; Marinchenko, A.; Epishkin, N. The Effect of the Carbon Tax Value on the Optimal Parameters and Characteristics of Coal Power Plants. Environ. Clim. Technol. 2020, 24, 104–111. [Google Scholar] [CrossRef]
Gasifier | Number of Stages | Fuel | Gasification Agent | Output Gas Parameters | Power Plant |
---|---|---|---|---|---|
Texaco (General Electric) | 1 | CWS | Oxygen | 1200–1500 °C, 29 atm | Cool Water; Tampa Bay; Edwardsport (USA) |
Shell | 1 | PC | Oxygen | 1450–1600 °C, 40 atm | Nuon (Netherlands); Taean (Republic of Korea) |
E-Gas (Dow Chemical) | 2 | CWS | Oxygen | 1000–1100 °C, 28 atm | Wabash River (USA) |
MHI/MHPS (Mitsubishi-Hitachi) | 2 | PC | Air | 1100 °C, 20 atm | Nakoso (Japan) |
Prenflo (Thyssenkrupp) | 1 | PC | Oxygen | 1500 °C, 40 atm | Puertollano (Spain) |
ECUST | 1 | CWS | Oxygen | 1400 °C, 65 atm | Yankuang, Hangzhou (China) |
TPRI | 2 | PC | Oxygen/steam | 1500 °C, 40 atm | Tianjin (China) |
EAGLE (Osaki CoolGen) | 2 | PC | Oxygen | 1300 °C, 25 atm | J-Power (Japan) |
Variable | Dimensions | Value |
---|---|---|
CPP | USD | 3 × 109 |
Mf | USD/year | 1 × 106 |
t | h | 6136 |
Mv | USD/MWh | 10 |
Cf | USD/t | 100 |
Qc | MJ/kg | 32 |
MJ/kg | 2.52 | |
(post-combustion) | MJ/kg | 8.4 |
(oxyfuel) | MJ/kg | 0.96 |
Gasification Process | Oxygen Concentration, % vol. | Dilution | CCS Option | Cold Gas Efficiency, % | Net Efficiency without CCS, % | Net Efficiency with CCS, % |
---|---|---|---|---|---|---|
1 stage [21] | 80 | N2 | 2 | 73.95 | 42.71 | 26.78 |
N2/H2O | 2 | 75.23 | 43.45 | 27.21 | ||
CO2 | 3 | 76.07 | 43.93 | 35.52 | ||
H2O | 3 | 75.71 | 43.72 | 35.22 | ||
N2/CO2 | 2 | 75.32 | 43.50 | 27.71 | ||
CO2/H2O | 3 | 75.23 | 43.45 | 34.97 | ||
2 stages [27] | 21 | N2 | 2 | 74.87 | 43.24 | 24.85 |
CO2 | 3 | 78.34 | 45.24 | 36.71 | ||
25 | CO2 | 3 | 80.19 | 46.31 | 37.77 | |
30 | CO2 | 3 | 81.78 | 47.23 | 38.70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Donskoy, I. Techno-Economic Efficiency Estimation of Promising Integrated Oxyfuel Gasification Combined-Cycle Power Plants with Carbon Capture. Clean Technol. 2023, 5, 215-232. https://doi.org/10.3390/cleantechnol5010013
Donskoy I. Techno-Economic Efficiency Estimation of Promising Integrated Oxyfuel Gasification Combined-Cycle Power Plants with Carbon Capture. Clean Technologies. 2023; 5(1):215-232. https://doi.org/10.3390/cleantechnol5010013
Chicago/Turabian StyleDonskoy, Igor. 2023. "Techno-Economic Efficiency Estimation of Promising Integrated Oxyfuel Gasification Combined-Cycle Power Plants with Carbon Capture" Clean Technologies 5, no. 1: 215-232. https://doi.org/10.3390/cleantechnol5010013
APA StyleDonskoy, I. (2023). Techno-Economic Efficiency Estimation of Promising Integrated Oxyfuel Gasification Combined-Cycle Power Plants with Carbon Capture. Clean Technologies, 5(1), 215-232. https://doi.org/10.3390/cleantechnol5010013