Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (400)

Search Parameters:
Keywords = Homer1a

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2678 KiB  
Article
Pre-Conception Maternal Obesity Confers Autism Spectrum Disorder-like Behaviors in Mice Offspring Through Neuroepigenetic Dysregulation
by Nina P. Allan, Amada Torres, Michael J. Corley, Brennan Y. Yamamoto, Chantell Balaan, Yasuhiro Yamauchi, Rafael Peres, Yujia Qin, Vedbar S. Khadka, Youping Deng, Monika A. Ward and Alika K. Maunakea
Cells 2025, 14(15), 1201; https://doi.org/10.3390/cells14151201 - 5 Aug 2025
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition with early-life origins. Maternal obesity has been associated with increased ASD risk, yet the mechanisms and timing of susceptibility remain unclear. Using a mouse model combining in vitro fertilization (IVF) and embryo transfer, we [...] Read more.
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition with early-life origins. Maternal obesity has been associated with increased ASD risk, yet the mechanisms and timing of susceptibility remain unclear. Using a mouse model combining in vitro fertilization (IVF) and embryo transfer, we separated the effects of pre-conception and gestational obesity. We found that maternal high fat diet (HFD) exposure prior to conception alone was sufficient to induce ASD-like behaviors in male offspring—including altered vocalizations, reduced sociability, and increased repetitive grooming—without anxiety-related changes. These phenotypes were absent in female offspring and those exposed only during gestation. Cortical transcriptome analysis revealed dysregulation and isoform shifts in genes implicated in ASD, including Homer1 and Zswim6. Whole-genome bisulfite sequencing of hippocampal tissue showed hypomethylation of an alternative Homer1 promoter, correlating with increased expression of the short isoform Homer1a, which is known to disrupt synaptic scaffolding. This pattern was specific to mice with ASD-like behaviors. Our findings show that pre-conceptional maternal obesity can lead to lasting, isoform-specific transcriptomic and epigenetic changes in the offspring’s brain. These results underscore the importance of maternal health before pregnancy as a critical and modifiable factor in ASD risk. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Autism Spectrum Disorder)
Show Figures

Figure 1

33 pages, 6561 KiB  
Article
Optimization Study of the Electrical Microgrid for a Hybrid PV–Wind–Diesel–Storage System in an Island Environment
by Fahad Maoulida, Kassim Mohamed Aboudou, Rabah Djedjig and Mohammed El Ganaoui
Solar 2025, 5(3), 39; https://doi.org/10.3390/solar5030039 - 4 Aug 2025
Abstract
The Union of the Comoros, located in the Indian Ocean, faces persistent energy challenges due to its geographic isolation, heavy dependence on imported fossil fuels, and underdeveloped electricity infrastructure. This study investigates the techno-economic optimization of a hybrid microgrid designed to supply electricity [...] Read more.
The Union of the Comoros, located in the Indian Ocean, faces persistent energy challenges due to its geographic isolation, heavy dependence on imported fossil fuels, and underdeveloped electricity infrastructure. This study investigates the techno-economic optimization of a hybrid microgrid designed to supply electricity to a rural village in Grande Comore. The proposed system integrates photovoltaic (PV) panels, wind turbines, a diesel generator, and battery storage. Detailed modeling and simulation were conducted using HOMER Energy, accompanied by a sensitivity analysis on solar irradiance, wind speed, and diesel price. The results indicate that the optimal configuration consists solely of PV and battery storage, meeting 100% of the annual electricity demand with a competitive levelized cost of energy (LCOE) of 0.563 USD/kWh and zero greenhouse gas emissions. Solar PV contributes over 99% of the total energy production, while wind and diesel components remain unused under optimal conditions. Furthermore, the system generates a substantial energy surplus of 63.7%, which could be leveraged for community applications such as water pumping, public lighting, or future system expansion. This study highlights the technical viability, economic competitiveness, and environmental sustainability of 100% solar microgrids for non-interconnected island territories. The approach provides a practical and replicable decision-support framework for decentralized energy planning in remote and vulnerable regions. Full article
Show Figures

Figure 1

21 pages, 3422 KiB  
Article
Techno-Economic Optimization of a Grid-Tied PV/Battery System in Johannesburg’s Subtropical Highland Climate
by Webster J. Makhubele, Bonginkosi A. Thango and Kingsley A. Ogudo
Sustainability 2025, 17(14), 6383; https://doi.org/10.3390/su17146383 - 11 Jul 2025
Viewed by 391
Abstract
With rising energy costs and the need for sustainable power solutions in urban South African settings, grid-tied renewable energy systems have become viable alternatives for reducing dependence on traditional grid supply. This study investigates the techno-economic feasibility of a grid-connected hybrid photovoltaic (PV) [...] Read more.
With rising energy costs and the need for sustainable power solutions in urban South African settings, grid-tied renewable energy systems have become viable alternatives for reducing dependence on traditional grid supply. This study investigates the techno-economic feasibility of a grid-connected hybrid photovoltaic (PV) and battery storage system designed for a commercial facility located in Johannesburg, South Africa—an area characterized by a subtropical highland climate. We conducted the analysis using the HOMER Grid software and evaluated the performance of the proposed PV/battery system against the baseline grid-only configuration. Simulation results indicate that the optimal systems, comprising 337 kW of flat-plate PV and 901 kWh of lithium-ion battery storage, offers a significant reduction in electricity expenditure, lowering the annual utility cost from $39,229 to $897. The system demonstrates a simple payback period of less than two years and achieves a net present value (NPV) of approximately $449,491 over a 25-year project lifespan. In addition to delivering substantial cost savings, the proposed configuration also enhances energy resilience. Sensitivity analyses were conducted to assess the impact of variables such as inflation rate, discount rate, and load profile fluctuations on system performance and economic returns. The results affirm the suitability of hybrid grid-tied PV/battery systems for cost-effective, sustainable urban energy solutions in climates with high solar potential. Full article
Show Figures

Figure 1

15 pages, 937 KiB  
Article
Sleep Deprivation in Rats Causes Dissociation of the Synaptic NMDA Receptor/D1 Dopamine Receptor Heterocomplex
by Natalia Kiknadze, Nana Narmania, Maia Sepashvili, Tamar Barbakadze, Elene Zhuravliova, Tamar Shetekauri, Nino Tkemaladze, Nikoloz Oniani and David Mikeladze
NeuroSci 2025, 6(3), 61; https://doi.org/10.3390/neurosci6030061 - 5 Jul 2025
Viewed by 418
Abstract
Glutamate and dopamine receptors play a crucial role in regulating synaptic plasticity throughout the sleep–wake cycle. These receptors form various heterocomplexes in synaptic areas; however, the role of this protein interactome in sleep–wake cycles remains unclear. Co-immunoprecipitation experiments were conducted to observe the [...] Read more.
Glutamate and dopamine receptors play a crucial role in regulating synaptic plasticity throughout the sleep–wake cycle. These receptors form various heterocomplexes in synaptic areas; however, the role of this protein interactome in sleep–wake cycles remains unclear. Co-immunoprecipitation experiments were conducted to observe the complexation of the NMDA glutamate receptor (NMDAR) subunits GluN2A and GluN2B, metabotropic glutamate receptors mGluR1/5, and dopamine receptors (D1R and D2R) with the scaffold protein Homer in the synaptic membranes of the hippocampus after six hours of sleep deprivation (SD) in rats. Our findings indicate that the level of Homer in the GluN2A/mGluR1/D1R interactome decreased during SD, while the content of Homer remained unchanged in the GluN2B/mGluR1/D2R heterocomplex. Moreover, Homer immunoprecipitated a reduced amount of inositol trisphosphate receptor (IP3R) in the microsomal and synaptic fractions, confirming the dissociation of the ternary supercomplex Homer/mGluR1/IP3R during SD. Additionally, our findings indicate that SD increases the synaptic content of the AMPA receptor (AMPAR) subunit GluA1. Unlike AMPAR, NMDAR subunits in synaptic membranes do not undergo significant changes. Furthermore, the G-to-F actin ratio decreases during SD. Changes in the assembly of actin filaments occur due to the dephosphorylation of cofilin. These results suggest that SD causes the dissociation of the GluN2A/mGluR1/D1R/Homer/IP3R heterocomplex in synaptic and endoplasmic membranes. Full article
Show Figures

Figure 1

18 pages, 2458 KiB  
Article
Co-Optimized Design of Islanded Hybrid Microgrids Using Synergistic AI Techniques: A Case Study for Remote Electrification
by Ramia Ouederni and Innocent E. Davidson
Energies 2025, 18(13), 3456; https://doi.org/10.3390/en18133456 - 1 Jul 2025
Viewed by 471
Abstract
Off-grid and isolated rural communities in developing countries with limited resources require energy supplies for daily residential use and social, economic, and commercial activities. The use of data from space assets and space-based solar power is a feasible solution for addressing ground-based energy [...] Read more.
Off-grid and isolated rural communities in developing countries with limited resources require energy supplies for daily residential use and social, economic, and commercial activities. The use of data from space assets and space-based solar power is a feasible solution for addressing ground-based energy insecurity when harnessed in a hybrid manner. Advances in space solar power systems are recognized to be feasible sources of renewable energy. Their usefulness arises due to advances in satellite and space technology, making valuable space data available for smart grid design in these remote areas. In this case study, an isolated village in Namibia, characterized by high levels of solar irradiation and limited wind availability, is identified. Using NASA data, an autonomous hybrid system incorporating a solar photovoltaic array, a wind turbine, storage batteries, and a backup generator is designed. The local load profile, solar irradiation, and wind speed data were employed to ensure an accurate system model. Using HOMER Pro software V 3.14.2 for system simulation, a more advanced AI optimization was performed utilizing Grey Wolf Optimization and Harris Hawks Optimization, which are two metaheuristic algorithms. The results obtained show that the best performance was obtained with the Grey Wolf Optimization algorithm. This method achieved a minimum energy cost of USD 0.268/kWh. This paper presents the results obtained and demonstrates that advanced optimization techniques can enhance both the hybrid system’s financial cost and energy production efficiency, contributing to a sustainable electricity supply regime in this isolated rural community. Full article
(This article belongs to the Section F2: Distributed Energy System)
Show Figures

Figure 1

18 pages, 1972 KiB  
Article
Learning from Arctic Microgrids: Cost and Resiliency Projections for Renewable Energy Expansion with Hydrogen and Battery Storage
by Paul Cheng McKinley, Michelle Wilber and Erin Whitney
Sustainability 2025, 17(13), 5996; https://doi.org/10.3390/su17135996 - 30 Jun 2025
Viewed by 473
Abstract
Electricity in rural Alaska is provided by more than 200 standalone microgrid systems powered predominantly by diesel generators. Incorporating renewable energy generation and storage to these systems can reduce their reliance on costly imported fuel and improve sustainability; however, uncertainty remains about optimal [...] Read more.
Electricity in rural Alaska is provided by more than 200 standalone microgrid systems powered predominantly by diesel generators. Incorporating renewable energy generation and storage to these systems can reduce their reliance on costly imported fuel and improve sustainability; however, uncertainty remains about optimal grid architectures to minimize cost, including how and when to incorporate long-duration energy storage. This study implements a novel, multi-pronged approach to assess the techno-economic feasibility of future energy pathways in the community of Kotzebue, which has already successfully deployed solar photovoltaics, wind turbines, and battery storage systems. Using real community load, resource, and generation data, we develop a series of comparison models using the HOMER Pro software tool to evaluate microgrid architectures to meet over 90% of the annual community electricity demand with renewable generation, considering both battery and hydrogen energy storage. We find that near-term planned capacity expansions in the community could enable over 50% renewable generation and reduce the total cost of energy. Additional build-outs to reach 75% renewable generation are shown to be competitive with current costs, but further capacity expansion is not currently economical. We additionally include a cost sensitivity analysis and a storage capacity sizing assessment that suggest hydrogen storage may be economically viable if battery costs increase, but large-scale seasonal storage via hydrogen is currently unlikely to be cost-effective nor practical for the region considered. While these findings are based on data and community priorities in Kotzebue, we expect this approach to be relevant to many communities in the Arctic and Sub-Arctic regions working to improve energy reliability, sustainability, and security. Full article
Show Figures

Figure 1

17 pages, 8138 KiB  
Article
Function and Molecular Mechanism of Circhomer1 in Myogenesis
by Zonggang Yu, Kaiming Wang, Bohe Chen, Jingwen Liu, Wenwu Chen and Haiming Ma
Int. J. Mol. Sci. 2025, 26(13), 6264; https://doi.org/10.3390/ijms26136264 - 28 Jun 2025
Viewed by 374
Abstract
Skeletal muscle is one of the largest tissues in the body. It is of great significance to analyze the molecular mechanism of skeletal muscle development for the further study of meat quality improvement and muscle diseases. CircRNA has been reported to be involved [...] Read more.
Skeletal muscle is one of the largest tissues in the body. It is of great significance to analyze the molecular mechanism of skeletal muscle development for the further study of meat quality improvement and muscle diseases. CircRNA has been reported to be involved in many biological processes, but further research is needed in skeletal muscle. In this study, we detected the authenticity, stability, and spatio-temporal expression characteristics of circHOMER1 and its effect on the proliferation, apoptosis, and differentiation of muscle cells, and analyzed its possible molecular mechanism. The results showed that circHOMER1 exists in the skeletal muscle of the Ningxiang pig, is more stable than linear RNA, and is significantly upregulated in adipose tissue and during the early growth of myoblasts. In terms of function, overexpression of circHOMER1 significantly promoted the expression levels of proliferation marker genes and proteins and significantly increased the EdU positive cell rate, optical density (OD) value (at 450 nm), and proportion of S-phase cells. Overexpression of circHOMER1 also significantly promoted the expression levels of apoptosis marker genes and proteins and significantly increased the proportions of cells in Q2 (with late apoptosis) and Q3 (with early apoptosis). Overexpression of circHOMER1 significantly inhibited the expression levels of differentiation marker genes and proteins, significantly inhibited the differentiation index, and decreased the proportion of 5-nucleus muscle fibers. Conversely, opposite results were obtained after circHOMER1 interference. In terms of molecules mechanism, subcellular localization analysis showed that circHOMER1 was mainly distributed in cytoplasm, and mechanism analysis showed that circHOMER1 participated in myoblast development by forming a 4-element interaction network with 4 miRNAs, 2 lncRNAs, and 20 mRNAs, and possibly regulated myoblast development by encoding 79 amino acids. To sum up, we verified that circHOMER1 promoted the proliferation and apoptosis of myoblasts and inhibited their differentiation. It may regulate the development of myoblasts through ceRNA or by encoding small peptides. These results provided a reference for the regulation mechanism of muscle development and the breeding of Ningxiang pigs. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

23 pages, 3357 KiB  
Article
Approaching a Nearly Zero Energy Building Integrated with PCM by Optimization of Energy Sources
by Ali Sulaiman Alsagri
Buildings 2025, 15(13), 2205; https://doi.org/10.3390/buildings15132205 - 24 Jun 2025
Viewed by 374
Abstract
In recent years, population growth, the enhancement of carbon emissions generation, and higher energy consumption have caused the movement to nearly zero-energy buildings. Additionally, the various strategies, phase change materials (PCMs) are suitable for reducing the energy consumption of a building. The focus [...] Read more.
In recent years, population growth, the enhancement of carbon emissions generation, and higher energy consumption have caused the movement to nearly zero-energy buildings. Additionally, the various strategies, phase change materials (PCMs) are suitable for reducing the energy consumption of a building. The focus of this study is to investigate the results of three scenarios that explore all the effective parameters for selecting a suitable Phase Change Material (PCM) for hot climate conditions in Saudi Arabia. The first scenario worked on choosing the best phase change material based on the climatic conditions and the selected area. To complete the optimization, the best thickness and placement of the two-layer phase change material were investigated in the second and third scenarios. The results indicated that optimized building using PCM 29 with 50 mm thickness reduced the energy consumption and carbon dioxide production by 20.72% and 21.05%, respectively. Furthermore, the outcomes of the study on two-layer phase change materials with different arrangements illustrated that the most proper location of PCMs caused 255.38 MWh of electricity consumption and 155.71 × 103 kg of carbon dioxide production. Finally, as a novel integration, the results of using one-layer and two-layer PCM were added to the HOMER software to find the optimal hybrid energy systems. The findings showed that by integrating photovoltaic panels, diesel generation, batteries, and the grid, the cost of energy reached USD 0.162. Additionally, the grid purchase by using one-layer and two-layer phase change material was decreased by 21.2% and 24.3% compared to the base case. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

24 pages, 2477 KiB  
Article
Techno-Economic Optimization of an Isolated Solar Microgrid: A Case Study in a Brazilian Amazon Community
by Nikole Teran Uruchi, Valentin Silvera Diaz, Norah Nadia Sánchez Torres, Joylan Nunes Maciel, Jorge Javier Gimenez Ledesma, Marco Roberto Cavallari, Mario Gazziro, Taynara Geysa Silva do Lago and Oswaldo Hideo Ando Junior
Eng 2025, 6(7), 133; https://doi.org/10.3390/eng6070133 - 21 Jun 2025
Viewed by 514
Abstract
Many communities in the Brazilian Amazon region remain without reliable access to electricity due to geographical barriers and the high cost of connecting to the national grid. This study aims to evaluate the techno-economic feasibility of implementing battery storage systems in an existing [...] Read more.
Many communities in the Brazilian Amazon region remain without reliable access to electricity due to geographical barriers and the high cost of connecting to the national grid. This study aims to evaluate the techno-economic feasibility of implementing battery storage systems in an existing isolated solar–diesel microgrid located in Tunui-Cachoeira, in the district of São Gabriel da Cachoeira (AM). The analysis uses an energy balance methodology, implemented through the HOMER Pro simulation platform, to assess three scenarios: (i) without batteries, (ii) with lithium-ion batteries, and (iii) with lead–acid batteries. Technical and economic indicators such as net present cost (NPC), levelized cost of energy (LCOE), diesel consumption, and renewable fraction were compared. The results indicate that incorporating lead–acid batteries yields the lowest LCOE (1.99 R$/kWh) and the highest renewable fraction (96.8%). This demonstrates that adding energy storage systems significantly enhances the performance and cost-effectiveness of microgrids, offering a viable path to electrify remote and hard-to-reach communities in the Amazon. Full article
(This article belongs to the Section Electrical and Electronic Engineering)
Show Figures

Figure 1

18 pages, 3359 KiB  
Article
Integrating Hybrid Energy Solutions into Expressway Infrastructure
by Muqing Yao, Zunbiao Wang, Song Zhang, Zhufa Chu, Yufei Zhang, Shuo Zhang and Wenkai Han
Energies 2025, 18(12), 3186; https://doi.org/10.3390/en18123186 - 18 Jun 2025
Viewed by 358
Abstract
To explore the feasibility of renewable hybrid energy systems for expressway infrastructure, this study proposes a scenario-based design methodology integrating solar, wind, and hydropower resources within the expressway corridor. A case study was conducted on a highway service area located in southern China, [...] Read more.
To explore the feasibility of renewable hybrid energy systems for expressway infrastructure, this study proposes a scenario-based design methodology integrating solar, wind, and hydropower resources within the expressway corridor. A case study was conducted on a highway service area located in southern China, where a solar/wind/hydro hybrid energy system was developed based on the proposed approach. Using the HOMER Pro 3.14 software platform, the system was simulated and optimized under off-grid conditions, and a sensitivity analysis was conducted to evaluate performance variability. The results demonstrate that the strategic integration of corridor-based natural resources—solar irradiance, wind energy, and hydrodynamic potential—enables the construction of a technically and economically viable hybrid energy system. The system includes 382 kW of PV, 210 kW of wind, 80 kW of hydrokinetic power, a 500 kW diesel generator, and 180 kWh of battery storage, forming a hybrid configuration for a stable and reliable energy supply. The optimized configuration can supply up to 1,095,920 kWh of electricity annually at a minimum levelized cost of energy of USD 0.22/kWh. This system reduces CO2 emissions by 23.2 tons/year and NOx emissions by 23 kg/year. demonstrating strong environmental performance and long-term sustainability potential. Full article
(This article belongs to the Topic Clean Energy Technologies and Assessment, 2nd Edition)
Show Figures

Figure 1

29 pages, 5868 KiB  
Article
Assessing the Potential of a Hybrid Renewable Energy System: MSW Gasification and a PV Park in Lobito, Angola
by Salomão Joaquim, Nuno Amaro and Nuno Lapa
Energies 2025, 18(12), 3125; https://doi.org/10.3390/en18123125 - 13 Jun 2025
Viewed by 1253
Abstract
This study investigates a hybrid renewable energy system combining the municipal solid waste (MSW) gasification and solar photovoltaic (PV) for electricity generation in Lobito, Angola. A fixed-bed downdraft gasifier was selected for MSW gasification, where the thermal decomposition of waste under controlled air [...] Read more.
This study investigates a hybrid renewable energy system combining the municipal solid waste (MSW) gasification and solar photovoltaic (PV) for electricity generation in Lobito, Angola. A fixed-bed downdraft gasifier was selected for MSW gasification, where the thermal decomposition of waste under controlled air flow produces syngas rich in CO and H2. The syngas is treated to remove contaminants before powering a combined cycle. The PV system was designed for optimal energy generation, considering local solar radiation and shading effects. Simulation tools, including Aspen Plus v11.0, PVsyst v8, and HOMER Pro software 3.16.2, were used for modeling and optimization. The hybrid system generates 62 GWh/year of electricity, with the gasifier contributing 42 GWh/year, and the PV system contributing 20 GWh/year. This total energy output, sufficient to power 1186 households, demonstrates an integration mechanism that mitigates the intermittency of solar energy through continuous MSW gasification. However, the system lacks surplus electricity for green hydrogen production, given the region’s energy deficit. Economically, the system achieves a Levelized Cost of Energy of 0.1792 USD/kWh and a payback period of 16 years. This extended payback period is mainly due to the hydrogen production system, which has a low production rate and is not economically viable. When excluding H2 production, the payback period is reduced to 11 years, making the hybrid system more attractive. Environmental benefits include a reduction in CO2 emissions of 42,000 t/year from MSW gasification and 395 t/year from PV production, while also addressing waste management challenges. This study highlights the mechanisms behind hybrid system operation, emphasizing its role in reducing energy poverty, improving public health, and promoting sustainable development in Angola. Full article
Show Figures

Figure 1

22 pages, 3808 KiB  
Article
Sustainable Crop Irrigation with Renewable Energy: A Case Study of Lethbridge County, Alberta
by Mohammad Adnan Aftab, James Byrne, Paul Hazendonk, Dan Johnson and Locke Spencer
Energies 2025, 18(12), 3102; https://doi.org/10.3390/en18123102 - 12 Jun 2025
Viewed by 388
Abstract
The agriculture sector is a major contributor to the economy of Alberta, Canada, accounting for almost 2.8% of the total GDP. Considering its importance, implementing efficient and cost-effective irrigation systems is vital for promoting sustainable agriculture in semi-arid regions like Lethbridge County, Alberta, [...] Read more.
The agriculture sector is a major contributor to the economy of Alberta, Canada, accounting for almost 2.8% of the total GDP. Considering its importance, implementing efficient and cost-effective irrigation systems is vital for promoting sustainable agriculture in semi-arid regions like Lethbridge County, Alberta, Canada. Although irrigation is primarily carried out using the Oldman River and its allied reservoirs, groundwater pumping becomes a supplementary necessity during periods of limited surface water availability or droughts. This research investigates the potential of renewable energy resources, such as wind and solar energy, to meet the energy requirements for crop irrigation. The study begins by identifying and calculating the water requirements for major crops in Lethbridge County, such as wheat and barley, using the United Nations Food and Agriculture Organization’s CROPWAT 8.0 software. Subsequently, energy calculations were conducted to meet the specific crop water demand through the design of a hybrid energy system using Homer Pro 3.16.2. A technoeconomic analysis of the renewable hybrid system has been carried out to demonstrate the efficiency and novelty of the proposed work. Outcomes revealed that the proposed system is both efficient and economical in fulfilling the crop water requirement through groundwater pumping, promoting sustainable agriculture, and helping to ensure food security in the region. Full article
Show Figures

Figure 1

15 pages, 242 KiB  
Article
When Nature Speaks: Sacred Landscapes and Living Elements in Greco-Roman Myth
by Marianna Olivadese
Humanities 2025, 14(6), 120; https://doi.org/10.3390/h14060120 - 4 Jun 2025
Viewed by 621
Abstract
This article explores Greco-Roman mythology through the lens of ecocriticism, focusing on how sacred landscapes and natural elements were imagined as animate, divine, and morally instructive forces. In ancient Mediterranean cultures, nature was not merely a passive setting for human action but a [...] Read more.
This article explores Greco-Roman mythology through the lens of ecocriticism, focusing on how sacred landscapes and natural elements were imagined as animate, divine, and morally instructive forces. In ancient Mediterranean cultures, nature was not merely a passive setting for human action but a dynamic presence—rivers that judged, groves that punished, and mountains that sheltered or revealed. Texts such as Ovid’s Metamorphoses, Virgil’s Georgics, and Homer’s epics present nature as both sacred and sentient, often intervening in human affairs through transformation, vengeance, or protection. Forests, springs, and coastlines functioned as thresholds between human and divine, civilization and wilderness, mortal and eternal. By analyzing these representations, this article reveals a rich tradition in which nature teaches, punishes, guides, and transforms, long before ecological consciousness became a formalized discipline. Drawing connections between classical literary landscapes and contemporary environmental concerns, the article argues that myth can inform today’s ecological imagination, offering an alternative to extractive, anthropocentric paradigms. Recovering the reverence and narrative agency once granted to nature in classical thought may help us rethink our ethical relationship with the environment in the age of climate crisis. Full article
(This article belongs to the Special Issue World Mythology and Its Connection to Nature and/or Ecocriticism)
25 pages, 4556 KiB  
Article
Toward Carbon Neutrality: A Methodological Approach for Assessing and Mitigating Urban Emissions at the Neighborhood Level, Applied to Benicalap, Valencia
by Carlos Vargas-Salgado, Carla Montagud-Montalvá, David Alfonso-Solar and Lucía Izquierdo-De-Andrés
Sustainability 2025, 17(11), 5150; https://doi.org/10.3390/su17115150 - 3 Jun 2025
Viewed by 537
Abstract
This study presents a methodology for estimating the carbon footprint of urban neighborhoods as a necessary step in proposing and evaluating potential GHG reduction measures to enhance the sustainability of cities. Additionally, this method has been applied to Benicalap, a district in Valencia, [...] Read more.
This study presents a methodology for estimating the carbon footprint of urban neighborhoods as a necessary step in proposing and evaluating potential GHG reduction measures to enhance the sustainability of cities. Additionally, this method has been applied to Benicalap, a district in Valencia, Spain. This research employs the Datadis, QGIS, and HOMER tools to assess emissions across Scopes 1, 2, and 3. Tailored mitigation strategies are proposed, primarily focusing on reducing emissions in Scopes 1 and 2. While previous studies have extensively examined CO2 emissions at broader geographic scales, like nations, regions, and cities, this study emphasizes the importance of neighborhood-level analysis to address localized environmental challenges effectively. The results reveal that Benicalap’s emissions contribute 28.69 ktCO2 (15.56%) to Scope 1, 13.71 ktCO2 (7.43%) to Scope 2, and 142 ktCO2 (77%) to Scope 3. By 2030, targeted interventions could reduce emissions from Scopes 1 and 2 by 19,885 ktCO2, representing a 50.69% reduction. Among the proposed measures, sustainable transportation improvements and photovoltaic deployment stand out, contributing to 25.39% and 24.87% of the reduction, respectively. Enhancements in public lighting and nature-based solutions would offer a minor decrease of 0.43%. These insights underscore the need for strategic, localized interventions to achieve meaningful emission reductions and support sustainable urban development efforts. Full article
Show Figures

Figure 1

16 pages, 1329 KiB  
Article
Spatial Differentiation of Profitability of Wind Turbine Investments in Poland
by Łukasz Augustowski and Piotr Kułyk
Energies 2025, 18(11), 2871; https://doi.org/10.3390/en18112871 - 30 May 2025
Viewed by 549
Abstract
Dilemmas related to the development of demand for renewable energy encourage continuous evaluation of such investments in various locations, taking into account market and environmental conditions. The conducted study concerns the analysis of the profitability of investment in a 1.65 MW wind turbine [...] Read more.
Dilemmas related to the development of demand for renewable energy encourage continuous evaluation of such investments in various locations, taking into account market and environmental conditions. The conducted study concerns the analysis of the profitability of investment in a 1.65 MW wind turbine with a hub height of 70 m in various zones in Poland. The analysis was performed using the clustering method (cluster analysis and the Czekanowski diagram). Computer simulation was also used using the Hybrid Optimization of Multiple Energy Resources (HOMER), ver. x64 3.18.4 software. As a result, three zones were distinguished that ensure differentiation in the rates of return on investment in wind energy. The authors positively verified the hypothesis about the spatial differentiation of profitability in relation to the examined factors. The justification for investments in wind farms was demonstrated and factors determining their profitability were indicated. It was emphasized that, in the case of wind farms, energy production is relatively predictable, which shapes the benefits for investors, and facilitates financial planning and long-term return on investment. Full article
Show Figures

Figure 1

Back to TopTop