Spatial Differentiation of Profitability of Wind Turbine Investments in Poland
Abstract
1. Introduction
2. Research Methodology
2.1. Application of Simulation Models
2.2. Research Scope and Research Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wärtsilä Energy. Crossroads to Net Zero: Choosing the Optimal Path to a Renewable Energy Future—Report 2024; Wärtsilä Energy: Helsinki, Finland, 2024. [Google Scholar]
- Becerra, M.; Morán, J.; Jerez, A.; Cepeda, F.; Valenzuela, M. Wind Energy Potential in Chile: Assessment of a Small Scale Wind Farm for Residential Clients. Energy Convers. Manag. 2017, 140, 71–90. [Google Scholar] [CrossRef]
- Souza Rocha, L.C.; Aquila, G.; Rotela Junior, P.; de Paiva, A.P.; Pamplona, E.O.; Balestrassi, P.P. A Stochastic Economic Viability Analysis of Residential Wind Power Generation in Brazil. Renew. Sustain. Energy Rev. 2018, 90, 412–419. [Google Scholar] [CrossRef]
- Duranay, Z.B.; Güldemir, H.; Coşkun, B. The Role of Wind Turbine Siting in Achieving Sustainable Energy Goals. Processes 2024, 12, 2900. [Google Scholar] [CrossRef]
- Predescu, M. Economic Evaluation of Small Wind Turbines and Hybrid Systems for Residential Use. Renew. Energy Environ. Sustain. 2016, 1, 33. [Google Scholar] [CrossRef]
- Botelho, A.; Arezes, P.; Bernardo, C.; Dias, H.; Pinto, L.M.C. Effect of Wind Farm Noise on Local Residents’ Decision to Adopt Mitigation Measures. Int. J. Environ. Res. Public Health 2017, 14, 753. [Google Scholar] [CrossRef]
- Cronin, Y.; Cummins, V.; Wolsztynski, E. Public Perception of Offshore Wind Farms in Ireland. Mar. Policy 2021, 134, 104814. [Google Scholar] [CrossRef]
- Bailey, H.; Brookes, K.L.; Thompson, P.M. Assessing Environmental Impacts of Offshore Wind Farms: Lessons Learned and Recommendations for the Future. Aquatic Biosyst. 2014, 10, 8. [Google Scholar] [CrossRef]
- Skarin, A.; Sandström, P.; Alam, M. Out of sight of wind turbines—Reindeer response to wind farms in operation. Ecol. Evol. 2018, 8, 9906–9919. [Google Scholar] [CrossRef]
- Veltheim, I.; Cook, S.; Palmer, G.C.; Hill, F.A.R.; McCarthy, M.A. Breeding home range movements of pre-fledged brolga chicks, Antigone rubicunda (Gruidae) in Victoria, Australia—Implications for wind farm planning and conservation. Glob. Ecol. Conserv. 2019, 20, e00703. [Google Scholar] [CrossRef]
- Nishibayashi, N.; Kitamura, W.; Yoshizaki, S. Comparison of the Home Ranges of Mountain Hawk-Eagles during Different Phases of Wind Farm Construction. Ornithol. Sci. 2022, 21, 63–70. [Google Scholar] [CrossRef]
- Laposa, S.; Mueller, A. Wind Farm Announcements and Rural Home Prices: Maxwell Ranch and Rural Northern Colorado. J. Sustain. Real Estate 2010, 2, 383–402. [Google Scholar] [CrossRef]
- Hoen, B.; Atkinson-Palombo, C. Wind Turbines, Amenities and Disamenities: A Study of Home Value Impacts in Densely Populated Massachusetts. J. Real Estate Res. 2016, 38, 473–504. [Google Scholar] [CrossRef]
- Dröes, M.I.; Koster, H.R.A. Renewable energy and negative externalities: The effect of wind turbines on house prices. J. Urban Econ. 2016, 96, 121–141. [Google Scholar] [CrossRef]
- Iannace, G. Effects of noise from wind turbines inside home. Wind Eng. 2015, 40, 25–30. [Google Scholar] [CrossRef]
- Świdyńska, N.; Witkowska-Dąbrowska, M.; Jakubowska, D. Influence of Wind Turbines as Dominants in the Landscape on the Acceptance of the Development of Renewable Energy Sources in Poland. Energies 2024, 17, 3268. [Google Scholar] [CrossRef]
- Katsaprakakis, D.A. A Review of the Environmental and Human Impacts from Wind Parks: A Case Study for the Prefecture of Lasithi, Crete. Renew. Sustain. Energy Rev. 2012, 16, 2850–2863. [Google Scholar] [CrossRef]
- Warwick-Evans, V.; Atkinson, P.W.; Walkington, I.; Green, J.A. Predicting the impacts of wind farms on seabirds: An individual-based model. J. Appl. Ecol. 2018, 55, 503–515. [Google Scholar] [CrossRef]
- Estellés-Domingo, I.; López-López, P. Effects of wind farms on raptors: A systematic review of the current knowledge and the potential solutions to mitigate negative impacts. Anim. Conserv. 2024, 1–19. [Google Scholar] [CrossRef]
- Carrete, M.; Sánchez-Zapata, J.A.; Benítez, J.R.; Lobón, M.; Montoya, F.; Donázar, J.A. Mortality at wind-farms is positively related to large-scale distribution and aggregation in griffon vultures. Biol. Conserv. 2012, 147, 102–108. [Google Scholar] [CrossRef]
- Johansen, K. Local support for renewable energy technologies? Attitudes towards local near-shore wind farms among second home owners and permanent area residents on the Danish coast. Energy Policy 2019, 132, 691–701. [Google Scholar] [CrossRef]
- Slattery, M.C.; Johnson, B.L.; Swofford, J.A.; Pasqualetti, M.J. The predominance of economic development in the support for large-scale wind farms in the U. S. Great Plains. Renew. Sustain. Energy Rev. 2012, 16, 3690–3701. [Google Scholar] [CrossRef]
- Azevêdo, R.d.O.; Rotela Junior, P.; Chicco, G.; Aquila, G.; Souza Rocha, L.C.; Peruchi, R.S. Identification and Analysis of Impact Factors on the Economic Feasibility of Wind Energy Investments. Int. J. Energy Res. 2021, 45, 3671–3697. [Google Scholar] [CrossRef]
- Ouammi, A.; Ghigliotti, V.; Robba, M.; Mimet, A.; Sacile, R. A Decision Support System for the Optimal Exploitation of Wind Energy on Regional Scale. Renew. Energy 2012, 37, 299–309. [Google Scholar] [CrossRef]
- Ugur, E.; Elma, O.; Ugur, S.; Selamogullari, M.; Tanrioven, M.; Uzunoglu, M. Financial Payback Analysis of Small Wind Turbines for a Smart Home Application in Istanbul/Turkey. In Proceedings of the 2013 International Conference on Renewable Energy Research and Applications, ICRERA 2013, Madrid, Spain, 20–23 October 2013; IEEE: Istanbul, Turkey, 2013; pp. 220–224. [Google Scholar] [CrossRef]
- Alkahtani, A.; Alkawsi, G.; Mohamed, Y.; Lim, C.W.; Tiong, S.K.; Khudari, M. Viability Assessment of Small-Scale On-Grid Wind Energy Generator for Households in Malaysia. Energies 2021, 14, 3391. [Google Scholar] [CrossRef]
- Augustowski, Ł.; Kułyk, P. Conditions for the Development of Wind Energy for Individual Consumers: A Case Study in Poland. Energies 2024, 17, 3358. [Google Scholar] [CrossRef]
- Bahramara, S.; Parsa Moghaddamn, M.; Haghifam, M.R. Optimal planning of hybrid renewable energy systems using HOMER: A review. Renew. Sustain. Energy Rev. 2016, 62, 609–620. [Google Scholar] [CrossRef]
- Khalil, L.; Bhatti, K.L.; Awan, M.A.I.; Riaz, M.; Khalil, K.; Alwaz, N. Optimization and Designing of Hybrid Power System Using HOMER Pro. Mater. Today Proc. 2021, 47, 110–115. [Google Scholar] [CrossRef]
- Abbaszadeh, M.A.; Ghourichaei, M.J.; Mohammadkhani, F. Thermo-Economic Feasibility of a Hybrid Wind Turbine/PV/Gas Generator Energy System for Application in a Residential Complex in Tehran, Iran. Environ. Prog. Sustain. Energy 2020, 39, e13396. [Google Scholar] [CrossRef]
- Bulut, F.; Lüy, M.; Çam, E. The Effects of Incentives on Renewable Energy Resources for Home Users. Int. J. Energy Appl. Technol. 2017, 4, 94–100. [Google Scholar]
- Chisale, S.W.; Eliya, S.; Taulo, J. Optimization and Design of Hybrid Power System Using HOMER Pro and Integrated CRITIC-PROMETHEE II Approaches. Green Technol. Sustain. 2023, 1, 100005. [Google Scholar] [CrossRef]
- Swarnkar, N.M.; Gidwani, L.; Sharma, R. An Application of HOMER Pro in Optimization of Hybrid Energy System for Electrification of Technical Institute. In Proceedings of the 2016 International Conference on Energy Efficient Technologies for Sustainability (ICEETS), Nagercoil, India, 7–8 April 2016; IEEE: Nagercoil, India, 2016; pp. 56–61. [Google Scholar] [CrossRef]
- Mostafaeipour, A.; Qolipour, M.; Goudarzi, H. Feasibility of Using Wind Turbines for Renewable Hydrogen Production in Firuzkuh, Iran. Front. Energy 2019, 13, 494–505. [Google Scholar] [CrossRef]
- Mishra, S.; Panigrahi, C.K.; Kothari, D.P. Design and Simulation of a Solar–Wind–Biogas Hybrid System Architecture Using HOMER in India. Int. J. Ambient Energy 2016, 37, 184–191. [Google Scholar] [CrossRef]
- Mohammadia, K.; Mostafaeipour, A. Economic Feasibility of Developing Wind Turbines in Aligoodarz, Iran. Energy Convers. Manag. 2013, 76, 645–653. [Google Scholar] [CrossRef]
- Hosseinalizadeh, R.; Rafiei, E.S.; Shafiei Alavijeh, A.; Ghaderi, S.F. Economic Analysis of Small Wind Turbines in Residential Energy Sector in Iran. Sustain. Energy Technol. Assess. 2017, 20, 58–71. [Google Scholar] [CrossRef]
- Rediske, G.; Burin, H.P.; Rigo, P.D.; Rosa, C.B.; Michels, L.; Siluk, J.C.M. Wind Power Plant Site Selection: A Systematic Review. Renew. Sustain. Energy Rev. 2021, 148, 111293. [Google Scholar] [CrossRef]
- Zagubień, A.; Wolniewicz, K. Energy Efficiency of Small Wind Turbines in an Urbanized Area—Case Studies. Energies 2022, 15, 5287. [Google Scholar] [CrossRef]
- Azadeh, A.; Ghaderi, S.F.; Nasrollahi, M.R. Location Optimization of Wind Plants in Iran by an Integrated Hierarchical Data Envelopment Analysis. Renew. Energy 2011, 36, 1621–1631. [Google Scholar] [CrossRef]
- Koc, A.; Turk, S.; Şahin, G. Multi-Criteria of Wind-Solar Site Selection Problem Using a GIS-AHP-Based Approach with an Application in Igdir Province/Turkey. Environ. Sci. Pollut. Res. 2019, 26, 32298–32310. [Google Scholar] [CrossRef]
- Tavner, P.; Edwards, C.; Brinkman, A.; Spinato, F. Influence of Wind Speed on Wind Turbine Reliability. Wind Eng. 2006, 30, 55–72. [Google Scholar] [CrossRef]
- Sedaghat, A.; Hassanzadeh, A.; Jamali, J.; Mostafaeipour, A.; Chen, W.-H. Determination of Rated Wind Speed for Maximum Annual Energy Production of Variable Speed Wind Turbines. Appl. Energy 2017, 205, 781–789. [Google Scholar] [CrossRef]
- Jena, D.; Rajendran, S. Estimation of Effective Wind Speed Based Control of Wind Turbines: A Review. Renew. Sustain. Energy Rev. 2015, 43, 1046–1062. [Google Scholar] [CrossRef]
- Daneshvar Rouyendegh, B.; Yildizbasi, A.; Arikan, Ü.Z.B. Using Intuitionistic Fuzzy TOPSIS in Site Selection of Wind Power Plants in Turkey. In Applications of Fuzzy Multicriteria Decision Making to Complex Engineering Problems; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar] [CrossRef]
- Sliz-Szkliniarz, B.; Vogt, J. GIS-Based Approach for the Evaluation of Wind Energy Potential: A Case Study for the Kujawsko–Pomorskie Voivodeship. Renew. Sustain. Energy Rev. 2011, 15, 1696–1707. [Google Scholar] [CrossRef]
- Azizi, A.; Malekmohammadi, B.; Jafari, H.R.; Nasiri, H.; Parsa, V.A. Land Suitability Assessment for Wind Power Plant Site Selection Using ANP-DEMATEL in a GIS Environment: Case Study of Ardabil Province, Iran. Environ. Monit. Assess. 2014, 186, 6695–6709. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Cuevas, P. GIS-Based Methodology for Evaluating the Wind-Energy Potential of Territories: A Case Study from Andalusia (Spain). Energies 2018, 11, 2789. [Google Scholar] [CrossRef]
- Clarke, A. Wind Farm Location and Environmental Impact. Int. J. Ambient Energy 1989, 10, 129–144. [Google Scholar] [CrossRef]
- Poggi, F.; Firmino, A.; Amado, M. Planning Renewable Energy in Rural Areas: Impacts on Occupation and Land Use. Energy 2018, 155, 630–640. [Google Scholar] [CrossRef]
- Hanssen, F.; May, R.; van Dijk, J.; Rød, J.K. Spatial Multi-Criteria Decision Analysis Tool Suite for Consensus-Based Siting of Renewable Energy Structures. J. Environ. Assess. Policy Manag. 2018, 20, 1840003. [Google Scholar] [CrossRef]
- Milligan, G.W.; Cooper, M.C. An Examination of Procedures for Determining the Number of Clusters in a Data Set. Psychometrika 1985, 50, 159–179. [Google Scholar] [CrossRef]
- Clarke, S. Electricity Generation Using Small Wind Turbines for Home or Farm Use; FACTSHEET 18-005, AGDEX 767; Ontario Ministry of Agriculture, Food and Rural Affairs: Guelph, ON, USA, 2018; pp. 1–15. [Google Scholar]
- Wyszomierski, R.; Bórawski, P.; Bełdycka-Bórawska, A. Competitive Potential of Plant Biomass in Poland Compared to Other Renewable Energy Sources for Heat and Electricity Production. Energies 2025, 18, 1892. [Google Scholar] [CrossRef]
- Augustowski, Ł.; Kułyk, P. The Economic Profitability of Photovoltaic Installations in Households in Poland from a New Policy Perspective. Energies 2023, 16, 7595. [Google Scholar] [CrossRef]
- Gradziuk, P.; Gradziuk, B. Economic Profitability Of Investment in A Photovoltaic Plant In South-East Poland. Ann. Pol. Assoc. Agric. Agribus. Econ. 2019, 21, 124–133. [Google Scholar] [CrossRef]
- Brodziński, Z.; Brodzińska, K.; Szadziun, M. Photovoltaic Farms—Economic Efficiency of Investments in North-East Poland. Energies 2021, 14, 2087. [Google Scholar] [CrossRef]
- Igliński, B.; Piechota, G.; Kiełkowska, U.; Kujawski, W.; Pietrzak, M.B.; Skrzatek, M. The assessment of solar photovoltaic in Poland: The photovoltaics potential, perspectives and development. Clean Technol. Environ. Policy 2023, 25, 281–298. [Google Scholar] [CrossRef] [PubMed]
Variable | Description |
---|---|
Average wind speed | Average wind speed in m/s |
Population density | Population per 1 km2 |
Public roads | Public roads per 100 km2 (in km) |
Agricultural land | total agricultural land (ha)/area (ha) |
CO2 emission | CO2 emissions from particularly burdensome plants (t/y)/area in km2 |
Number of Clusters | Caliński/Harabasz Pseudo-F | Duda/Hart | |
---|---|---|---|
Je(2)/Je(1) | Pseudo T-Squared | ||
1 | 0.2140 | 51.42 | |
2 | 51.42 | 0.2844 | 27.68 |
3 | 70.16 | 0.0625 | 15.01 |
4 | 70.86 | 0.3601 | 5.33 |
5 | 100.69 | 0.1169 | 7.55 |
6 | 131.82 | 0.3306 | 12.15 |
7 | 171.61 | 0.0000 | |
8 | 172.67 | 0.0000 | |
9 | 187.61 | 0.3132 | 4.39 |
10 | 203.04 | 0.0000 |
Test | Statistics | F (df 1) | F (df 2) | F | Prob > F |
---|---|---|---|---|---|
Wilks’ lambda | 0.0474 | 10.0 | 18.0 | 6.47 | 0.0003 (e) |
Pillai’s trace | 1.1984 | 10.0 | 20.0 | 2.99 | 0.0178 (a) |
Lawley–Hotelling trace | 14.9216 | 10.0 | 16.0 | 11.94 | 0.0000 (a) |
Roy’s largest root | 14.5654 | 5.0 | 10.0 | 29.13 | 0.0000 (u) |
Cluster | Voivodeships |
---|---|
G1 | Dolnośląskie, Kujawsko-Pomorskie, Małopolskie, Mazowieckie, Świętokrzyskie |
G2 | Lubelskie, Lubuskie, Podkarpackie, Podlaskie, Pomorskie, Warmińsko-Mazurskie, Wielkopolskie, Zachodniopomorskie |
G3 | Łódzkie, Opolskie, Śląskie |
Parameter | Value |
---|---|
Economics: | |
Nominal discount rate (%) | 7.5 |
Expected inflation rate (%) | 6.0 |
Projected lifetime (years) | 20 |
System fixed capital cost (€) | 2,700,000.00 |
System fixed O&M cost (€/yr) | 30,000.00 |
Grid: | |
Grid Power Price (€/kWh) | 0.289 |
Grid Sellback Price (€/kWh) | 0.076 |
Turbine: | |
Capital (€) | 1,650,000.00 |
Replacement (€) | 1,155,000.00 |
O&M (€/year) | 66,000.00 |
Hub height (m) | 70 |
Wind power output (%) | 50 |
Location | Zone | The Nearest City | Simple Payback (yr) | IRR (%) | ROI (%) |
---|---|---|---|---|---|
52°16.3′ N, 18°8.5′ E | I | Konin | 6.1 | 15 | 11 |
51°34.2′ N, 22°23′ E | I | Lubartów | 6.4 | 15 | 11 |
54°10.3′ N, 21°11.3′ E | I | Korsze | 5.7 | 17 | 12 |
52°27.2′ N, 14°55.7′ E | I | Ośno Lubuskie | 6.1 | 16 | 12 |
53°53.0′ N, 14°26.4′ E | I | Wapnica | 5.1 | 19 | 15 |
51°11.5′ N, 20°30.6′ E | II | Końskie | 6.6 | 14 | 10 |
50°5.2′ N, 20°24.9′ E | II | Nowe Brzesko | 8.0 | 11 | 7.5 |
50°30.1′ N, 21°52.0′ E | II | Tarnobrzeg | 6.9 | 13 | 9.5 |
51°19.2′ N, 21°13.7′ E | II | Skaryszew | 6.5 | 14 | 10 |
50°2.9′ N, 18°52.9′ E | III | Żory | 7.6 | 12 | 8.2 |
49°46.4′ N, 18°40.3′ E | III | Zamarski | 12 | 5.5 | 3.4 |
50°20.5′ N, 17°21.0′ E | III | Bodzianów | 8.1 | 11 | 7.4 |
Average value | 7.10 | 13.54 | 9.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Augustowski, Ł.; Kułyk, P. Spatial Differentiation of Profitability of Wind Turbine Investments in Poland. Energies 2025, 18, 2871. https://doi.org/10.3390/en18112871
Augustowski Ł, Kułyk P. Spatial Differentiation of Profitability of Wind Turbine Investments in Poland. Energies. 2025; 18(11):2871. https://doi.org/10.3390/en18112871
Chicago/Turabian StyleAugustowski, Łukasz, and Piotr Kułyk. 2025. "Spatial Differentiation of Profitability of Wind Turbine Investments in Poland" Energies 18, no. 11: 2871. https://doi.org/10.3390/en18112871
APA StyleAugustowski, Ł., & Kułyk, P. (2025). Spatial Differentiation of Profitability of Wind Turbine Investments in Poland. Energies, 18(11), 2871. https://doi.org/10.3390/en18112871