Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = Hizikia fusiforme

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2520 KiB  
Article
In Vivo Tissue Distribution and Pharmacokinetics of FITC-Labelled Hizikia fusiforme Polyphenol–Polysaccharide Complex in Mice
by Yutong Li, Shangkun Li, Di Li, Yuan Gao, Shuhua Kong, Jingyi Liu, Shu Liu, Yichao Ma, Hui Zhou, Dandan Ren, Qiukuan Wang and Yunhai He
Foods 2024, 13(18), 3019; https://doi.org/10.3390/foods13183019 - 23 Sep 2024
Cited by 2 | Viewed by 2167
Abstract
In this study, a quantitative method based on fluorescein isothiocyanate (FITC)-labelled Hizikia fusiforme polyphenol–polysaccharide complex (HPC) and its purified fractions (PC1, PC4) was used, and its pharmacokinetics and tissue distribution were investigated in mice. The results showed that the FITC-labelled method had good [...] Read more.
In this study, a quantitative method based on fluorescein isothiocyanate (FITC)-labelled Hizikia fusiforme polyphenol–polysaccharide complex (HPC) and its purified fractions (PC1, PC4) was used, and its pharmacokinetics and tissue distribution were investigated in mice. The results showed that the FITC-labelled method had good linearity (R2 > 0.99), intra-day and inter-day precision (RSD, %) consistently lower than 15%, recovery (93.19–106.54%), and stability (RSD < 15%), which met the basic criteria for pharmacokinetic studies. The pharmacokinetic and tissue distribution results in mice after administration showed that all three sample groups could enter the blood circulation. and HPC-FITC had a longer half-life (T1/2: 26.92 ± 0.76 h) and mean retention time (MRT0–∞: 36.48 h) due to its larger molecular weight. The three groups of samples could be absorbed by the organism in a short time (0.5 h) mainly in the stomach and intestine; the samples could be detected in the urine after 2 h of administration indicating strong renal uptake, and faecal excretion reached its maximum at 12 h. The samples were also detected in the urine after 2 h of administration. This study provides some theoretical basis for the tissue distribution pattern of polyphenol–polysaccharide complex. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Figure 1

20 pages, 5096 KiB  
Article
Antioxidant and Anti-Aging Properties of Polyphenol–Polysaccharide Complex Extract from Hizikia fusiforme
by Shangkun Li, Yunhai He, Saiyi Zhong, Yutong Li, Yuan Di, Qiukuan Wang, Dandan Ren, Shu Liu, Di Li and Fangjie Cao
Foods 2023, 12(20), 3725; https://doi.org/10.3390/foods12203725 - 10 Oct 2023
Cited by 11 | Viewed by 2733
Abstract
Hizikia fusiforme has a long history of consumption and medicinal use in China. It has been found that natural plants containing polyphenol–polysaccharide complexes have better activity compared with polyphenols and polysaccharides. Therefore, in this study on enzymatic hydrolysis and fractional alcohol precipitation, two [...] Read more.
Hizikia fusiforme has a long history of consumption and medicinal use in China. It has been found that natural plants containing polyphenol–polysaccharide complexes have better activity compared with polyphenols and polysaccharides. Therefore, in this study on enzymatic hydrolysis and fractional alcohol precipitation, two kinds of polyphenol–polysaccharide complexes (PPC), PPC1 and PPC2, were initially obtained from Hizikia fusiforme, while the dephenolization of PPC1 and PPC2 produced PPC3 and PPC4. Through in vitro assays, PPC2 and PPC4 were found to have higher antioxidant activity, and thus were selected for testing the PPCs’ anti-aging activity in a subsequent in vivo experiment with D-gal-induced aging in mice. The results indicated that PPCs could regulate the expressions of antioxidant enzymes and products of oxidation, elevate the expressions of genes and proteins related to the Nrf2 pathway in the mouse brain, enrich the gut microbiota species and increase the BacteroidotaFirmicute (B/F) ratio. Above all, the Hizikia fusiforme polyphenol–polysaccharide complex has potential in the development of natural anti-aging drugs. Full article
(This article belongs to the Section Foods of Marine Origin)
Show Figures

Graphical abstract

13 pages, 1832 KiB  
Article
Evaluation of Antiviral Effect against SARS-CoV-2 Propagation by Crude Polysaccharides from Seaweed and Abalone Viscera In Vitro
by Sang-Min Kang, Dongseob Tark, Byeong-Min Song, Gun-Hee Lee, Ju-Hee Yang, Hee-Jeong Han and Sung-Kun Yim
Mar. Drugs 2022, 20(5), 296; https://doi.org/10.3390/md20050296 - 27 Apr 2022
Cited by 11 | Viewed by 3766
Abstract
Crude polysaccharides, extracted from two seaweed species (Hizikia fusiforme and Sargassum horneri) and Haliotis discus hannai (abalone) viscera, were evaluated for their inhibitory effect against SARS-CoV-2 propagation. Plaque titration revealed that these crude polysaccharides efficiently inhibited SARS-CoV-2 propagation with IC50 [...] Read more.
Crude polysaccharides, extracted from two seaweed species (Hizikia fusiforme and Sargassum horneri) and Haliotis discus hannai (abalone) viscera, were evaluated for their inhibitory effect against SARS-CoV-2 propagation. Plaque titration revealed that these crude polysaccharides efficiently inhibited SARS-CoV-2 propagation with IC50 values ranging from 0.35 to 4.37 μg/mL. The crude polysaccharide of H. fusiforme showed the strongest antiviral effect, with IC50 of 0.35 μg/mL, followed by S. horneri and abalone viscera with IC50 of 0.56 and 4.37 μg/mL, respectively. In addition, immunofluorescence assay, western blot, and quantitative RT-PCR analysis verified that these polysaccharides could inhibit SARS-CoV-2 replication. In Vero E6 cells, treatment with these crude polysaccharides before or after viral infection strongly inhibited the expression level of SARS-CoV-2 spikes, nucleocapsid proteins, and RNA copies of RNA-dependent RNA-polymerase and nucleocapsid. These results show that these crude marine polysaccharides effectively inhibit SARS-CoV-2 propagation by interference with viral entry. Full article
(This article belongs to the Special Issue Marine Natural Products against Coronaviruses)
Show Figures

Graphical abstract

27 pages, 1677 KiB  
Review
Hizikia fusiformis: Pharmacological and Nutritional Properties
by Maria Dyah Nur Meinita, Dicky Harwanto, Jae-Hak Sohn, Jin-Soo Kim and Jae-Suk Choi
Foods 2021, 10(7), 1660; https://doi.org/10.3390/foods10071660 - 19 Jul 2021
Cited by 27 | Viewed by 5716
Abstract
The brown seaweed Hizikia fusiformis (syn. Sargassum fusiforme), commonly known as “Hijiki”, has been utilized in traditional cuisine and medicine in East Asian countries for several centuries. H. fusiformis has attracted much attention owing to its rich nutritional and pharmacological properties. However, [...] Read more.
The brown seaweed Hizikia fusiformis (syn. Sargassum fusiforme), commonly known as “Hijiki”, has been utilized in traditional cuisine and medicine in East Asian countries for several centuries. H. fusiformis has attracted much attention owing to its rich nutritional and pharmacological properties. However, there has been no comprehensive review of the nutritional and pharmacological properties of H. fusiformis. The aim of this systematic review was to provide detailed information from the published literature on the nutritional and pharmacological properties of H. fusiformis. A comprehensive online search of the literature was conducted by accessing databases, such as PubMed, SpringerLink, ScienceDirect, and Google Scholar, for published studies on the nutritional and pharmacological properties of H. fusiformis between 2010 and 2021. A total of 916 articles were screened from all the databases using the preferred reporting items for systematic reviews and meta-analyses method. Screening based on the setdown criteria resulted in 59 articles, which were used for this review. In this review, we found that there has been an increase in the number of publications on the pharmacological and nutritional properties of H. fusiformis over the last 10 years. In the last 10 years, studies have focused on the proximate, mineral, polysaccharide, and bioactive compound composition, and pharmacological properties, such as antioxidant, anticancer, antitumor, anti-inflammatory, photoprotective, neuroprotective, antidiabetic, immunomodulatory, osteoprotective, and gastroprotective properties of H. fusiformis extracts. Overall, further studies and strategies are required to develop H. fusiformis as a promising resource for the nutrition and pharmacological industries. Full article
Show Figures

Graphical abstract

14 pages, 1204 KiB  
Article
Inhibition of SARS-CoV-2 Virus Entry by the Crude Polysaccharides of Seaweeds and Abalone Viscera In Vitro
by Sung-Kun Yim, Kian Kim, Inhee Kim, SangHo Chun, TaeHwan Oh, Jin-Ung Kim, Jungwon Kim, WooHuk Jung, Hosang Moon, Bosung Ku and Kyoojin Jung
Mar. Drugs 2021, 19(4), 219; https://doi.org/10.3390/md19040219 - 15 Apr 2021
Cited by 65 | Viewed by 6803
Abstract
Much attention is being devoted to the potential of marine sulfated polysaccharides as antiviral agents in preventing COVID-19. In this study, sulfated fucoidan and crude polysaccharides, extracted from six seaweed species (Undaria pinnatifida sporophyll, Laminaria japonica, Hizikia fusiforme, Sargassum horneri, Codium fragile, Porphyra [...] Read more.
Much attention is being devoted to the potential of marine sulfated polysaccharides as antiviral agents in preventing COVID-19. In this study, sulfated fucoidan and crude polysaccharides, extracted from six seaweed species (Undaria pinnatifida sporophyll, Laminaria japonica, Hizikia fusiforme, Sargassum horneri, Codium fragile, Porphyra tenera) and Haliotis discus hannai (abalone viscera), were screened for their inhibitory activity against SARS-CoV-2 virus entry. Most of them showed significant antiviral activities at an IC50 of 12~289 μg/mL against SARS-CoV-2 pseudovirus in HEK293/ACE2, except for P. tenera (IC50 > 1000 μg/mL). The crude polysaccharide of S. horneri showed the strongest antiviral activity, with an IC50 of 12 μg/mL, to prevent COVID-19 entry, and abalone viscera and H. fusiforme could also inhibit SARS-CoV-2 infection with an IC50 of 33 μg/mL and 47 μg/mL, respectively. The common properties of these crude polysaccharides, which have strong antiviral activity, are high molecular weight (>800 kDa), high total carbohydrate (62.7~99.1%), high fucose content (37.3~66.2%), and highly branched polysaccharides. These results indicated that the crude polysaccharides from seaweeds and abalone viscera can effectively inhibit SARS-CoV-2 entry. Full article
(This article belongs to the Special Issue Marine Natural Products against Coronaviruses)
Show Figures

Figure 1

7 pages, 966 KiB  
Article
A Simplified Questionnaire for the Assessment of Inorganic Arsenic Intake in a Japanese Population
by Jun Yoshinaga, Yuki Serizawa, Shota Suzuki, Md Hasan Al Amin, Naoko Yamada and Tomohiro Narukawa
Int. J. Environ. Res. Public Health 2020, 17(17), 6252; https://doi.org/10.3390/ijerph17176252 - 27 Aug 2020
Viewed by 2478
Abstract
A simplified questionnaire was developed to assess inorganic arsenic (iAs) intake level in a Japanese population. The two page questionnaire included photographs of single serving sizes of rice and cooked hijiki (Hizikia fusiforme: brown algae), and asked subjects about the number [...] Read more.
A simplified questionnaire was developed to assess inorganic arsenic (iAs) intake level in a Japanese population. The two page questionnaire included photographs of single serving sizes of rice and cooked hijiki (Hizikia fusiforme: brown algae), and asked subjects about the number of servings of rice and cooked hijiki, two predominant dietary sources of iAs in Japan, they consume in a day. Daily intake of iAs was estimated for 72 Japanese subjects using the questionnaire together with data of iAs content in rice and hijiki seaweed, and the estimated intakes were compared with actual iAs intakes of the subjects as measured for a duplicate diet using liquid chromatography–inductively coupled plasma mass spectrometry. A highly significant correlation was found between the estimated and measured intakes (r = 0.65, p < 0.001); however, the slope of regression indicated a systematic error in the intake estimation. Possible sources of error are discussed herein. It was concluded that this approach is promising if minor improvements are made to the questionnaire. Full article
(This article belongs to the Special Issue Arsenic Exposure in Environment and Human Health)
Show Figures

Figure 1

12 pages, 1858 KiB  
Article
Anti-Photoaging and Anti-Melanogenesis Effects of Fucoidan Isolated from Hizikia fusiforme and Its Underlying Mechanisms
by Lei Wang, Jae-Young Oh, Young-Sang Kim, Hyo-Geun Lee, Jung-Suck Lee and You-Jin Jeon
Mar. Drugs 2020, 18(8), 427; https://doi.org/10.3390/md18080427 - 15 Aug 2020
Cited by 48 | Viewed by 5745
Abstract
Previous studies suggested that fucoidan with a molecular weight of 102.67 kDa, isolated from Hizikia fusiforme, possesses strong antioxidant activity. To explore the cosmeceutical potential of fucoidan, its anti-photoaging and anti-melanogenesis effects were evaluated in the present study. The anti-photoaging effect was [...] Read more.
Previous studies suggested that fucoidan with a molecular weight of 102.67 kDa, isolated from Hizikia fusiforme, possesses strong antioxidant activity. To explore the cosmeceutical potential of fucoidan, its anti-photoaging and anti-melanogenesis effects were evaluated in the present study. The anti-photoaging effect was investigated in ultraviolet (UV) B-irradiated human keratinocytes (HaCaT cells), where fucoidan effectively reduced the intracellular reactive oxygen species level and improved the viability of the UVB-irradiated cells without any cytotoxic effects. Moreover, fucoidan significantly decreased UVB-induced apoptosis in HaCaT cells by regulating the protein expression of Bax, Bcl-xL, PARP, and Caspase-3 in HaCaT cells in a concentration-dependent manner. The anti-melanogenesis effect of fucoidan was evaluated in B16F10 melanoma cells that had been stimulated with alpha-melanocyte-stimulating hormone (α-MSH), and fucoidan treatment remarkably inhibited melanin synthesis in α-MSH-stimulated B16F10 cells. Further studies indicated that fucoidan significantly suppressed the expression of tyrosinase and tyrosinase-related protein-1 and -2 (TRP-1 and-2) in B16F10 cells by down-regulating microphthalmia-associated transcription factor (MITF) through regulation of the ERK–MAPK (extracellular signal regulated kinase-mitogen activated protein kinase) pathway. Taken together, these results suggest that fucoidan isolated from H. fusiforme possesses strong anti-photoaging and anti-melanogenesis activities and can be used as an ingredient in the pharmaceutical and cosmeceutical industries. Full article
(This article belongs to the Special Issue Antiphotoaging and Photoprotective Compounds from Marine Organisms)
Show Figures

Figure 1

15 pages, 1421 KiB  
Article
In Vitro and In Vivo Antitumor Efficacy of Hizikia fusiforme Celluclast Extract against Bladder Cancer
by Jun-Hui Song, Se Yeon Won, Byungdoo Hwang, Soontag Jung, Changsun Choi, Sung-Soo Park, Yung Hyun Choi, Wun-Jae Kim and Sung-Kwon Moon
Nutrients 2020, 12(7), 2159; https://doi.org/10.3390/nu12072159 - 21 Jul 2020
Cited by 9 | Viewed by 4520
Abstract
Various physiological benefits have been linked to Hizikia fusiforme (HF), an edible brown seaweed. Here, fucose-containing sulfated polysaccharides were extracted from celluclast-processed HF (SPHF) and their antitumor efficacy against bladder cancer was evaluated in vitro and in vivo. SPHF possesses high sulfated polysaccharide [...] Read more.
Various physiological benefits have been linked to Hizikia fusiforme (HF), an edible brown seaweed. Here, fucose-containing sulfated polysaccharides were extracted from celluclast-processed HF (SPHF) and their antitumor efficacy against bladder cancer was evaluated in vitro and in vivo. SPHF possesses high sulfated polysaccharide and fucose contents and free radical scavenging activities compared to those of celluclast-processed HF extracts (CHF). SPHF inhibited bladder cancer EJ cell proliferation via G1-phase cell cycle arrest. This was due to the induction of p21WAF1 expression associated with the downregulation of CDKs and cyclins. Moreover, JNK phosphorylation was identified as an SPHF-mediated signaling molecule. SPHF treatment also hindered the migration and invasion of EJ cells by inhibiting MMP-9 expression, which was attributed to the repression of transcriptional binding to NF-κB, AP-1, and Sp-1 in the MMP-9 promoter region. In an animal study, SPHF treatment suppressed EJ tumor growth in xenograft mice similarly to cisplatin. Furthermore, no toxicity signs were found after weight loss assessment, biochemical tests, and organ tissue immunostaining during oral administration of 20–200 mg/kg SPHF for 20 days. Therefore, our study demonstrates the antitumor efficacy of SPHF in vitro and in vivo, thus highlighting its potential for bladder cancer treatment development. Full article
(This article belongs to the Section Phytochemicals and Human Health)
Show Figures

Figure 1

14 pages, 2258 KiB  
Article
Isolation, Characterization, and Antioxidant Activity Evaluation of a Fucoidan from an Enzymatic Digest of the Edible Seaweed, Hizikia fusiforme
by Lei Wang, Thilina U. Jayawardena, Hye-Won Yang, Hyo Geun Lee, Min-Cheol Kang, K. K. Asanka Sanjeewa, Jae Young Oh and You-Jin Jeon
Antioxidants 2020, 9(5), 363; https://doi.org/10.3390/antiox9050363 - 27 Apr 2020
Cited by 73 | Viewed by 6297
Abstract
The previous study suggested that the sulfated polysaccharides from Hizikia fusiforme (HFPS) possess strong antioxidant activity. The purpose of this study is to isolate fucoidan from HFPS and to investigate its antioxidant activity. A fucoidan (HFPS-F4) with a molecular weight of 102.67 kDa [...] Read more.
The previous study suggested that the sulfated polysaccharides from Hizikia fusiforme (HFPS) possess strong antioxidant activity. The purpose of this study is to isolate fucoidan from HFPS and to investigate its antioxidant activity. A fucoidan (HFPS-F4) with a molecular weight of 102.67 kDa was isolated from HFPS. HFPS-F4 contains 99.01% of fucoidan (71.79 ± 0.56% of carbohydrate and 27.22 ± 0.05% of sulfate content). The fucoidan increased the viability of H2O2-treated Vero cells by 5.41, 11.17, and 16.32% at the concentration of 12.5, 25, and 50 μg/mL, respectively. Further results demonstrated that this effect act diminishing apoptosis by scavenging intracellular reactive oxygen species (ROS) via increasing the expression of the endogenous antioxidant enzymes, which was induced by elevating total nuclear factor (erythroid-derived 2)-like 2 (Nrf2) levels. In addition, the in vivo test results displayed that the pretreatment of fucoidan improved the survival rates and decreased heart-beating rate, ROS, cell death, and lipid peroxidation in H2O2-stimulated zebrafish. Taken together, these results demonstrated that fucoidan isolated from HFPS has strong in vitro and in vivo antioxidant activities and it could be utilized in pharmaceutical, nutraceutical, and cosmeceutical industries. Full article
(This article belongs to the Special Issue Feature Papers in Antioxidants in 2020)
Show Figures

Figure 1

12 pages, 2562 KiB  
Article
Protective Effect of Sulfated Polysaccharides from Celluclast-Assisted Extract of Hizikia fusiforme Against Ultraviolet B-Induced Skin Damage by Regulating NF-κB, AP-1, and MAPKs Signaling Pathways In Vitro in Human Dermal Fibroblasts
by Lei Wang, WonWoo Lee, Jae Young Oh, Yong Ri Cui, BoMi Ryu and You-Jin Jeon
Mar. Drugs 2018, 16(7), 239; https://doi.org/10.3390/md16070239 - 17 Jul 2018
Cited by 101 | Viewed by 9398
Abstract
Our previous study evaluated the antioxidant activities of sulfated polysaccharides from Celluclast-assisted extract of Hizikia fusiforme (HFPS) in vitro in Vero cells and in vivo in zebrafish. The results showed that HFPS possesses strong antioxidant activity and suggested the potential photo-protective activities of [...] Read more.
Our previous study evaluated the antioxidant activities of sulfated polysaccharides from Celluclast-assisted extract of Hizikia fusiforme (HFPS) in vitro in Vero cells and in vivo in zebrafish. The results showed that HFPS possesses strong antioxidant activity and suggested the potential photo-protective activities of HFPS. Hence, in the present study, we investigated the protective effects of HFPS against ultraviolet (UV) B-induced skin damage in vitro in human dermal fibroblasts (HDF cells). The results indicate that HFPS significantly reduced intracellular reactive oxygen species (ROS) level and improved the viability of UVB-irradiated HDF cells in a dose-dependent manner. Furthermore, HFPS significantly inhibited intracellular collagenase and elastase activities, remarkably protected collagen synthesis, and reduced matrix metalloproteinases (MMPs) expression by regulating nuclear factor kappa B (NF-κB), activator protein 1 (AP-1), and mitogen-activated protein kinases (MAPKs) signaling pathways in UVB-irradiated HDF cells. These results suggest that HFPS possesses strong UV protective effect, and can be a potential ingredient in the pharmaceutical and cosmetic industries. Full article
(This article belongs to the Special Issue Anti-Photoagaing and Photo-Protective Compounds from Marine Organisms)
Show Figures

Figure 1

12 pages, 1394 KiB  
Article
Anti-Diabetic Effects and Anti-Inflammatory Effects of Laminaria japonica and Hizikia fusiforme in Skeletal Muscle: In Vitro and In Vivo Model
by Sae-ym Kang, Eunyoung Kim, Inhae Kang, Myoungsook Lee and Yunkyoung Lee
Nutrients 2018, 10(4), 491; https://doi.org/10.3390/nu10040491 - 16 Apr 2018
Cited by 48 | Viewed by 6719
Abstract
Laminaria japonica (LJ) and Hizikia fusiforme (HF) are brown seaweeds known to have various health-promoting effects. In this study, we investigated the anti-diabetic effects and possible mechanism(s) of LJ and HF by using both in vitro and in vivo [...] Read more.
Laminaria japonica (LJ) and Hizikia fusiforme (HF) are brown seaweeds known to have various health-promoting effects. In this study, we investigated the anti-diabetic effects and possible mechanism(s) of LJ and HF by using both in vitro and in vivo models. C2C12 myotubes, mouse-derived skeletal muscle cells, treated with LF or HF extracts were used for the in vitro model, and muscle tissues from C57BL/6N mice fed a high-fat diet supplemented with 5% LF or HF for 16 weeks were used for the in vivo model. Although both the LF and HF extracts significantly inhibited α-glucosidase activity in a dose-dependent manner, the HF extract had a superior α-glucosidase inhibition than the LF extract. In addition, glucose uptake was significantly increased by LJ- and HF-treated groups when compared to the control group. Phosphorylation of protein kinase B and AMP-activated protein kinase was induced by LJ and HF in both the vivo and in vitro skeletal muscle models. Furthermore, LJ and HF significantly decreased tumor necrosis factor-α whereas both extracts increased interleukin (IL)-6 and IL-10 production in lipopolysaccharide-stimulated C2C12 myotubes. Taken together, these findings imply that the brown seaweeds LJ and HF could be useful therapeutic agents to attenuate muscle insulin resistance due to diet-induced obesity and its associated inflammation. Full article
(This article belongs to the Special Issue Nutrients, Bioactives and Insulin Resistance)
Show Figures

Figure 1

Back to TopTop