Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,232)

Search Parameters:
Keywords = HPLC–UV

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1365 KiB  
Article
Generation of Formates Following 20 kHz Sonication of DSPE-mPEG2000 PEGylated Phospholipid Micelles
by Perouza Parsamian and Paul Pantano
Pharmaceutics 2025, 17(8), 1008; https://doi.org/10.3390/pharmaceutics17081008 (registering DOI) - 1 Aug 2025
Abstract
Background: Previous research has demonstrated that 20 kHz probe or 37 kHz bath sonication of poloxamers comprising polypropylene glycol (PPG) and polyethylene glycol (PEG) blocks can generate degradation byproducts that are toxic to mammalian cells and organisms. Herein, an investigation of a [...] Read more.
Background: Previous research has demonstrated that 20 kHz probe or 37 kHz bath sonication of poloxamers comprising polypropylene glycol (PPG) and polyethylene glycol (PEG) blocks can generate degradation byproducts that are toxic to mammalian cells and organisms. Herein, an investigation of a PEGylated phospholipid micelle was undertaken to identify low-molecular-weight sonolytic degradation byproducts that could be cytotoxic. The concern here lies with the fact that sonication is a frequently employed step in drug delivery manufacturing processes, during which PEGylated phospholipids can be subjected to shear forces and other extreme oxidative and thermal conditions. Methods: Control and 20 kHz-sonicated micelles of DSPE-mPEG2000 were analyzed using dynamic light scattering (DLS) and zeta potential analyses to study colloidal properties, matrix-assisted laser desorption/ionization–time of flight (MALDI-TOF) mass spectroscopy (MS) and proton nuclear magnetic resonance (1H-NMR) spectroscopy to study the structural integrity of DSPE-mPEG2000, and 1H-NMR spectroscopy and high-performance liquid chromatography (HPLC) with ultraviolet (UV) detection to quantitate the formation of low-molecular-weight degradation byproducts. Results: MALDI-TOF-MS analyses of 20 kHz-sonicated DSPE-mPEG2000 revealed the loss of ethylene glycol moieties in accordance with depolymerization of the PEG chain; 1H-NMR spectroscopy showed the presence of formate, a known oxidative/thermal degradation product of PEG; and HPLC-UV showed that the generation of formate was dependent on 20 kHz probe sonication time between 5 and 60 min. Conclusions: It was found that 20 kHz sonication can degrade the PEG chain of DSPE-mPEG2000, altering the micelle’s PEG corona and generating formate, a known ocular toxicant. Full article
Show Figures

Figure 1

12 pages, 2396 KiB  
Article
Helical Airflow Synthesis of Quinoxalines: A Continuous and Efficient Mechanochemical Approach
by Jiawei Zhang, Zeli Xiao, Qi Huang, Yang Zhao, Bo Jin and Rufang Peng
Chemistry 2025, 7(4), 121; https://doi.org/10.3390/chemistry7040121 - 29 Jul 2025
Viewed by 162
Abstract
In this work, we report a novel mechanochemical synthesis method for the synthesis of quinoxaline derivatives—a spiral gas–solid two-phase flow approach, which enables the efficient preparation of quinoxaline compounds. Compared to conventional synthetic methods, this approach eliminates the need for heating or solvents [...] Read more.
In this work, we report a novel mechanochemical synthesis method for the synthesis of quinoxaline derivatives—a spiral gas–solid two-phase flow approach, which enables the efficient preparation of quinoxaline compounds. Compared to conventional synthetic methods, this approach eliminates the need for heating or solvents while significantly reducing reaction time. The structures of the synthesized compounds were characterized using nuclear magnetic resonance (NMR), Fourier-transform infrared spectroscopy (FT-IR), ultraviolet-visible (UV–Vis) absorption spectroscopy, powder X-ray diffraction (XRD), differential scanning calorimetry (DSC), and high-performance liquid chromatography (HPLC). Using the synthesis of 2,3-diphenylquinoxaline (1) as a model reaction, the synthetic process was investigated with UV–Vis spectroscopy. The results demonstrate that when the total feed amount was 2 g with a carrier gas pressure of 0.8 MPa, the reaction completed within 2 min, achieving a yield of 93%. Furthermore, kinetic analysis of the reaction mechanism was performed by monitoring the UV–Vis spectra of the products at different time intervals. The results indicate that the synthesis of 1 follows the A4 kinetic model, which describes a two-dimensional diffusion-controlled product growth process following decelerated nucleation. Full article
Show Figures

Figure 1

14 pages, 752 KiB  
Article
Versatile High-Performance Liquid Chromatography and Ultraviolet Detection-Based Method for the Determination of Thioproline in Pharmaceutical and Cosmetic Products
by Marta Gaweł, Martyna Płodzik, Rafał Głowacki and Justyna Piechocka
Molecules 2025, 30(15), 3152; https://doi.org/10.3390/molecules30153152 - 28 Jul 2025
Viewed by 213
Abstract
The article presents the first method based on high-performance liquid chromatography and ultraviolet detection (HPLC-UV) for the determination of timonacic (thioproline, 1,3-thiazolidine-4-carboxylic acid, tPro) in pharmaceutical tablets and face care products (creams, sera, foundations, suncreams). Sample preparation primarily involves solid-liquid extraction (SLE) of [...] Read more.
The article presents the first method based on high-performance liquid chromatography and ultraviolet detection (HPLC-UV) for the determination of timonacic (thioproline, 1,3-thiazolidine-4-carboxylic acid, tPro) in pharmaceutical tablets and face care products (creams, sera, foundations, suncreams). Sample preparation primarily involves solid-liquid extraction (SLE) of tPro with 0.2 mol/L phosphate buffer pH 6, derivatization with 0.25 mol/L 2-chloro-1-methylquinolinium tetrafluoroborate (CMQT), followed by polytetrafluoroethylene (PTFE) membrane filtration. The chromatographic separation of the stable UV-absorbing 2-S-quinolinium derivative is achieved within 14 min at 25 °C on a Zorbax SB-C18 (150 × 4.6 mm, 5 µm) column using gradient elution. The eluent consists of 0.1 mol/L trichloroacetic acid (TCA), pH 1.7, in a mixture with acetonitrile (ACN) delivered at a flow rate of 1 mL/min. The analyte is quantified by monitoring at 348 nm. The assay linearity was observed within 0.5–125 μmol/L. The limit of quantification (LOQ) was found to be 0.5 μmol/L. The accuracy ranged from 93.22% to 104.31% and 97.38% to 103.48%, while precision varied from 0.30% to 11.23% and 1.13% to 9.64% for intra- and inter-assay measurements, respectively. The method was successfully applied to commercially available on the Polish market pharmaceutical and cosmetic products. Full article
(This article belongs to the Special Issue Recent Advances in Chromatography for Pharmaceutical Analysis)
Show Figures

Figure 1

19 pages, 3813 KiB  
Article
An OSMAC Strategy for the Production of Antimicrobial Compounds by the Amazonian Fungi Talaromyces pinophilus CCM-UEA-F0414 and Penicillium paxilli CCM-UEA-F0591
by Cleudiane Pereira de Andrade, Caroline Dutra Lacerda, Raíssa Assímen Valente, Liss Stone de Holanda Rocha, Anne Terezinha Fernandes de Souza, Dorothy Ívila de Melo Pereira, Larissa Kirsch Barbosa, Cleiton Fantin, Sergio Duvoisin Junior and Patrícia Melchionna Albuquerque
Antibiotics 2025, 14(8), 756; https://doi.org/10.3390/antibiotics14080756 - 27 Jul 2025
Viewed by 267
Abstract
Background/Objectives: The emergence of antimicrobial resistance represents a critical global health threat, requiring the discovery of novel bioactive compounds. Fungi from Amazonian biodiversity are promising sources of secondary metabolites with potential antimicrobial activity. This study aimed to investigate the production of antimicrobial compounds [...] Read more.
Background/Objectives: The emergence of antimicrobial resistance represents a critical global health threat, requiring the discovery of novel bioactive compounds. Fungi from Amazonian biodiversity are promising sources of secondary metabolites with potential antimicrobial activity. This study aimed to investigate the production of antimicrobial compounds by two Amazonian fungal strains using the OSMAC (One Strain–Many Compounds) approach. Methods: Two fungal strains, Talaromyces pinophilus CCM-UEA-F0414 and Penicillium paxilli CCM-UEA-F0591, were cultivated under five distinct culture media to modulate secondary metabolite production. Ethyl acetate extracts were prepared and evaluated for antimicrobial activity against Gram-positive and Gram-negative bacteria, as well as pathogenic yeasts. Chemical characterization was performed using thin-layer chromatography (TLC), Fourier Transform Infrared Spectroscopy (FTIR), Ultraviolet–Visible (UV-Vis) spectroscopy, and Ultra-High-Performance Liquid Chromatography with Diode Array Detection (uHPLC-DAD). Results: The extracts exhibited significant antimicrobial activity, with minimum inhibitory concentrations (MICs) ranging from 78 to 5000 µg/mL. Chemical analyses revealed the presence of phenolic compounds, particularly caffeic and chlorogenic acids. Variations in the culture media substantially affected both the metabolite profiles and antimicrobial efficacy of the extracts. Conclusions: The OSMAC strategy effectively enhanced the metabolic diversity of the Amazonian fungal strains, leading to the production of bioactive metabolites with antimicrobial potential. These findings support the importance of optimizing culture conditions to unlock the biosynthetic capacity of Amazonian fungi as promising sources of antimicrobial agents. Full article
Show Figures

Figure 1

23 pages, 737 KiB  
Article
Influence of Plant-Based Substrate Composition and Extraction Method on Accumulation of Bioactive Compounds in Hericium erinaceus (Bull.) Pers. Fruiting Bodies
by Katarzyna Kała, Małgorzata Cicha-Jeleń, Katarzyna Sułkowska-Ziaja, Beata Ostachowicz, Ewa Węgrzynowicz, Jan Lazur, Agnieszka Szewczyk and Bożena Muszyńska
Molecules 2025, 30(15), 3094; https://doi.org/10.3390/molecules30153094 - 24 Jul 2025
Viewed by 281
Abstract
The selection of plant-based substrates for mushroom cultivation is a key factor influencing their growth and metabolism. The aim of this study was to demonstrate, in an innovative approach, differences in the content of biologically active compounds, bioelements, and antioxidant properties of Hericium [...] Read more.
The selection of plant-based substrates for mushroom cultivation is a key factor influencing their growth and metabolism. The aim of this study was to demonstrate, in an innovative approach, differences in the content of biologically active compounds, bioelements, and antioxidant properties of Hericium erinaceus (Bull.) Pers. cultivated on various plant-based substrates derived from waste materials, specifically hemp straw and beech sawdust. Another objective was to compare various extraction methods in terms of their impact on the concentration of these compounds. Elemental analysis was performed using the TXRF method, while bioactive constituents were determined using the DAD/UV RP-HPLC technique. The plant-based substrate and extraction method influenced the levels of obtained metabolites. Dual extraction with moderate ethanol concentrations was most effective for isolating key bioactive compounds from H. erinaceus—notably ergothioneine, lovastatin, L-phenylalanine, and ergosterol—while antioxidant activity did not correlate with the concentration of the solvent used. Although dual extracts enhanced certain antioxidants and metabolites, whole fruiting bodies contained higher levels of bioelements. Overall, fruiting bodies grown on beech sawdust had greater amounts of most bioactive compounds compared to those cultivated on hemp straw, emphasizing that both substrate choice and extraction method critically influence the mushroom’s bioactive profile and its potential health benefits. Full article
Show Figures

Figure 1

27 pages, 2644 KiB  
Article
Nutraceutical Potential of Sideroxylon cinereum, an Endemic Mauritian Fruit of the Sapotaceae Family, Through the Elucidation of Its Phytochemical Composition and Antioxidant Activity
by Cheetra Bhajan, Joyce Govinden Soulange, Vijayanti Mala Ranghoo-Sanmukhiya, Remigiusz Olędzki, Daniel Ociński, Irena Jacukowicz-Sobala, Adam Zając, Melanie-Jayne R. Howes and Joanna Harasym
Molecules 2025, 30(14), 3041; https://doi.org/10.3390/molecules30143041 - 20 Jul 2025
Viewed by 327
Abstract
Sideroxylon cinereum, an endemic Mauritian fruit, was investigated through comprehensive chemical analyses of solvent extracts from its pulp and seed. Dried fruit materials were subjected to maceration using water and organic solvents including methanol, ethanol, propanol, and acetone to obtain extracts of [...] Read more.
Sideroxylon cinereum, an endemic Mauritian fruit, was investigated through comprehensive chemical analyses of solvent extracts from its pulp and seed. Dried fruit materials were subjected to maceration using water and organic solvents including methanol, ethanol, propanol, and acetone to obtain extracts of varying polarity. Preliminary phytochemical screening revealed the presence of several bioactive compounds, with pulp extracts generally richer in phytochemicals than seed extracts. UV-Vis and FTIR analyses confirmed key organic constituents, including sulfoxides in seeds. HPLC quantification showed notable citric acid content in the pulp (15.63 mg/g dry weight). Antioxidant assays indicated that organic solvent extracts of the pulp had superior free radical scavenging activity, while the seed’s aqueous extract exhibited the highest ferric reducing power. GC–MS profiling identified a diverse bioactive profile rich in terpenes, notably lanosterol acetate (>45% in both pulp and seeds). It is important to note that these findings are based on solvent extracts, which may differ from the phytochemical composition of the whole fruit as typically consumed. Among the extracts, aqueous fractions are likely the most relevant to dietary intake. Overall, the extracts of Sideroxylon cinereum pulp and seed show potential as sources of bioactive compounds for functional product development. Full article
Show Figures

Figure 1

24 pages, 1349 KiB  
Review
Chemotaxonomy, an Efficient Tool for Medicinal Plant Identification: Current Trends and Limitations
by Adnan Amin and SeonJoo Park
Plants 2025, 14(14), 2234; https://doi.org/10.3390/plants14142234 - 19 Jul 2025
Viewed by 455
Abstract
This review highlights the critical role of chemotaxonomy in the identification, authentication, and discovery of bioactive compounds in medicinal plants. By analyzing secondary metabolites using techniques like UV spectroscopy, FTIR, HPLC, GC-MS, NMR, LC-MS-Qtof, and MALDI-TOF MS, chemotaxonomy ensures accurate plant identification, supporting [...] Read more.
This review highlights the critical role of chemotaxonomy in the identification, authentication, and discovery of bioactive compounds in medicinal plants. By analyzing secondary metabolites using techniques like UV spectroscopy, FTIR, HPLC, GC-MS, NMR, LC-MS-Qtof, and MALDI-TOF MS, chemotaxonomy ensures accurate plant identification, supporting the safe and effective use of plants in herbal medicine. Key secondary metabolites used in chemotaxonomic identification include alkaloids, flavonoids, terpenoids, phenolics, tannins, and plant peptides. Chemotaxonomy also facilitates the discovery of novel compounds with therapeutic potential, contributing to drug development. The integration of chemotaxonomy with genomics and proteomics allows a deeper understanding of plant biosynthesis and the mechanisms behind bioactive compound production. However, challenges due to variability in metabolite profiles and the lack of standardized methods remain, and future research should focus on developing global databases, improving standardization, and incorporating artificial intelligence and machine learning to enhance plant identification and bioactive compound discovery. The integration of chemotaxonomy with personalized medicine offers the potential to tailor plant-based therapies to individual genetic profiles, advancing targeted treatments. This review underscores chemotaxonomy’s importance in bridging traditional knowledge and modern science, offering sustainable solutions for medicinal plant use and drug development. Full article
(This article belongs to the Special Issue Plant Phylogeny, Taxonomy and Evolution)
Show Figures

Figure 1

24 pages, 2213 KiB  
Article
Triple-Loaded Nanoemulsions Incorporating Coffee Extract for the Photoprotection of Curcumin and Capsaicin: Experimental and Computational Evaluation
by Nuttapol Boonrueang, Siripat Chaichit, Wipawadee Yooin, Siriporn Okonogi, Kanokwan Kiattisin and Chadarat Ampasavate
Pharmaceutics 2025, 17(7), 926; https://doi.org/10.3390/pharmaceutics17070926 - 17 Jul 2025
Viewed by 417
Abstract
Background/Objectives: This study aims to present a strategic approach to enhancing the photostability and antioxidative resilience of curcumin and capsaicin by integrating selected natural stabilizers within a nanoemulsion-based delivery system. Methods: Coffee extract (Coffea arabica Linn.), along with its active [...] Read more.
Background/Objectives: This study aims to present a strategic approach to enhancing the photostability and antioxidative resilience of curcumin and capsaicin by integrating selected natural stabilizers within a nanoemulsion-based delivery system. Methods: Coffee extract (Coffea arabica Linn.), along with its active components and vitamin E-containing natural oils, was assessed in terms of improving the photostabilizing and antioxidative retention abilities of curcumin and capsaicin. An optimized ratio of the active mixture was then loaded into a nanoformulation. Results: The analysis of active contents with validated high-performance liquid chromatography (HPLC), ferric reducing antioxidant power (FRAP), and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assays confirmed the stabilization enhancement after irradiation with UV and white light for 72,000–84,000 lux hours. The optimized combination of coffee extract with turmeric and chili mixtures loaded into the optimized nanoemulsion enhanced the half-lives (T1/2) of curcumin and capsaicin by 416% and 390%, respectively. The interactions of curcumin and capsaicin with caffeine and chlorogenic acid were elucidated using computational calculations. Interaction energies (Eint), HOMO-LUMO energy gap (HLG) analysis, and global reactivity descriptors revealed hydrogen bonding interactions be-tween capsaicin and chlorogenic acid, as well as between curcumin and caffeine. Conclusions: By leveraging the synergistic antioxidative properties of coffee extract and vitamin E within a nanoemulsion matrix, this study overcomes the intrinsic stability limitations of curcumin and capsaicin, offering a robust platform for future pharmaceutical and nutraceutical applications. Full article
Show Figures

Graphical abstract

18 pages, 6714 KiB  
Article
Metabolomics and Sensory Evaluation Reveal the Aroma and Taste Profile of Northern Guangdong Black Tea
by Jialin Chen, Binghong Liu, Yide Zhou, Jiahao Chen, Yanchun Zheng, Hui Meng, Xindong Tan, Peng Zheng, Binmei Sun, Hongbo Zhao and Shaoqun Liu
Foods 2025, 14(14), 2466; https://doi.org/10.3390/foods14142466 - 14 Jul 2025
Viewed by 413
Abstract
The sensory quality of black tea is intrinsically linked to cultivar genetics, yet comprehensive characterization of flavor compounds in emerging northern Guangdong black tea (NGBT) remains limited. This study employed high-performance liquid chromatography-ultraviolet (HPLC-UV) and headspace solid-phase microextraction coupled with GC-MS (HS-SPME-GC-MS) to [...] Read more.
The sensory quality of black tea is intrinsically linked to cultivar genetics, yet comprehensive characterization of flavor compounds in emerging northern Guangdong black tea (NGBT) remains limited. This study employed high-performance liquid chromatography-ultraviolet (HPLC-UV) and headspace solid-phase microextraction coupled with GC-MS (HS-SPME-GC-MS) to analyze non-volatile and volatile compounds in five NGBT cultivars—Jinshahong (JSH), Danxia No.1 (DXY), Danxia No.2 (DXE), Yingde Black Tea (QTZ), and Yinghong No.9 (YHJ)—alongside sensory evaluation. Orthogonal partial least squares-discriminant analysis (OPLS-DA) identified key non-volatile discriminants (VIP > 1) ranked by contribution: total catechins > simple catechins > CG > EGCG > ester catechins > EGC. HS-SPME-GC-MS detected 97 volatiles, with eight aroma-active compounds exhibiting OAV > 1 and VIP > 1: Geraniol > Methyl salicylate > Linalool > β-Myrcene > Benzyl alcohol > (Z)-Linalool Oxide > Phenethyl alcohol > (Z)-Jasmone. These compounds drive cultivar-specific aromas in NGBTs. Findings establish a theoretical framework for evaluating cultivar-driven flavor quality and provide novel insights for targeted breeding and processing optimization of NGBTs. Full article
(This article belongs to the Section Foodomics)
Show Figures

Figure 1

14 pages, 1927 KiB  
Article
Complete Characterization of Degradation Byproducts of Bemotrizinol and Degradation Pathway Associated with Sodium Hypochlorite Treatment
by Armando Zarrelli
Molecules 2025, 30(14), 2935; https://doi.org/10.3390/molecules30142935 - 11 Jul 2025
Viewed by 265
Abstract
The aim of this study was to elucidate all the degradation byproducts (DBPs) of bemotrizinol (BEMT) that are associated with sodium hypochlorite treatment. BEMT is a UV filter that is found not only in many personal care products, such as sunscreen and cosmetics, [...] Read more.
The aim of this study was to elucidate all the degradation byproducts (DBPs) of bemotrizinol (BEMT) that are associated with sodium hypochlorite treatment. BEMT is a UV filter that is found not only in many personal care products, such as sunscreen and cosmetics, but also as an additive in plastics or clothing to protect them from damage that results from absorbed radiation. BEMT has been detected in wastewater, surface water, and some lake sediments, in quantities from a few ng/L to hundreds of ng/L, to such an extent that, today, it is considered an emerging pollutant. In this study, the UV filter was subjected to oxidation with sodium hypochlorite, which is an oxidant at the base of the disinfection process that is used in most wastewater treatment plants or in swimming pools. Using different chromatographic methods (CC, TLC, HPLC, and GC), the resulting DBP mixture was separated into its main components, which were then identified using one- and two-dimensional nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry. Nineteen DBPs were isolated, and a plausible reaction mechanism was proposed to explain how they were obtained. Full article
(This article belongs to the Special Issue Degradation of Aromatic Compounds in the Environment)
Show Figures

Figure 1

12 pages, 2424 KiB  
Article
Comparison of Quantification Using UV-Vis, NMR, and HPLC Methods of Retinol-Like Bakuchiol Present in Cosmetic Products
by Matylda Grzelecka, Paweł Siudem, Natalia Tyburc, Liling Triyasmono, Ulrike Holzgrabe and Katarzyna Paradowska
Int. J. Mol. Sci. 2025, 26(14), 6638; https://doi.org/10.3390/ijms26146638 - 10 Jul 2025
Viewed by 323
Abstract
Retinoids are used in cosmetics as anti-aging ingredients, along with other substances. However, due to limitations in use (such as photodegradation), it seems necessary to look for retinoid alternatives to be applied in cosmetic products. Bakuchiol, a natural alternative of retinoids, isolated from [...] Read more.
Retinoids are used in cosmetics as anti-aging ingredients, along with other substances. However, due to limitations in use (such as photodegradation), it seems necessary to look for retinoid alternatives to be applied in cosmetic products. Bakuchiol, a natural alternative of retinoids, isolated from Psolarea corylifolia, is one such compound. It has great cosmetic potential and its mechanism of action is not yet fully explored. From the point of view of the bioactive compound, it is also essential to develop a method for rapid quality control of cosmetic preparations containing bakuchiol. The aim of this study was to apply and compare methods for the quantification of bakuchiol in cosmetic products using UV-Vis, 1H qNMR, and HPLC. The results show the possibility of using the 1H NMR method in the routine quality control of cosmetics with bakuchiol because of its comparable results with HPLC analysis and significantly shorter analysis time. Full article
(This article belongs to the Special Issue Extraction, Identification and Quantification of Bioactive Molecules)
Show Figures

Figure 1

16 pages, 2915 KiB  
Article
Extrusion-Based 3D Printing of Rutin Using Aqueous Polyethylene Oxide Gel Inks
by Oleh Koshovyi, Jyrki Heinämäki, Alina Shpychak, Andres Meos, Niklas Sandler Topelius and Ain Raal
Pharmaceutics 2025, 17(7), 878; https://doi.org/10.3390/pharmaceutics17070878 - 3 Jul 2025
Viewed by 404
Abstract
Background/Objectives. Flavonoids are a vast class of phenolic substances. To date, approximately 6000 plant-origin flavonoids have been discovered, with many of them being used in drug therapy. Therapeutic flavonoids are commonly formulated to conventional “one-size-fits-all” dosage forms, such as conventional tablets or hard [...] Read more.
Background/Objectives. Flavonoids are a vast class of phenolic substances. To date, approximately 6000 plant-origin flavonoids have been discovered, with many of them being used in drug therapy. Therapeutic flavonoids are commonly formulated to conventional “one-size-fits-all” dosage forms, such as conventional tablets or hard capsules. However, the current trends in pharmacy and medicine are centred on personalised drug therapy and drug delivery systems (DDSs). Therefore, 3D printing is an interesting technique for designing and preparing novel personalised pharmaceuticals for flavonoids. The aim of the present study was to develop aqueous polyethylene oxide (PEO) gel inks loaded with rutin for semisolid extrusion (SSE) 3D printing. Methods. Rutin (a model substance for therapeutic flavonoids), Tween 80, PEO (MW approx. 900,000), ethanol, and purified water were used in PEO gels at different proportions. The viscosity and homogeneity of the gels were determined. The rutin–PEO gels were printed with a bench-top Hyrel 3D printer into lattices and discs, and their weight and effective surface area were investigated. Results. The key SSE 3D-printing process parameters were established and verified. The results showed the compatibility of rutin as a model flavonoid and PEO as a carrier polymer. The rutin content (%) and content uniformity of the 3D-printed preparations were assayed by UV spectrophotometry and high-performance liquid chromatography (HPLC). Conclusions. The most feasible aqueous PEO gel ink formulation for SSE 3D printing contained rutin 100 mg/mL and Tween 80 50 mg/mL in a 12% aqueous PEO gel. The 3D-printed dosage forms are intended for the oral administration of flavonoids. Full article
(This article belongs to the Special Issue 3D Printing of Drug Delivery Systems)
Show Figures

Graphical abstract

17 pages, 1034 KiB  
Article
Monitoring of Vitamin C Plasma Levels in a Reversible Model of Malabsorption Generated in Mice by Ebulin-f
by Daniel Arranz-Paraiso, M. Angeles Rojo, Cristina Martin-Sabroso, Manuel Cordoba-Diaz, Tomás Girbés, Manuel Garrosa and Damian Cordoba-Diaz
Toxins 2025, 17(7), 333; https://doi.org/10.3390/toxins17070333 - 30 Jun 2025
Viewed by 570
Abstract
The development of reversible animal models for the study of intestinal pathologies is essential to reduce the number of animals used in research and to better understand disease mechanisms. In this study, we present a reversible model of intestinal malabsorption through the administration [...] Read more.
The development of reversible animal models for the study of intestinal pathologies is essential to reduce the number of animals used in research and to better understand disease mechanisms. In this study, we present a reversible model of intestinal malabsorption through the administration of sublethal doses of ebulin-f, a ribosome-inactivating protein, and validate its usefulness by monitoring vitamin C absorption. The scientific community increasingly recognizes the importance of rationalizing experimental designs, optimizing treatment protocols, and minimizing the use of animals in research models. Thus, new methodologies are needed to minimize invasive sampling and to develop reversible animal models that recover physiologically post-study. Such models are essential for in vivo studies of human pathologies. Sublethal doses of ebulin-f (2.5 mg/kg) administered intraperitoneally to female Swiss CD1 mice (n = 6 per group) can cause reversible intestinal alterations in the small intestine, which offer the possibility of having a valuable reversible study model of malabsorption for the investigation of this syndrome. To verify whether nutrient absorption is altered, we used vitamin C as a traceable nutrient that can be quantified in the blood. Peripheral blood samples were collected through the retro-orbital area at 30, 80, 120, 180, and 1440 min post-administration, treated with DTT and MPA, and analyzed using a validated UV/Vis–HPLC method to indirectly determine vitamin C absorption by enterocytes. Pharmacokinetic analysis revealed significantly increased vitamin C absorption on days 1 and 3 post-treatment (AUC values of 3.65 × 104 and 7.10 × 104, respectively) compared to control (0.94 × 104), with partial recovery by day 22 (3.27 × 104). Blood concentration profiles indicate that intestinal damage peaks at day 3, followed by significant regeneration by day 22, establishing this as a viable reversible model for inflammatory bowel disease research. Full article
Show Figures

Graphical abstract

13 pages, 2707 KiB  
Article
Unique Composition and Sustainability Aspects of the EETP801 Amazonian Cocoa Cultivar vs. CCN51 and Commercial Cocoas
by Rocío De la Peña-Armada, Roberta Ascrizzi, Rocio Alarcon, Michelle Viteri, Guido Flamini and Jose M. Prieto
Beverages 2025, 11(4), 93; https://doi.org/10.3390/beverages11040093 - 20 Jun 2025
Viewed by 514
Abstract
In this study, we analysed cocoa (a dried and fully fermented seed of Theobroma cacao L.) from two Amazonian cultivars and a commercial sample of the Amazonian variety EETP801, grown under sustainable organic conditions, in comparison to CCN51 cocoa grown on a neighbouring [...] Read more.
In this study, we analysed cocoa (a dried and fully fermented seed of Theobroma cacao L.) from two Amazonian cultivars and a commercial sample of the Amazonian variety EETP801, grown under sustainable organic conditions, in comparison to CCN51 cocoa grown on a neighbouring commercial farm using standard practises and a European commercial cacao powdered beverage. The overall metabolite profile of the 70% aq acetone sample cocoa extracts was analysed using high-performance TLC analyses (HPTLC), and the xanthine alkaloids were analysed using quantitative liquid chromatography–UV photodiode array (HPLC-DAD) analyses. The volatile fraction in the headspace of the freshly ground cocoa was subjected to solid phase micro-extraction and analysed by gas chromatography–mass spectrometry (HS-SPME/GC-MS). Total polyphenol content was determined by the Folin–Ciocalteu method. Despite the reduced production of cocoa by the EETP801 cultivar in comparison with the CCN51 cultivar, the obtained produce is significantly richer in theobromine (130 mg vs. 170 mg per g of cacao), with CCN51 having a double concentration of theophylline (12.6 vs. 6.5 mg per g of cacao). Qualitatively, the two Amazonian cocoa samples had a similar polyphenolic composition (per the HPTLC fingerprint). HS-SPME/GC-MS analyses revealed that all the samples show a spontaneous emission profile mainly rich in non-terpene derivatives, of which hydrocarbons and pyrazines are the most abundant groups. The most represented volatile organic compound is n-tridecane for both EETP801 and CCN51. The variability in the artisan fermentation and roasting processes influenced certain aspects of the volatile composition as reflected by the trimethyl pyrazine/tetramethyl pyrazine ratio, which was zero in EETP-801 and lower than 1 in CCN51. Acetic acid was absent in CCN51 but significant (c.a. 5.5.%) in EETP801 and the commercial samples. The cultivar EETP801 is a viable option for a more ecologically conscious sector of the cocoa beverages consumer group. Full article
Show Figures

Figure 1

25 pages, 3287 KiB  
Article
Evaluation of Properties and Bioactivity of Silver (Ag) Nanoparticles (NPs) Fabricated Using Nixtamalization Wastewater (Nejayote)
by Alejandra Ortiz-De Lira, J. A. Lozano-Álvarez, N. A. Chávez-Vela, C. E. Escárcega-González, Enrique D. Barriga-Castro, Hilda E. Reynel-Ávila and Iliana E. Medina-Ramírez
Clean Technol. 2025, 7(3), 51; https://doi.org/10.3390/cleantechnol7030051 - 20 Jun 2025
Viewed by 573
Abstract
Nejayote (Nej), an effluent from nixtamalization process, has an alkaline pH and contains a high load of organic matter in suspension and dissolution, which makes it a highly polluting waste when discharged directly into the environment. However, the sustainable reuse of this effluent [...] Read more.
Nejayote (Nej), an effluent from nixtamalization process, has an alkaline pH and contains a high load of organic matter in suspension and dissolution, which makes it a highly polluting waste when discharged directly into the environment. However, the sustainable reuse of this effluent is relevant since it contains high-value compounds (ferulic acid (FA)) with appropriate activity for the ecological synthesis of silver nanoparticles (AgNPs). This study explores the synthesis of AgNPs using Nej as a reducing and stabilizing agent and evaluates the antibacterial effectiveness of AgNPs against Escherichia coli (E. coli). The AgNPs under study possess excellent optical (UV-Vis) and structural properties (XRD). HR-TEM images show predominantly spherical particles, with an average size of 20 nm. FTIR spectroscopy identified functional groups, including phenols and flavonoids, on the nanoparticle surface, acting as stabilizing agents. HPLC supports the existence of FA in the AgNPs. Biogenic AgNPs exhibit enhanced antibacterial activity due to the adsorption of these functional groups onto their surface, which contributes to bacterial membrane disruption. Finally, no hemolytic or cytotoxic activity was observed, suggesting that the AgNPs exert antimicrobial activity without potentially harmful doses (biocompatibility). The study highlights the potential of Nej as a sustainable source for use in nanoparticle synthesis, promoting the recycling of agro-industrial waste and the production of materials with technological applications. Full article
Show Figures

Graphical abstract

Back to TopTop