Unique Composition and Sustainability Aspects of the EETP801 Amazonian Cocoa Cultivar vs. CCN51 and Commercial Cocoas
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Extraction
2.3. Phenol Content Determination by the Folin–Ciocalteu Method
2.4. High-Performance Thin Layer Chromatography (HPTLC)
2.5. High-Performance Liquid Chromatography (HPLC)
2.6. Headspace (HS) Solid Phase Micro-Extraction (SPME) of Volatiles
2.7. Gas Chromatography—Mass Sepctrometry (GC-MS) Analysis of Volatiles
2.8. Statistical Analyses
3. Results
3.1. Total Phenol Content
3.2. HPTLC Anlysis of Cocoa Samples
3.3. Analysis of the Volatile Metabolites of the Amazonian Samples
3.4. Quantitative Analysis of the Xanthine Alkaloids in Cocoa Samples
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Diby, L.; Kahia, J.; Kouamé, C.; Aynekulu, E. Tea, Coffee, and Cocoa. In Encyclopedia of Applied Plant Sciences; Elsevier: Amsterdam, The Netherlands, 2017; pp. 420–425. ISBN 978-0-12-394808-3. [Google Scholar]
- International Monetary Fund. Primary Commodities: Market Developments & Outlook; World Economic and Financial Surveys; International Monetary Fund: Washington, DC, USA, 1986; ISBN 978-1-4519-4304-7. [Google Scholar]
- Coe, S.D.; Coe, M.D. The True History of Chocolate; Thames & Hudson: New York, NY, USA, 1996; ISBN 978-0-500-29474-1. [Google Scholar]
- Barišić, V.; Icyer, N.C.; Akyil, S.; Toker, O.S.; Flanjak, I.; Ačkar, Đ. Cocoa Based Beverages—Composition, Nutritional Value, Processing, Quality Problems and New Perspectives. Trends Food Sci. Technol. 2023, 132, 65–75. [Google Scholar] [CrossRef]
- González-Garrido, J.A.; García-Sánchez, J.R.; López-Victorio, C.J.; Escobar-Ramírez, A.; Olivares-Corichi, I.M. Cocoa: A Functional Food That Decreases Insulin Resistance and Oxidative Damage in Young Adults with Class II Obesity. Nutr. Res. Pract. 2023, 17, 228. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Zhou, J.; Yang, J.; Lou, H.; Zhao, B.; Chi, J.; Tang, W. Dark Chocolate Intake and Cardiovascular Diseases: A Mendelian Randomization Study. Sci. Rep. 2024, 14, 968. [Google Scholar] [CrossRef]
- Kongor, J.E.; Owusu, M.; Oduro-Yeboah, C. Cocoa Production in the 2020s: Challenges and Solutions. CABI Agric. Biosci. 2024, 5, 102. [Google Scholar] [CrossRef]
- Kim, N.; Lee, K. Environmental Consciousness, Purchase Intention, and Actual Purchase Behavior of Eco-Friendly Products: The Moderating Impact of Situational Context. Int. J. Environ. Res. Public Health 2023, 20, 5312. [Google Scholar] [CrossRef] [PubMed]
- Samanta, S.; Sarkar, T.; Chakraborty, R.; Rebezov, M.; Shariati, M.A.; Thiruvengadam, M.; Rengasamy, K.R.R. Dark Chocolate: An Overview of Its Biological Activity, Processing, and Fortification Approaches. Curr. Res. Food Sci. 2022, 5, 1916–1943. [Google Scholar] [CrossRef] [PubMed]
- Rainforest Alliance. Rainforest Alliance Certified Cocoa; Rainforest Alliance: New York, NY, USA, 2022. [Google Scholar]
- Halliday, J. Mars Pledges Sustainable Cocoa Only by 2020. Available online: https://www.foodnavigator.com/Article/2009/04/10/Mars-pledges-sustainable-cocoa-only-by-2020/ (accessed on 13 December 2024).
- Heredia-R, M.; Blanco-Gutiérrez, I.; Esteve, P.; Puhl, L.; Morales-Opazo, C. Assessment of Sustainability in Cocoa Farms in Ecuador: Application of a Multidimensional Indicator-Based Framework. Int. J. Agric. Sustain. 2024, 22, 2379863. [Google Scholar] [CrossRef]
- EETP-801. Available online: https://icgd.reading.ac.uk/all_data.php?nacode=33607&&tables=planting_mat-country (accessed on 14 December 2024).
- INIAP. Materiales de siembra: EETP-801. Available online: https://tecnologia.iniap.gob.ec/wp-content/uploads/2023/11/80111.pdf (accessed on 27 December 2024).
- Bonvehí, J.S. Investigation of Aromatic Compounds in Roasted Cocoa Powder. Eur. Food Res. Technol. 2005, 221, 19–29. [Google Scholar] [CrossRef]
- Rodriguez-Campos, J.; Escalona-Buendía, H.B.; Contreras-Ramos, S.M.; Orozco-Avila, I.; Jaramillo-Flores, E.; Lugo-Cervantes, E. Effect of Fermentation Time and Drying Temperature on Volatile Compounds in Cocoa. Food Chem. 2012, 132, 277–288. [Google Scholar] [CrossRef]
- Van Durme, J.; Ingels, I.; De Winne, A. Inline Roasting Hyphenated with Gas Chromatography–Mass Spectrometry as an Innovative Approach for Assessment of Cocoa Fermentation Quality and Aroma Formation Potential. Food Chem. 2016, 205, 66–72. [Google Scholar] [CrossRef]
- Afoakwa, E.O. Chocolate Science and Technology; Wiley-Blackwell: Chichester, UK; Ames, IA, USA, 2010; ISBN 978-1-4051-9906-3. [Google Scholar]
- Rodriguez-Campos, J.; Escalona-Buendía, H.B.; Orozco-Avila, I.; Lugo-Cervantes, E.; Jaramillo-Flores, M.E. Dynamics of Volatile and Non-Volatile Compounds in Cocoa (Theobroma cacao L.) during Fermentation and Drying Processes Using Principal Components Analysis. Food Res. Int. 2011, 44, 250–258. [Google Scholar] [CrossRef]
- Tran, P.D.; Van De Walle, D.; De Clercq, N.; De Winne, A.; Kadow, D.; Lieberei, R.; Messens, K.; Tran, D.N.; Dewettinck, K.; Van Durme, J. Assessing Cocoa Aroma Quality by Multiple Analytical Approaches. Food Res. Int. 2015, 77, 657–669. [Google Scholar] [CrossRef]
- Rodríguez, A.; San Andrés, V.; Cervera, M.; Redondo, A.; Alquézar, B.; Shimada, T.; Gadea, J.; Rodrigo, M.J.; Zacarías, L.; Palou, L.; et al. Terpene Down-Regulation in Orange Reveals the Role of Fruit Aromas in Mediating Interactions with Insect Herbivores and Pathogens. Plant Physiol. 2011, 156, 793–802. [Google Scholar] [CrossRef] [PubMed]
- Pretorius, I.S. Tailoring Wine Yeast for the New Millennium: Novel Approaches to the Ancient Art of Winemaking. Yeast 2000, 16, 675–729. [Google Scholar] [CrossRef] [PubMed]
- Acierno, V.; Yener, S.; Alewijn, M.; Biasioli, F.; Van Ruth, S. Factors Contributing to the Variation in the Volatile Composition of Chocolate: Botanical and Geographical Origins of the Cocoa Beans, and Brand-Related Formulation and Processing. Food Res. Int. 2016, 84, 86–95. [Google Scholar] [CrossRef]
- Jinap, S.; Dimick, P.S.; Hollender, R. Flavour Evaluation of Chocolate Formulated from Cocoa Beans from Different Countries. Food Control 1995, 6, 105–110. [Google Scholar] [CrossRef]
- Frauendorfer, F.; Schieberle, P. Identification of the Key Aroma Compounds in Cocoa Powder Based on Molecular Sensory Correlations. J. Agric. Food Chem. 2006, 54, 5521–5529. [Google Scholar] [CrossRef] [PubMed]
- Frauendorfer, F.; Schieberle, P. Changes in Key Aroma Compounds of Criollo Cocoa Beans During Roasting. J. Agric. Food Chem. 2008, 56, 10244–10251. [Google Scholar] [CrossRef]
- Jaimez, R.E.; Barragan, L.; Fernández-Niño, M.; Wessjohann, L.A.; Cedeño-Garcia, G.; Sotomayor Cantos, I.; Arteaga, F. Theobroma cacao L. Cultivar CCN 51: A Comprehensive Review on Origin, Genetics, Sensory Properties, Production Dynamics, and Physiological Aspects. PeerJ 2022, 10, e12676. [Google Scholar] [CrossRef]
- Pokorny, B.; Robiglio, V.; Reyes, M.; Vargas, R.; Patiño Carrera, C.F. The Potential of Agroforestry Concessions to Stabilize Amazonian Forest Frontiers: A Case Study on the Economic and Environmental Robustness of Informally Settled Small-Scale Cocoa Farmers in Peru. Land Use Policy 2021, 102, 105242. [Google Scholar] [CrossRef]
- Andres, C.; Comoé, H.; Beerli, A.; Schneider, M.; Rist, S.; Jacobi, J. Cocoa in Monoculture and Dynamic Agroforestry. In Sustainable Agriculture Reviews; Lichtfouse, E., Ed.; Sustainable Agriculture Reviews; Springer International Publishing: Cham, Switzerland, 2016; Volume 19, pp. 121–153. ISBN 978-3-319-26776-0. [Google Scholar]
- Groeneveld, J.H.; Tscharntke, T.; Moser, G.; Clough, Y. Experimental Evidence for Stronger Cacao Yield Limitation by Pollination than by Plant Resources. Perspect. Plant Ecol. Evol. Syst. 2010, 12, 183–191. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, H.; Jia, L.; Zhang, Y.; Qin, R.; Xu, S.; Mei, Y. Health Benefits and Mechanisms of Theobromine. J. Funct. Foods 2024, 115, 106126. [Google Scholar] [CrossRef]
- Gao, L.; Ge, W.; Peng, C.; Guo, J.; Chen, N.; He, L. Association between Dietary Theobromine and Cognitive Function in a Representative American Population: A Cross-Sectional Study. J. Prev. Alzheimers Dis. 2022, 9, 449–457. [Google Scholar] [CrossRef]
- Lee, H.-W.; Choi, I.-W.; Ha, S.K. Immunostimulatory Activities of Theobromine on Macrophages via the Activation of MAPK and NF-κB Signaling Pathways. Curr. Issues Mol. Biol. 2022, 44, 4216–4228. [Google Scholar] [CrossRef] [PubMed]
- Camps-Bossacoma, M.; Pérez-Cano, F.J.; Franch, À.; Castell, M. Theobromine Is Responsible for the Effects of Cocoa on the Antibody Immune Status of Rats. J. Nutr. 2018, 148, 464–471. [Google Scholar] [CrossRef] [PubMed]
- Wei, D.; Wu, S.; Liu, J.; Zhang, X.; Guan, X.; Gao, L.; Xu, Z. Theobromine Ameliorates Nonalcoholic Fatty Liver Disease by Regulating Hepatic Lipid Metabolism via mTOR Signaling Pathway in Vivo and in Vitro. Can. J. Physiol. Pharmacol. 2021, 99, 775–785. [Google Scholar] [CrossRef] [PubMed]
- Franco, R.; Oñatibia-Astibia, A.; Martínez-Pinilla, E. Health Benefits of Methylxanthines in Cacao and Chocolate. Nutrients 2013, 5, 4159–4173. [Google Scholar] [CrossRef]
- de Silva, N.M.J.; de Lima, C.L.S.; Meireles dos Santos, R.; Rogez, H.; de Souza, J.N.S. Exploring Variations in Quality Parameters of Theobroma cacao L. Beans from Eastern Amazonia. Heliyon 2024, 10, e39295. [Google Scholar] [CrossRef]
Constituents | L.R.I. a | Relative Abundance (% ± SD) | ||
---|---|---|---|---|
Commercial | CCN51 | EETP801 | ||
acetic acid | 599 | 5.52 ± 0.19 | – b | 5.56 ± 0.37 |
ethyl acetate | 616 | 7.58 ± 0.29 | ||
2,3-butanediol | 799 | 5.78 ± 0.17 | 2.24 ± 0.14 | |
2-methyl pyrazine | 833 | 1.21 ± 0.13 | 0.33 ± 0.04 | 1.04 ± 0.08 |
isovaleric acid | 834 | 1.03 ± 0.09 | 0.99 ± 0.12 | 0.60 ± 0.04 |
2-methylbutanoic acid | 860 | 0.55 ± 0.07 | 0.39 ± 0.02 | |
isopentyl acetate | 876 | 0.15 ± 0.02 | ||
2-heptanone | 891 | 0.90 ± 0.13 | ||
2-heptanol | 902 | 3.29 ± 0.19 | 0.88 ± 0.04 | |
2,6-dimethyl pyrazine | 910 | 3.18 ± 0.16 | 1.73 ± 0.11 | 5.10 ± 0.33 |
2,5-dimethyl pyrazine | 920 | 0.90 ± 0.14 | ||
2-ethyl pyrazine | 925 | 1.51 ± 0.11 | ||
2,3-dimethyl pyrazine | 930 | 0.96 ± 0.05 | 0.60 ± 0.04 | 1.02 ± 0.05 |
benzaldehyde | 963 | 2.06 ± 0.11 | 0.63 ± 0.06 | 0.77 ± 0.07 |
myrcene | 993 | 0.85 ± 0.07 | ||
2-ethyl-6-methyl pyrazine | 1001 | 1.42 ± 0.08 | 0.75 ± 0.09 | 1.44 ± 0.12 |
2,3,5-trimethyl pyrazine | 1005 | 5.64 ± 0.30 | 4.84 ± 0.16 | 6.45 ± 0.46 |
limonene | 1032 | 1.26 ± 0.16 | 1.72 ± 0.14 | 0.76 ± 0.03 |
(Z)-β-ocimene | 1042 | 1.31 ± 0.10 | ||
(E)-β-ocimene | 1052 | 0.22 ± 0.02 | ||
acetophenone | 1068 | 0.47 ± 0.04 | 0.63 ± 0.02 | |
trans-linalool oxide (furanoid) | 1076 | 1.40 ± 0.10 | 1.09 ± 0.09 | |
2,6-diethyl pyrazine | 1080 | 3.57 ± 0.30 | 2.58 ± 0.16 | 6.31 ± 0.35 |
2,3,5,6-tetramethyl pyrazine | 1086 | 10.04 ± 0.55 | 9.60 ± 0.36 | |
cis-linalool oxide (furanoid) | 1090 | 5.53 ± 0.23 | ||
2-nonanone | 1093 | 1.05 ± 0.06 | 7.10 ± 0.28 | 1.13 ± 0.15 |
n-undecane | 1100 | 1.19 ± 0.05 | 0.87 ± 0.07 | |
linalool | 1101 | 1.01 ± 0.05 | 8.64 ± 0.30 | 2.66 ± 0.15 |
nonanal | 1102 | 1.01 ± 0.04 | 1.16 ± 0.08 | |
isodihydrolavandulyl aldehyde | 1110 | 2.01 ± 0.22 | ||
phenylethyl alcohol | 1111 | 1.15 ± 0.06 | ||
trans-limonene oxide | 1141 | 0.14 ± 0.01 | ||
5H-5-methyl-6,5-dihydrocyclopentapyrazine | 1142 | 0.32 ± 0.07 | ||
camphor | 1143 | 0.63 ± 0.16 | 0.27 ± 0.05 | 0.36 ± 0.06 |
3,5-diethyl-2-methyl pyrazine | 1156 | 0.78 ± 0.10 | 0.27 ± 0.03 | 0.99 ± 0.21 |
2,3,5-trimethyl-6-ethyl pyrazine | 1163 | 0.83 ± 0.04 | 0.80 ± 0.10 | 1.59 ± 0.20 |
tetrahydrolavandulol | 1168 | 0.19 ± 0.02 | ||
trans-linalool oxide (pyranoid) | 1177 | 0.93 ± 0.08 | ||
α-terpineol | 1191 | 0.17 ± 0.02 | ||
1-dodecene | 1192 | 1.58 ± 0.19 | 0.42 ± 0.06 | |
n-dodecane | 1200 | 1.96 ± 0.11 | 8.90 ± 0.38 | 8.53 ± 0.34 |
decanal | 1204 | 0.40 ± 0.09 | ||
2,5-dimethyl-3-(2-methylpropyl) pyrazine | 1208 | 2.07 ± 0.14 | ||
2-phenylethyl acetate | 1258 | 2.69 ± 0.12 | 2.61 ± 0.19 | 1.45 ± 0.09 |
1-tridecene | 1292 | 5.12 ± 0.19 | 0.30 ± 0.04 | 0.61 ± 0.08 |
2-undecanone | 1294 | 0.46 ± 0.04 | ||
2,5-dimethyl-3-(3-methylbutyl) pyrazine | 1298 | 1.62 ± 0.15 | ||
n-tridecane | 1300 | 4.08 ± 0.12 | 11.37 ± 0.45 | 16.44 ± 0.96 |
1-nonanol acetate | 1312 | 0.48 ± 0.04 | ||
(Z)-2-tridecene | 1315 | 0.12 ± 0.03 | 0.42 ± 0.04 | |
geranyl acetate | 1385 | 1.26 ± 0.08 | ||
isolongifolene | 1387 | 0.27 ± 0.05 | ||
1-tetradecene | 1392 | 6.37 ± 0.25 | 0.19 ± 0.05 | |
ethyl decanoate | 1395 | 0.90 ± 0.05 | 0.65 ± 0.10 | |
β-longipinene | 1398 | 3.31 ± 0.18 | 3.18 ± 0.15 | |
n-tetradecane | 1400 | 5.88 ± 0.33 | 1.91 ± 0.10 | 3.50 ± 0.55 |
longifolene | 1403 | 0.48 ± 0.08 | 0.98 ± 0.11 | |
β-caryophyllene | 1420 | 0.33 ± 0.03 | 0.70 ± 0.10 | |
α-neo-clovene | 1454 | 0.74 ± 0.07 | 0.58 ± 0.06 | |
γ-muurolene | 1477 | 0.39 ± 0.04 | ||
cis-β-guaiene | 1490 | 0.23 ± 0.02 | ||
epizonarene | 1497 | 0.54 ± 0.05 | ||
α-muurolene | 1498 | 0.19 ± 0.03 | 1.17 ± 0.09 | |
n-pentadecane | 1500 | 7.00 ± 0.37 | ||
trans-γ-cadinene | 1513 | 1.11 ± 0.10 | ||
δ-cadinene | 1524 | 0.49 ± 0.10 | 3.13 ± 0.14 | |
ethyl dodecanoate | 1596 | 1.63 ± 0.13 | 1.75 ± 0.10 | |
n-hexadecane | 1600 | 1.66 ± 0.17 | 0.40 ± 0.03 | 0.96 ± 0.05 |
1-tetradecanol | 1676 | 1.37 ± 0.11 | ||
n-heptadecane | 1700 | 2.35 ± 0.12 | ||
Total identified: | 96.87 | 97.39 | 94.60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De la Peña-Armada, R.; Ascrizzi, R.; Alarcon, R.; Viteri, M.; Flamini, G.; Prieto, J.M. Unique Composition and Sustainability Aspects of the EETP801 Amazonian Cocoa Cultivar vs. CCN51 and Commercial Cocoas. Beverages 2025, 11, 93. https://doi.org/10.3390/beverages11040093
De la Peña-Armada R, Ascrizzi R, Alarcon R, Viteri M, Flamini G, Prieto JM. Unique Composition and Sustainability Aspects of the EETP801 Amazonian Cocoa Cultivar vs. CCN51 and Commercial Cocoas. Beverages. 2025; 11(4):93. https://doi.org/10.3390/beverages11040093
Chicago/Turabian StyleDe la Peña-Armada, Rocío, Roberta Ascrizzi, Rocio Alarcon, Michelle Viteri, Guido Flamini, and Jose M. Prieto. 2025. "Unique Composition and Sustainability Aspects of the EETP801 Amazonian Cocoa Cultivar vs. CCN51 and Commercial Cocoas" Beverages 11, no. 4: 93. https://doi.org/10.3390/beverages11040093
APA StyleDe la Peña-Armada, R., Ascrizzi, R., Alarcon, R., Viteri, M., Flamini, G., & Prieto, J. M. (2025). Unique Composition and Sustainability Aspects of the EETP801 Amazonian Cocoa Cultivar vs. CCN51 and Commercial Cocoas. Beverages, 11(4), 93. https://doi.org/10.3390/beverages11040093