Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (711)

Search Parameters:
Keywords = HEK-293T

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1312 KB  
Article
DOTAP-Based Hybrid Nanostructured Lipid Carriers for CRISPR–Cas9 RNP Delivery Targeting TGFB1 in Diabetic Nephropathy
by Nurul Jummah, Hanifa Syifa Kamila, Satrialdi, Aluicia Anita Artarini, Ebrahim Sadaqa, Anindyajati and Diky Mudhakir
Pharmaceutics 2026, 18(1), 94; https://doi.org/10.3390/pharmaceutics18010094 (registering DOI) - 11 Jan 2026
Abstract
Background: Diabetic nephropathy (DN) is largely driven by transforming growth factor-β1 (TGF-β1)-mediated fibrosis. Clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (Cas9) ribonucleoprotein (RNP) complexes offer precise gene disruption, yet effective non-viral delivery remains a challenge. This study developed cationic lipid-based [...] Read more.
Background: Diabetic nephropathy (DN) is largely driven by transforming growth factor-β1 (TGF-β1)-mediated fibrosis. Clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (Cas9) ribonucleoprotein (RNP) complexes offer precise gene disruption, yet effective non-viral delivery remains a challenge. This study developed cationic lipid-based hybrid nanostructured lipid carriers (NLCs) for intracellular delivery of TGFB1-targeting RNP as an early-stage platform for DN gene modulation. Methods: A single-guide RNA (sgRNA) targeting human TGFB1 was assembled with Cas9 protein (1:1 and 1:2 molar ratios). Hybrid NLCs comprising squalene, glyceryl trimyristate, and the cationic lipid 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) were formulated via optimized emulsification–sonication to achieve sub-100 nm particles. Physicochemical properties, including polydispersity index (PDI), were assessed via dynamic light scattering (DLS), while silencing efficacy in HEK293T cells was quantified using quantitative reverse transcription PCR (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA). Results: Optimized NLCs achieved hydrodynamic diameters of 65–99 nm (PDI < 0.5) with successful RNP complexation. The 1:2 Cas9:sgRNA formulation produced the strongest gene-editing response, reducing TGFB1 mRNA by 67% (p < 0.01) compared with 39% for the 1:1 ratio. This translated to a significant reduction in TGF-β1 protein (p < 0.05) within 24 h. Conclusions: DOTAP-based hybrid NLCs enable efficient delivery of CRISPR–Cas9 RNP and achieve significant suppression of TGFB1 expression at both transcriptional and protein levels. These findings establish a promising non-viral platform for upstream modulation of profibrotic signaling in DN and support further evaluation in kidney-derived cells and in vivo renal models. Full article
(This article belongs to the Topic Advanced Nanocarriers for Targeted Drug and Gene Delivery)
19 pages, 3314 KB  
Article
Selective Budding of SARS-CoV-Like Particles from Glycolipid-Enriched Membrane Lipid Rafts and Host Gene Modulation
by Manoj K. Pastey, Yue Huang and Barney Graham
Microorganisms 2026, 14(1), 159; https://doi.org/10.3390/microorganisms14010159 (registering DOI) - 10 Jan 2026
Abstract
Severe acute respiratory syndrome coronavirus (SARS-CoV) assembles and buds from the Golgi apparatus or the ER membrane, but the specific membrane microdomains utilized during this process remain underexplored. Here, we show that co-expression of the SARS-CoV structural proteins S, M, and N in [...] Read more.
Severe acute respiratory syndrome coronavirus (SARS-CoV) assembles and buds from the Golgi apparatus or the ER membrane, but the specific membrane microdomains utilized during this process remain underexplored. Here, we show that co-expression of the SARS-CoV structural proteins S, M, and N in HEK-293T cells is sufficient to generate genome-free SARS-CoV-like virus-like particles (VLPs), which preferentially bud from glycolipid-enriched membrane lipid raft microdomains. Immunofluorescence microscopy using raft-selective dyes (DiIC16) and spike-specific antibodies revealed strong co-localization of VLPs with lipid rafts. Detergent-resistant membrane analysis and sucrose gradient centrifugation further confirmed the presence of S protein in buoyant, raft-associated fractions alongside the raft marker CD44. Importantly, pharmacological disruption of rafts with methyl-β-cyclodextrin reduced VLP budding and S protein partitioning into raft domains, underscoring the requirement for intact lipid rafts in assembly. Additionally, our data support lipid raft-associated proteins’ (e.g., FNRA, VIM, CD59, RHOA) roles in modulating cellular responses conducive to viral replication and assembly. These findings highlight lipid rafts as crucial platforms for SARS-CoV morphogenesis and suggest new avenues for vaccine and antiviral development using VLPs and raft-targeting therapeutics. Full article
(This article belongs to the Special Issue Coronavirus: Epidemiology, Diagnosis, Pathogenesis and Control)
21 pages, 1893 KB  
Article
The Chimeric Nuclease SpRYc Exhibits Highly Variable Performance Across Biological Systems
by Irina O. Deriglazova, Mikhail V. Shepelev, Natalia A. Kruglova, Pavel G. Georgiev and Oksana G. Maksimenko
Int. J. Mol. Sci. 2026, 27(1), 488; https://doi.org/10.3390/ijms27010488 - 3 Jan 2026
Viewed by 138
Abstract
The CRISPR–Cas9 system has significantly advanced genome editing but remains constrained by its requirement for specific protospacer adjacent motifs (PAMs). To overcome this limitation, PAM-relaxed nucleases, including the novel near-PAMless chimeric SpRYc, have been developed. Here, we evaluated SpRYc editing activity across multiple [...] Read more.
The CRISPR–Cas9 system has significantly advanced genome editing but remains constrained by its requirement for specific protospacer adjacent motifs (PAMs). To overcome this limitation, PAM-relaxed nucleases, including the novel near-PAMless chimeric SpRYc, have been developed. Here, we evaluated SpRYc editing activity across multiple experimental systems, including human HEK293 and CEM-R5 cells, as well as Drosophila melanogaster S2 cells and embryos. In HEK293 cells, SpRYc exhibited broad PAM compatibility, enabling editing at non-canonical PAMs, albeit with reduced and variable efficiency at canonical NGG sites compared to SpCas9. This context dependency was more pronounced in CEM-R5 T cells, where SpRYc activity at endogenous CXCR4 and B2M loci was largely restricted to NGG PAMs. In contrast, unlike SpCas9, SpRYc displayed negligible genome-editing activity in Drosophila embryos in vivo. Notably, the transcriptional activator dSpRYc-VPR showed robust activity in Drosophila S2 cells at both canonical and non-canonical PAMs. Reduced chromatin occupancy of dSpRYc-VPR suggests a balance between expanded PAM recognition and DNA-binding stability, providing a mechanistic explanation for context-dependent performance of SpRYc. Overall, our results highlight that expanded targeting flexibility comes at the cost of variable efficiency, underscoring the need for extensive locus- and context-specific validation of PAM-relaxed genome-editing tools. Full article
(This article belongs to the Special Issue CRISPR/Cas Systems and Genome Editing—3rd Edition)
Show Figures

Figure 1

27 pages, 4192 KB  
Article
Calcium and Cadmium Activate ESRRB to Mediate Cell Stemness and Pluripotency
by Xu Shi, Gai Yan, Nicole C. Zhao, Qiaochu Wang, Dajun Lu, Destiny Lawler, Reem M. Gahtani, Celia Byrne, Bassem R. Haddad, Robert L. Copeland and Mary Beth Martin
Int. J. Mol. Sci. 2026, 27(1), 231; https://doi.org/10.3390/ijms27010231 - 25 Dec 2025
Viewed by 212
Abstract
Estrogen-related receptor beta (ESRRB) is thought to be an orphan receptor that functions as a transcription factor, pioneer factor, and mitotic bookmarker to regulate cell stemness, pluripotency, and differentiation. This study (1) investigates whether calcium and cadmium activation of ESRRB regulates signaling pathways [...] Read more.
Estrogen-related receptor beta (ESRRB) is thought to be an orphan receptor that functions as a transcription factor, pioneer factor, and mitotic bookmarker to regulate cell stemness, pluripotency, and differentiation. This study (1) investigates whether calcium and cadmium activation of ESRRB regulates signaling pathways of stemness and pluripotency, (2) explores the transcriptomic and biological alterations of metal activation of ESRRB, and (3) reveals the underlying mechanisms by which metals activate ESRRB. In HEK293T cells, treatment with calcium and cadmium increased the expression of ESRRB-regulated genes that was blocked by an ESRRB antagonist. In the breast cancer cell line MDA-MB-453, treatment with calcium, cadmium, or a synthetic agonist also increased the expression of ESRRB-regulated genes that was blocked by the antagonist, enhanced ESRRB nuclear localization, increased the recruitment of RNA polymerase 2 to estrogen-related receptor response elements (ERRE), enhanced cell stemness and proliferation pathways, and induced the expression of estrogen receptor alpha (ESR1 or Erα). Mutational analysis and molecular docking identified potential metal interaction sites within ESRRB’s ligand-binding domain. Together, these results suggest calcium acts as a natural ligand for ESRRB and cadmium, which mimics calcium, activate ESRRB to mediate cell stemness and pluripotency. Full article
(This article belongs to the Special Issue Molecular Mechanism and Therapeutic Approach of Metal Toxicity)
Show Figures

Figure 1

15 pages, 4152 KB  
Article
UVA Light Triggers Activation of TRPV1 and TRPA1 by Staurosporine and Midostaurin
by Sebastian Pantke, Lucas H. K. Weber, Frank G. Echtermeyer, Christine Herzog, Mirjam J. Eberhardt and Andreas Leffler
Int. J. Mol. Sci. 2026, 27(1), 227; https://doi.org/10.3390/ijms27010227 - 25 Dec 2025
Viewed by 193
Abstract
The activation of TRPV1 and TRPA1 by UVA light is a complex process involving channel modulation by reactive oxygen species (ROS). The present study describes staurosporine and midostaurin, two protein kinase inhibitors, as photosensitizers that can modulate the activity of TRPV1 and TRPA1 [...] Read more.
The activation of TRPV1 and TRPA1 by UVA light is a complex process involving channel modulation by reactive oxygen species (ROS). The present study describes staurosporine and midostaurin, two protein kinase inhibitors, as photosensitizers that can modulate the activity of TRPV1 and TRPA1 in a UVA light-dependent manner. Patch-clamp and calcium imaging were used to investigate effects of staurosporine and midostaurin on recombinant human (h) TRPV1 and TRPA1 in HEK 293T cells and on native mouse dorsal root ganglion (DRG) cells. Staurosporine applied alone did not induce channel activation, but co-application with UVA light activated both TRPV1 and TRPA1. Staurosporine with UVA light also potentiated TRPV1-mediated membrane currents induced by heat and protons. Midostaurin induced the UVA light-independent activation and sensitization of TRPV1 and TRPA1, and this effect was strongly potentiated by UVA light. Effects induced by both staurosporine and midostaurin were reversed by the reducing agent dithiothreitol (DTT). Midostaurin induced a calcium influx in TRPA1-expressing DRG neurons. Our results show that staurosporine and midostaurin modulate the activity of TRPV1 and TRPA1 channels in the presence of UVA light. These photosensitizing properties can be relevant when staurosporine is used for in vitro experiments, and they may account for the phototoxic side effects of midostaurin. Full article
(This article belongs to the Special Issue TRP Channels: Mechanisms, Functions, and Therapeutic Implications)
Show Figures

Figure 1

15 pages, 1399 KB  
Article
Antibodies Against SARS-CoV-2 Nucleocapsid Protein Possess Autoimmune Properties
by Alexandra Rak, Yana Zabrodskaya, Pei-Fong Wong and Irina Isakova-Sivak
Antibodies 2026, 15(1), 2; https://doi.org/10.3390/antib15010002 - 22 Dec 2025
Viewed by 760
Abstract
Background/Objectives: Notwithstanding the declaration by the World Health Organization in May 2023 regarding the conclusion of the COVID-19 pandemic, new cases of this potentially lethal infection continue to be documented globally, exerting a sustained influence on the worldwide economy and social structures. Contemporary [...] Read more.
Background/Objectives: Notwithstanding the declaration by the World Health Organization in May 2023 regarding the conclusion of the COVID-19 pandemic, new cases of this potentially lethal infection continue to be documented globally, exerting a sustained influence on the worldwide economy and social structures. Contemporary SARS-CoV-2 variants, while associated with a reduced propensity for severe acute pathology, retain the capacity to induce long-term post-COVID syndrome, including in ambulatory patient populations. This clinical phenomenon may be attributable to potential autoimmune reactions hypothetically triggered by antiviral antibodies, thereby underscoring the need for developing novel, universal vaccines against COVID-19. The nucleocapsid protein (N), being one of its most conserved and highly immunogenic components of SARS-CoV-2, presents a promising target for such investigative efforts. However, the protective role of anti-N antibodies, generated during natural infection or through immunization with N-based vaccines, alongside the potential adverse effects associated with their production, remains to be fully elucidated. In the present study, we aim to identify potential sites of homology in structures or sequences between the SARS-CoV-2 N protein and human antigens detected using hyperimmune sera against N protein obtained from mice, rabbits, and hamsters. Methods: We employed Western blot analysis of lysates from human cell lines (MCF7, HEK293T, THP-1, CaCo2, Hep2, T98G, A549) coupled with mass spectrometric identification to assess the cross-reactivity of polyclonal and monoclonal antibodies generated against recombinant SARS-CoV-2 N protein with human self-antigens. Results: We showed that anti-N antibodies developed in mice and rabbits exhibit pronounced immunoreactivity towards specific components of the human proteome. In contrast, anti-N immunoglobulins from hamsters showed no non-specific cross-reactivity with either hamster or human proteomic extracts because of the lack of autoreactivity or immunogenicity differences. Subsequent mass spectrometric analysis of the immunoreactive bands identified principal autoantigenic targets, which were predominantly heat shock proteins (including HSP90-beta, HSP70, mitochondrial HSP60, and HSPA8), histones (H2B, H3.1–3), and key metabolic enzymes (G6PD, GP3, PKM, members of the 1st family of aldo-keto reductases). Conclusions: The results obtained herein highlight the differences in the development of anti-N humoral responses in humans and in the Syrian hamster model. These data provide a foundational basis for formulating clinical recommendations to predict possible autoimmune consequences in COVID-19 convalescents and are of critical importance for the rational design of future N protein-based, cross-protective vaccine candidates against novel coronavirus infections. Full article
(This article belongs to the Section Humoral Immunity)
Show Figures

Figure 1

14 pages, 1779 KB  
Article
Pilot Proteomic Analysis of Urinary Extracellular Vesicles Supports the “Toxic Urine Hypothesis” as a Vicious Cycle in Refractory IC/BPS Pathogenesis
by Man-Jung Hung, Evelyn Yang, Tsung-Ho Ying, Peng-Ju Chien, Ying-Ting Huang and Wen-Wei Chang
Int. J. Mol. Sci. 2026, 27(1), 130; https://doi.org/10.3390/ijms27010130 - 22 Dec 2025
Viewed by 555
Abstract
Despite treatments such as pentosan polysulfate, hyaluronic acid, botulinum toxin A, and platelet-rich plasma, many interstitial cystitis/bladder pain syndrome (IC/BPS) patients experience persistent symptoms. Urinary extracellular vesicles (uEVs) carry molecular cargo reflecting disease pathophysiology, yet their proteomic profiles in treated IC/BPS remain unexplored. [...] Read more.
Despite treatments such as pentosan polysulfate, hyaluronic acid, botulinum toxin A, and platelet-rich plasma, many interstitial cystitis/bladder pain syndrome (IC/BPS) patients experience persistent symptoms. Urinary extracellular vesicles (uEVs) carry molecular cargo reflecting disease pathophysiology, yet their proteomic profiles in treated IC/BPS remain unexplored. This pilot study examined uEV proteomics in refractory IC/BPS cases to test the “Toxic Urine Hypothesis”—a vicious cycle, whereby urothelial dysfunction enables EV-mediated toxin penetration, triggering inflammation that further impairs the bladder barrier. Urinary EVs were isolated from six female IC/BPS patients on active treatments and four healthy female controls. Mass spectrometry-based proteomics identified differential protein expressions, followed by pathway enrichment analysis and functional validation using NF-κB reporter assays in HEK293T cells and Western blot in primary human bladder epithelial cells. IC/BPS EVs exhibited 31 upregulated proteins (including HPGD, KRT8, HSPA4, 14-3-3 family members) and 19 downregulated proteins (including neutrophil granule proteins MPO and ELANE), indicating suppressed acute neutrophil inflammation but enriched homeostatic, metabolic, and regenerative pathways. Patient EVs induced significantly higher NF-κB activation than in the controls, with upregulated 14-3-3ζ and phosphorylated NF-κB p65 in bladder epithelial cells. These findings support the “Toxic Urine Hypothesis”, revealing persistent NF-κB-mediated chronic epithelial stress despite suppressed acute inflammation in treated IC/BPS patients, suggesting that therapies targeting inflammation and regeneration may help break this vicious cycle. Full article
(This article belongs to the Special Issue Role of Extracellular Vesicles in Diseases)
Show Figures

Graphical abstract

18 pages, 1825 KB  
Article
Tranilast Does Not Inhibit TRPV2
by Tabea C. Fricke, Nele Stein, Christine Herzog, Frank G. Echtermeyer and Andreas Leffler
Cells 2026, 15(1), 13; https://doi.org/10.3390/cells15010013 - 21 Dec 2025
Viewed by 348
Abstract
Transient receptor potential vanilloid 2 (TRPV2) is a non-selective cation channel involved in diverse physiological and pathological processes. Tranilast has frequently been described and used as a rather specific inhibitor of TRPV2. However, the molecular basis of this inhibition was never been studied [...] Read more.
Transient receptor potential vanilloid 2 (TRPV2) is a non-selective cation channel involved in diverse physiological and pathological processes. Tranilast has frequently been described and used as a rather specific inhibitor of TRPV2. However, the molecular basis of this inhibition was never been studied in detail. Here, we investigated whether tranilast indeed directly inhibits TRPV2. Rat TRPV2 was expressed in human embryonic kidney (HEK293) cells, and channel function was assessed using whole-cell electrophysiology and calcium imaging in response to established agonists. In parallel, we conducted phagocytosis assays in rat basophilic leukemia (RBL) cells, including a CRISPR/Cas9-generated TRPV2-knockout cell line. Tranilast up to 1 mM did not inhibit TRPV2-mediated currents or calcium influx induced by any agonist. However, when co-applied with the oxidant chloramine T, tranilast diminished oxidation-induced activation of TRPV2. This effect may indicate a general interference of tranilast with redox signaling. Accordingly, tranilast also reduced chloramine T-induced activation of TRPA1 as well as the development of non-inactivating currents of voltage-gated Na+ channels. Furthermore, tranilast decreased phagocytic activity in both wildtype and TRPV2-knockout RBL cells. However, the reduction was less pronounced in TRPV2-knockout cells. These findings demonstrate that tranilast does not directly inhibit TRPV2. Instead, tranilast seems to indirectly suppress channel activation by reducing reactive oxygen species (ROS). This refined understanding of how tranilast modulates TRPV2 has important implications for the interpretation of prior and future pharmacological studies targeting TRPV2. Full article
(This article belongs to the Special Issue Transient Receptor Potential (TRP) Channels and Health and Disease)
Show Figures

Figure 1

18 pages, 4497 KB  
Article
NFE2 Truncation Mutants Protect Wild-Type NFE2 from ITCH-Dependent Degradation
by Mirjam Elisabeth Hoeness, Franziska Zell, Titiksha Basu, Katharina Gellrich, Albert Gründer, Jana Schulze, Anja Müller, Philipp Eble, Christoph Koellerer, Anne Marie Staehle, Sarolta Bojtine Kovacs, Heike L. Pahl and Hans Felix Staehle
Int. J. Mol. Sci. 2025, 26(24), 12112; https://doi.org/10.3390/ijms262412112 - 16 Dec 2025
Viewed by 206
Abstract
Myeloproliferative neoplasms (MPNs) are clonal hematopoietic disorders characterized by the abnormal proliferation of myeloid cells. In addition to the main driver mutations in JAK2, MPL, and CALR, the transcription factor nuclear factor erythroid 2 (NFE2) has emerged as a key contributor to MPN [...] Read more.
Myeloproliferative neoplasms (MPNs) are clonal hematopoietic disorders characterized by the abnormal proliferation of myeloid cells. In addition to the main driver mutations in JAK2, MPL, and CALR, the transcription factor nuclear factor erythroid 2 (NFE2) has emerged as a key contributor to MPN pathophysiology. NFE2 expression is elevated in the majority of MPN patients, and augmented NFE2 activity in hematopoietic stem cells is sufficient to induce an MPN phenotype with spontaneous leukemic transformation in murine models. Moreover, NFE2 mutations, found in a subset of MPN patients, augment NFE2 activity and are associated with a markedly increased risk of progression to acute myeloid leukemia (AML). However, the molecular mechanism by which NFE2 mutations cause leukemogenesis is not understood. Here, we demonstrate that the E3 ubiquitin ligase ITCH mediates proteasomal degradation of wild-type (wt) NFE2 in HEK-293T cells. A gain-of-function truncation mutant, NFE2-226aa, retains the capacity to interact with ITCH but is no longer degraded. Rather, NFE2-226aa protects wt NFE2 from ITCH-dependent degradation, resulting in enhanced NFE2 activity. Full article
Show Figures

Figure 1

20 pages, 7905 KB  
Article
Carbonic Anhydrase 3 Overexpression Modulates Signalling Pathways Associated with Cellular Stress Resilience and Proteostasis
by Yezhou Yu, Merrina Anugraham, Tony Blick, Arutha Kulasinghe, Louise M. Sternicki, Giovanna Di Trapani, Sally-Ann Poulsen, Daniel Kolarich and Kathryn F. Tonissen
Int. J. Mol. Sci. 2025, 26(24), 12064; https://doi.org/10.3390/ijms262412064 - 15 Dec 2025
Viewed by 453
Abstract
Carbonic anhydrase 3 (CA3) exhibits low enzymatic activity compared to other CA isoforms but contains two surface-exposed cysteine residues that undergo glutathionylation under oxidative stress. Highly expressed in muscle tissue, CA3 has been implicated in cellular protection, particularly through interactions with Bcl2-Associated Athanogene [...] Read more.
Carbonic anhydrase 3 (CA3) exhibits low enzymatic activity compared to other CA isoforms but contains two surface-exposed cysteine residues that undergo glutathionylation under oxidative stress. Highly expressed in muscle tissue, CA3 has been implicated in cellular protection, particularly through interactions with Bcl2-Associated Athanogene 3 (BAG3), modulating autophagy, while CA3 overexpression decreased hypoxia-induced apoptosis in cardiomyocytes. In this study, we investigated the impact of CA3 overexpression on cellular pathways in HEK293T, MDA-MB-231, and SVCT cells using RNA sequencing and proteomics. Gene Set Enrichment Analysis (GSEA) in HEK293T cells revealed the down-regulation of pathways related to protein synthesis, RNA processing, Roundabout signalling, selenocysteine-metabolism, and suppression of neurodegenerative disease-associated pathways. Human breast epithelial cell lines under normoxia and hypoxia showed down-regulation of similar pathways, although notably, hypoxic conditions also suppressed interferon α/β signalling. Proteomic analysis in HEK293T cells using HaloTag pull-down experiments identified putative novel CA3 binding partners, including heat shock 70 kDa proteins 1 and 8, and ribosomal protein S2 (RPS2). RANBP2 protein was consistently up-regulated after CA3 overexpression, irrespective of the presence of CA3 surface-exposed cysteines and HaloTag orientation. These findings suggest that CA3 modulates key cellular processes beyond its enzymatic role, contributing to stress resilience through pathway-level regulation and protein interactions, potentially impacting autophagy and neurodegenerative disease. Full article
(This article belongs to the Collection Feature Papers in “Molecular Biology”)
Show Figures

Figure 1

20 pages, 19282 KB  
Article
Single-Exosome SERS Detection by Means of a Flexible Metasurface
by Konstantin Mochalov, Denis Korzhov, Milena Shestopalova, Andrey Ivanov, Konstantin Afanasev, Alexander Smyk, Alexander Shurygin and Andrey K. Sarychev
Biosensors 2025, 15(12), 815; https://doi.org/10.3390/bios15120815 - 15 Dec 2025
Cited by 1 | Viewed by 564
Abstract
Single exosomes are detected via surface-enhanced Raman scattering (SERS) due to electromagnetic field accumulation on a specially designed flexible metasurface. This metasurface is a modulated silver nanofilm deposited on a thin, flexible plastic substrate. An explicit Equation for calculating the local electric field [...] Read more.
Single exosomes are detected via surface-enhanced Raman scattering (SERS) due to electromagnetic field accumulation on a specially designed flexible metasurface. This metasurface is a modulated silver nanofilm deposited on a thin, flexible plastic substrate. An explicit Equation for calculating the local electric field is given. The field reaches extremely high values under plasmon resonance conditions and fills the depressions of the metasurface. The thin, flexible metasurface can be incorporated into automated Lab-On-Chip analytical systems and used for spectroscopic studies of exosomes. We propose a method to distinguish individual exosomes from the HEK293T cell line on the metasurface and then obtain and assign their SERS spectra. An important advantage of the plasmonic metasurface presented in this work is its spatial complementarity to exosomes and other vesicle-like objects. The plasmonic metasurface is fabricated using holographic lithography and further investigated using a correlation approach combining atomic force microscopy, scanning spreading resistance microscopy, and surface-enhanced spectroscopy. Full article
(This article belongs to the Special Issue Raman Scattering-Based Biosensing)
Show Figures

Figure 1

12 pages, 1441 KB  
Article
Integrated In Silico and In Vivo Evaluation of a Tetravalent SARS-CoV-2 RBD–Fc Fusion Vaccine with Broad Cross-Variant Antibody Responses
by Ahmad Bakur Mahmoud, Renad M. Alhamawi, Mustafa Yassin Taher, Awadh S. Alsubhi, Mekky M. Abouzied, Heba M. Zahid, Mohammed Abdullah Alotaibi, Nada Almarghalani, Khulood Alotaibi, Abdulrahman Habash, Shaker Ahmed Alsharif and Almohanad Alkayyal
Vaccines 2025, 13(12), 1244; https://doi.org/10.3390/vaccines13121244 - 15 Dec 2025
Viewed by 675
Abstract
Background/Objectives: SARS-CoV-2 continues to generate antigenically divergent variants that reduce the breadth of existing vaccine-induced antibody responses. Fc-fusion subunit vaccines offer advantages in stability, antigen display, and Fc-mediated immune engagement. This study aimed to design and evaluate a tetravalent RBD–Fc fusion construct incorporating [...] Read more.
Background/Objectives: SARS-CoV-2 continues to generate antigenically divergent variants that reduce the breadth of existing vaccine-induced antibody responses. Fc-fusion subunit vaccines offer advantages in stability, antigen display, and Fc-mediated immune engagement. This study aimed to design and evaluate a tetravalent RBD–Fc fusion construct incorporating RBDs from Wuhan-Hu-1 and Omicron BA.4/BA.5 and to determine whether this configuration can induce broad antibody recognition across SARS-CoV-2 variants. The objective was to assess its feasibility, biochemical properties, and initial immunogenicity. Methods: Immune responses to the construct were first assessed using the C-ImmSim simulation platform. The full-length fusion was synthesized, subcloned into pcDNA3.1(+), expressed in HEK293 cells, and purified by Protein G affinity chromatography. Protein integrity was evaluated by reducing SDS–PAGE. BALB/c mice (female, 8 weeks) were immunized with a prime–boost–boost schedule, and sera were analyzed by ELISA, considering binding to Wuhan-Hu-1, Omicron BA.4/BA.5, and a panel of RBD variants. Results: In silico analysis predicted coordinated antigen clearance, class switching, memory B- and CD4+ T-cell formation, and transient cytokine induction. The recombinant protein was expressed efficiently, yielding a major ~56 kDa band and a ~23 kDa RBD fragment. Vaccinated mice generated strong IgG responses to Wuhan-Hu-1 and BA.4/BA.5 RBDs and showed broad binding to major variant RBDs. Conclusions: The tetravalent RBD–Fc fusion vaccine was successfully produced and elicited broad antibody binding across SARS-CoV-2 variants, supporting its potential as a versatile protein-based vaccine platform. Full article
(This article belongs to the Section COVID-19 Vaccines and Vaccination)
Show Figures

Figure 1

22 pages, 1787 KB  
Article
Dual Synthetic Pathways for Organotin-Functionalized Mesoporous Silica Nanoparticles: Targeted Therapeutic Platforms with Folic Acid and PEI Formulation
by Victoria García-Almodóvar, Sanjiv Prashar and Santiago Gómez-Ruiz
Nanomaterials 2025, 15(23), 1791; https://doi.org/10.3390/nano15231791 - 27 Nov 2025
Viewed by 486
Abstract
Breast cancer is the most common cancer in women worldwide, with a high mortality rate. Moreover, the treatments currently used to address this disease are sometimes ineffective and cause numerous side effects. For this reason, the search for new treatments that can overcome [...] Read more.
Breast cancer is the most common cancer in women worldwide, with a high mortality rate. Moreover, the treatments currently used to address this disease are sometimes ineffective and cause numerous side effects. For this reason, the search for new treatments that can overcome these challenges is a growing field of research. One potential solution under investigation is the use of mesoporous silica nanoparticles (MSNs). These materials possess excellent properties, making them attractive as starting platforms for various compounds. In this study, different compounds with distinct properties were anchored onto these nanoplatforms. The first is polyethyleneimine (PEI), which, when formulated within the nanoparticle, increases its bioavailability. The second is folic acid (FA), a molecule that enables active targeting of tumor cells. Finally, an organotin(IV) complex was incorporated via two different anchoring strategies to provide therapeutic action. This multifunctional platform thus combines three activities simultaneously. MTT assay studies revealed that the final material, MSN-TEDTH-PEI-FA-TR-Sn, demonstrates potential against the MCF-7 tumor cell line while showing no toxicity to the healthy Hek 293T cell line. These findings make it an interesting candidate for future in vivo trials. Full article
Show Figures

Graphical abstract

20 pages, 5796 KB  
Article
Co-Amorphous Systems Based on Dihydroquercetin and l-Lysine: Synthesis and Evaluation
by Artem A. Svotin, Maria D. Korochkina, Anastasia A. Khodyachikh, Diana R. Kolesnikova, Amir Taldaev, Eduard V. Bocharov, Alexander V. Dzuban, Andrey N. Utenyshev, Gennadii V. Shilov, Youyan Zeng, Bo Li, Roman P. Terekhov and Irina A. Selivanova
Pharmaceutics 2025, 17(12), 1528; https://doi.org/10.3390/pharmaceutics17121528 - 27 Nov 2025
Viewed by 563
Abstract
Background/Objectives: Dihydroquercetin (DHQ), also known as taxifolin, is a natural flavonoid which has anti-inflammatory and wound-healing biological effects. One of the main limitations for developing formulations with DHQ is its low solubility in water at room temperature. One of the high-potential co-formers [...] Read more.
Background/Objectives: Dihydroquercetin (DHQ), also known as taxifolin, is a natural flavonoid which has anti-inflammatory and wound-healing biological effects. One of the main limitations for developing formulations with DHQ is its low solubility in water at room temperature. One of the high-potential co-formers for increasing its solubility is l-lysine, which has an aliphatic amino group in the side radical capable of entering into intermolecular interactions with the phenolic hydroxyl groups of DHQ. Methods: Several modifications were obtained using grinding, drying, and lyophilization methods. Subsequent evaluation was conducted using a combination of physicochemical and biological analytical methods. Results: Obtained modifications could be described as very easily soluble substances. The absence of the formation of new covalent bonds between the compounds during the formation of such systems was established. The glass transition effect was detected at 64 °C for the obtained films. It is important to note that as a result of studying the cytotoxic properties of the objects, a decrease in cytotoxicity was established during lyophilization of the mechanical mixture of the initial components. For these lyophilizates, the IC50 value was 0.025 mg/mL, 0.068 mg/mL, 0.145 mg/mL, and 0.288 mg/mL for the 3T3, HEK293, Caco-2, and HUVEC cell lines, respectively. Conclusions: Co-amorphous systems of DHQ and l-lysine in the form of films and lyophilizates were obtained and described. These objects may be interesting from the point of view of increasing the solubility of natural flavonoids, which solves one of the main problems in developing drugs based on them. Full article
(This article belongs to the Special Issue Advanced Research on Amorphous Drugs)
Show Figures

Graphical abstract

12 pages, 1875 KB  
Article
CRISPR Disruption of scaRNA1 Reduces Pseudouridylation in Spliceosomal RNA U2 at U89 and Perturbs the Transcriptome in HEK293T Cells
by Amanda Gardner-Kay, Lynndy Le, Michael Filla, Nataliya Kibiryeva, James E. O’Brien and Douglas C. Bittel
Cells 2025, 14(23), 1882; https://doi.org/10.3390/cells14231882 - 27 Nov 2025
Viewed by 478
Abstract
Small Cajal body-associated RNAs (scaRNAs) are essential for biochemical modification of spliceosomal RNAs and spliceosome function. Changes in scaRNA expression level have been associated with developmental issues, including cancer and congenital heart defects (CHDs), although the mechanism remains unclear. Small Cajal body-associated RNA [...] Read more.
Small Cajal body-associated RNAs (scaRNAs) are essential for biochemical modification of spliceosomal RNAs and spliceosome function. Changes in scaRNA expression level have been associated with developmental issues, including cancer and congenital heart defects (CHDs), although the mechanism remains unclear. Small Cajal body-associated RNA 1 (scaRNA1) guides pseudouridylation at uridine 89 (Ψ89) of the spliceosomal RNA U2, a highly conserved modification that may be critical for spliceosome function. To investigate the role of scaRNA1 in splicing regulation, CRISPR-Cas9 genome editing was used to introduce targeted deletions in the scaRNA1 locus in HEK293T cells. Edited clones were identified by T7 endonuclease I assay and confirmed by Sanger sequencing. Pseudouridylation at Ψ89 was quantified using CMC-based reverse transcription followed by quantitative PCR, and global mRNA splicing alterations were assessed by RNA sequencing. Clones harboring scaRNA1 disruptions exhibited a significant reduction in Ψ89 pseudouridylation, consistent with impaired scaRNA1 function. Transcriptome analysis (of mRNA from two clones) revealed >300 protein coding genes with significant changes in transcript isoform level, including >100 genes related to RNA-binding activity. These results indicate that scaRNA1 disruption alters spliceosomal function and leads to substantial changes in mRNA splicing. The dysregulated splicing of RNA-binding proteins may impair RNA processing and gene expression programs required for normal development, providing new insight into how noncoding RNA dysfunction may contribute to developmental pathogenesis. Full article
Show Figures

Figure 1

Back to TopTop