Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,583)

Search Parameters:
Keywords = H2S gas

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 993 KiB  
Article
Development and Validation of a Custom-Built System for Real-Time Monitoring of In Vitro Rumen Gas Fermentation
by Zhen-Shu Liu, Bo-Yuan Chen, Jacky Peng-Wen Chan and Po-Wen Chen
Animals 2025, 15(15), 2308; https://doi.org/10.3390/ani15152308 - 6 Aug 2025
Abstract
While the Ankom RF system facilitates efficient high-throughput in vitro fermentation studies, its high cost and limited flexibility constrain its broader applicability. To address these limitations, we developed and validated a low-cost, modular gas monitoring system (FerME), assembled from commercially available components. To [...] Read more.
While the Ankom RF system facilitates efficient high-throughput in vitro fermentation studies, its high cost and limited flexibility constrain its broader applicability. To address these limitations, we developed and validated a low-cost, modular gas monitoring system (FerME), assembled from commercially available components. To evaluate its performance and reproducibility relative to the Ankom RF system (Ankom Technology, Macedon, NY, USA), in vitro rumen fermentation experiments were conducted under strictly controlled and identical conditions. Whole rumen contents were collected approximately 2 h post-feeding from individual mid- or late-lactation dairy cows and immediately transported to the laboratory. Each fermenter received 50 mL of processed rumen fluid, 100 mL of anaerobically prepared artificial saliva buffer, and 1.2 g of the donor cow’s diet. Bottles were sealed with the respective system’s pressure sensors, flushed with CO2, and incubated in a 50 L water bath maintained at 39 °C. FerME (New Taipei City, Taiwan) and Ankom RF fermenters were placed side-by-side to ensure uniform thermal conditions. To assess the effect of filter bag use, an additional trial employed Ankom F57 filter bags (Ankom Technology, Macedon, NY, USA; 25 μm pore size). Trial 1 revealed no significant differences in cumulative gas production, volatile fatty acids (VFAs), NH3-N, or pH between systems (p > 0.05). However, the use of filter bags reduced gas output and increased propionate concentrations (p < 0.05). Trial 2, which employed filter bags in both systems, confirmed comparable results, with the FerME system demonstrating improved precision (CV: 4.8% vs. 13.2%). Gas composition (CH4 + CO2: 76–82%) and fermentation parameters remained consistent across systems (p > 0.05). Importantly, with 12 pressure sensors, the total cost of FerME was about half that of the Ankom RF system. Collectively, these findings demonstrate that FerME is a reliable, low-cost alternative for real-time rumen fermentation monitoring and could be suitable for studies in animal nutrition, methane mitigation, and related applications. Full article
(This article belongs to the Section Animal System and Management)
12 pages, 4963 KiB  
Article
Effect of Bias Voltage and Cr/Al Content on the Mechanical and Scratch Resistance Properties of CrAlN Coatings Deposited by DC Magnetron Sputtering
by Shahnawaz Alam, Zuhair M. Gasem, Nestor K. Ankah and Akbar Niaz
J. Manuf. Mater. Process. 2025, 9(8), 264; https://doi.org/10.3390/jmmp9080264 - 6 Aug 2025
Abstract
Chromium–aluminum nitride (CrAlN) coatings were deposited on polished H13 tool steel substrates using direct current (DC) magnetron sputtering. The Cr/Al composition in the target was varied by inserting either four or eight chromium (Cr) plugs into cavities machined into an aluminum (Al) plate [...] Read more.
Chromium–aluminum nitride (CrAlN) coatings were deposited on polished H13 tool steel substrates using direct current (DC) magnetron sputtering. The Cr/Al composition in the target was varied by inserting either four or eight chromium (Cr) plugs into cavities machined into an aluminum (Al) plate target. Nitrogen was introduced as a reactive gas to facilitate the formation of the nitride phase. Coatings were deposited at substrate bias voltages of −30 V, −50 V, and −60 V to study the combined effects of composition and ion energy on coating properties. Compositional analysis of coatings deposited at a −50 V bias revealed Cr/Al ratios of approximately 0.8 and 1.7 for the 4- and 8-plug configurations, respectively. This increase in the Cr/Al ratio led to a 2.6-fold improvement in coating hardness. Coatings produced using the eight-Cr-plug target exhibited a nearly linear increase in hardness with increasing substrate bias voltage. Cross-sectional scanning electron microscopy revealed a uniform bilayer structure consisting of an approximately 0.5 µm metal interlayer beneath a 2–3 µm CrAlN coating. Surface morphology analysis indicated the presence of coarse microdroplets in coatings with the lower Cr/Al ratio. These microdroplets were significantly suppressed in coatings with higher Cr/Al content, especially at increased bias voltages. This suppression is likely due to enhanced ion bombardment associated with the increased Cr content, attributed to Cr’s relatively higher atomic mass compared to Al. Coatings with lower hardness exhibited greater scratch resistance, likely due to the influence of residual compressive stresses. The findings highlight the critical role of both Cr/Al content and substrate bias in tailoring the tribo-mechanical performance of PVD CrAlN coatings for wear-resistant applications. Full article
Show Figures

Figure 1

17 pages, 7335 KiB  
Article
Osage Orange (Maclura pomifera) and Spearmint (Mentha spicata) Leaf Extracts Exhibit Antibacterial Activity and Inhibit Human Respiratory Syncytial Virus (hRSV)
by Milica Nenadovich, Molly Kubal, Maci R. Hopp, Abigail D. Crawford, Megan E. Hardewig, Madison G. Sedlock, Rida Jawad, Zarrar A. Khan, Adrianna M. Smith, Mia A. Mroueh, Matthew DuBrava, Ellie C. Jones, Cael Rahe, Sean T. Berthrong, Anne M. Wilson, Michael P. Trombley, Ashlee H. Tietje and Christopher C. Stobart
Pathogens 2025, 14(8), 776; https://doi.org/10.3390/pathogens14080776 - 5 Aug 2025
Abstract
The increasing prevalence of antibiotic resistance and the limited availability of antiviral therapeutics for pathogens such as human respiratory syncytial virus (hRSV) underscore the need for novel, plant-derived antimicrobial substances. In this study, we evaluated the antiproliferative, antibacterial, and antiviral activities of aqueous [...] Read more.
The increasing prevalence of antibiotic resistance and the limited availability of antiviral therapeutics for pathogens such as human respiratory syncytial virus (hRSV) underscore the need for novel, plant-derived antimicrobial substances. In this study, we evaluated the antiproliferative, antibacterial, and antiviral activities of aqueous leaf extracts from two plants commonly found in North America, Osage orange (M. pomifera) and spearmint (M. spicata). Both extracts exhibited no significant cytotoxic or morphologic impact on HEp-2 human cancer cells up to 25 mg/mL. However, both extracts demonstrated strong dose-dependent antibacterial activity, significantly inhibiting replication of E. coli and S. aureus at concentrations ≥ 1 mg/mL. Antiviral assays revealed that both extracts inhibited hRSV infectivity, with spearmint extract showing higher potency (EC50 = 1.01 mg/mL) compared to Osage orange (EC50 = 3.85 mg/mL). Gas chromatography–mass spectrometry (GC-MS) identified three major extract constituents: 3-hydroxybenzyl alcohol, 4-hydroxybenzyl alcohol (Osage orange), and R-(-)-carvone (spearmint). Among these, only carvone significantly inhibited hRSV in vitro, suggesting its key role in spearmint’s antiviral activity. These findings highlight the therapeutic potential of Osage orange and spearmint leaf extracts, particularly as sources of water-soluble compounds with antimicrobial properties, and support further investigation into their mechanisms of action and broader clinical relevance. Full article
Show Figures

Figure 1

19 pages, 3110 KiB  
Article
Integrated Environmental–Economic Assessment of Small-Scale Natural Gas Sweetening Processes
by Qing Wen, Xin Chen, Xingrui Peng, Yanhua Qiu, Kunyi Wu, Yu Lin, Ping Liang and Di Xu
Processes 2025, 13(8), 2473; https://doi.org/10.3390/pr13082473 - 5 Aug 2025
Abstract
Effective in situ H2S removal is essential for the utilization of small, remote natural gas wells, where centralized treatment is often unfeasible. This study presents an integrated environmental–economic assessment of two such processes, LO-CAT® and triazine-based absorption, using a scenario-based [...] Read more.
Effective in situ H2S removal is essential for the utilization of small, remote natural gas wells, where centralized treatment is often unfeasible. This study presents an integrated environmental–economic assessment of two such processes, LO-CAT® and triazine-based absorption, using a scenario-based framework. Environmental impacts were assessed via the Waste Reduction Algorithm (WAR), considering both Potential Environmental Impact (PEI) generation and output across eight categories, while economic performance was analyzed based on equipment, chemical, energy, environmental treatment, and labor costs. Results show that the triazine-based process offers superior environmental performance due to lower toxic emissions, whereas LO-CAT® demonstrates better economic viability at higher gas flow rates and H2S concentrations. An integrated assessment combining monetized environmental impacts with economic costs reveals that the triazine-based process becomes competitive only if environmental impacts are priced above specific thresholds. This study contributes a practical evaluation framework and scenario-based dataset that support sustainable process selection for decentralized sour gas treatment applications. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

16 pages, 1994 KiB  
Article
Fall Webworm Host Plant Preferences Generate a Reduced Predation Enemy-Free Space in Its Interaction with Parasitoids
by Lina Pan, Wenfang Gao, Zhiqin Song, Xiaoyu Li, Yipeng Wei, Guangyan Qin, Yiping Hu, Zeyang Sun, Cuiqing Gao, Penghua Bai, Gengping Zhu, Wenjie Wang and Min Li
Insects 2025, 16(8), 804; https://doi.org/10.3390/insects16080804 - 4 Aug 2025
Abstract
Plants and insects are developing strategies to avoid each other’s defense systems. Host plants may release volatile compounds to attract the natural enemies of herbivores; insect pests may also select host plants that are deterrent to natural enemies to avoid such predation. Here [...] Read more.
Plants and insects are developing strategies to avoid each other’s defense systems. Host plants may release volatile compounds to attract the natural enemies of herbivores; insect pests may also select host plants that are deterrent to natural enemies to avoid such predation. Here we investigated whether the host plant preference of Hyphantria cunea correlates with the attractiveness of these plants to Chouioia cunea, a parasitoid wasp that serves as the primary natural enemy of H. cunea. We found Morus alba was the preferred host plant for female H. cunea. Although M. alba provided suboptimal nutritional value for H. cunea growth and development compared to other plants, it attracted fewer C. cunea relative to alternative host plants. Gas chromatography–mass spectrometry (GC–MS) coupled with gas chromatography–electroantennographic detection (GC-EAD) analysis identified six distinct compounds among the herbivore-induced plant volatiles (HIPVs) produced following H. cunea feeding. Notably, M. alba was the sole plant species that did not emit tridecane. These results suggest that H. cunea utilizes M. alba as a reduced predation enemy-free space, thereby minimizing parasitization by C. cunea. Our research emphasizes the importance of considering adaptive responses of herbivores within the context of multi-trophic relationships, rather than solely focusing on optimizing herbivore growth on the most nutritionally suitable plant host. Full article
(This article belongs to the Special Issue Advances in Chemical Ecology of Plant–Insect Interactions)
Show Figures

Graphical abstract

11 pages, 3181 KiB  
Article
Development of a Three-Dimensional Nanostructure SnO2-Based Gas Sensor for Room-Temperature Hydrogen Detection
by Zhilong Song, Yi Tian, Yue Kang and Jia Yan
Sensors 2025, 25(15), 4784; https://doi.org/10.3390/s25154784 - 3 Aug 2025
Viewed by 143
Abstract
The development of gas sensors with high sensitivity and low operating temperatures is essential for practical applications in environmental monitoring and industrial safety. SnO2-based gas sensors, despite their widespread use, often suffer from high working temperatures and limited sensitivity to H [...] Read more.
The development of gas sensors with high sensitivity and low operating temperatures is essential for practical applications in environmental monitoring and industrial safety. SnO2-based gas sensors, despite their widespread use, often suffer from high working temperatures and limited sensitivity to H2 gas, which presents significant challenges for their performance and application. This study addresses these issues by introducing a novel SnO2-based sensor featuring a three-dimensional (3D) nanostructure, designed to enhance sensitivity and allow for room-temperature operation. This work lies in the use of a 3D anodic aluminum oxide (AAO) template to deposit SnO2 nanoparticles through ultrasonic spray pyrolysis, followed by modification with platinum (Pt) nanoparticles to further enhance the sensor’s response. The as-prepared sensors were extensively characterized, and their H2 sensing performance was evaluated. The results show that the 3D nanostructure provides a uniform and dense distribution of SnO2 nanoparticles, which significantly improves the sensor’s sensitivity and repeatability, especially in H2 detection at room temperature. This work demonstrates the potential of utilizing 3D nanostructures to overcome the traditional limitations of SnO2-based sensors. Full article
Show Figures

Figure 1

13 pages, 1717 KiB  
Article
High-Performance Hydrogen Gas Sensor Based on Pd-Doped MoS2/Si Heterojunction
by Enyu Ma, Zihao Xu, Ankai Sun, Shuo Yang and Jianyu Jiang
Sensors 2025, 25(15), 4753; https://doi.org/10.3390/s25154753 - 1 Aug 2025
Viewed by 209
Abstract
High-performance hydrogen gas sensors have gained considerable interest for their crucial function in reducing H2 explosion risk. Although MoS2 has good potential for chemical sensing, its application in hydrogen detection at room temperature is limited by slow response and incomplete recovery. [...] Read more.
High-performance hydrogen gas sensors have gained considerable interest for their crucial function in reducing H2 explosion risk. Although MoS2 has good potential for chemical sensing, its application in hydrogen detection at room temperature is limited by slow response and incomplete recovery. In this work, Pd-doped MoS2 thin films are deposited on a Si substrate, forming Pd-doped MoS2/Si heterojunctions via magnetron co-sputtering. The incorporation of Pd nanoparticles significantly enhances the catalytic activity for hydrogen adsorption and facilitates more efficient electron transfer. Owing to its distinct structural characteristics and sharp interface properties, the fabricated Pd-doped MoS2/Si heterojunction device exhibits excellent H2 sensing performance under room temperature conditions. The gas sensor device achieves an impressive sensing response of ~6.4 × 103% under 10,000 ppm H2 concentration, representing a 110% improvement compared to pristine MoS2. Furthermore, the fabricated heterojunction device demonstrates rapid response and recovery times (24.6/12.2 s), excellent repeatability, strong humidity resistance, and a ppb-level detection limit. These results demonstrate the promising application prospects of Pd-doped MoS2/Si heterojunctions in the development of advanced gas sensing devices. Full article
(This article belongs to the Special Issue 2D Materials for Advanced Sensing Technology)
Show Figures

Figure 1

13 pages, 688 KiB  
Article
Metabolomic Patterns at Birth of Preterm Newborns with Extrauterine Growth Restriction: Towards Putative Markers of Nutritional Status
by Marta Meneghelli, Giovanna Verlato, Matteo Stocchero, Anna Righetto, Elena Priante, Lorenzo Zanetto, Paola Pirillo, Giuseppe Giordano and Eugenio Baraldi
Metabolites 2025, 15(8), 518; https://doi.org/10.3390/metabo15080518 - 1 Aug 2025
Viewed by 185
Abstract
Background: Nutrition is of paramount importance during early development, since suboptimal growth in this period of life is linked to adverse long- and mid-term outcomes. This is particularly relevant for preterm infants, who fail to thrive during the first weeks of life and [...] Read more.
Background: Nutrition is of paramount importance during early development, since suboptimal growth in this period of life is linked to adverse long- and mid-term outcomes. This is particularly relevant for preterm infants, who fail to thrive during the first weeks of life and develop extrauterine growth restriction (EUGR). This group of premature babies represents an interesting population to investigate using a metabolomic approach to optimize nutritional intake. Aims: To analyse and compare the urinary metabolomic pattern at birth of preterm infants with and without growth restriction at 36 weeks of postmenstrual age or at discharge, searching for putative markers of growth failure. Methods: We enrolled preterm infants between 23 and 32 weeks of gestational age (GA) and/or with a birth weight <1500 g, admitted to the Neonatal Intensive Care Unit (NICU) at the Department of Women’s and Children’s Health of Padova University Hospital. We collected urinary samples within 48 h of life and performed untargeted metabolomic analysis using mass spectrometry. Results: Sixteen EUGR infants were matched with sixteen non-EUGR controls. The EUGR group showed lower levels of L-cystathionine, kynurenic acid, L-carnosine, N-acetylglutamine, xanthurenic acid, aspartylglucosamine, DL5-hydroxylysine-hydrocloride, homocitrulline, and L-aminoadipic acid, suggesting a lower anti-inflammatory and antioxidant status with respect to the non-EUGR group. Conclusions: Metabolomic analysis suggests a basal predisposition to growth restriction, the identification of which could be useful for tailoring nutritional approaches. Full article
(This article belongs to the Special Issue Metabolomics-Based Biomarkers for Nutrition and Health)
Show Figures

Figure 1

18 pages, 521 KiB  
Article
Comparative Evaluation of Fat Quality in Conventional and Specialist Infant Formulas
by Aleksandra Purkiewicz, Joanna Browarek and Renata Pietrzak-Fiećko
Molecules 2025, 30(15), 3221; https://doi.org/10.3390/molecules30153221 - 31 Jul 2025
Viewed by 283
Abstract
This study assesses the quality of fat in conventional and specialist infant formulas (IFs) available in Poland. The IFs studied were characterized in terms of fatty acid profiles and lipid quality indices. The study material consisted of eight types of conventional and specialist [...] Read more.
This study assesses the quality of fat in conventional and specialist infant formulas (IFs) available in Poland. The IFs studied were characterized in terms of fatty acid profiles and lipid quality indices. The study material consisted of eight types of conventional and specialist IFs. The determination of fatty acids was carried out using gas chromatography (GC). Lipid quality indices were estimated based on established formulas. Goat milk-based formulas showed significantly higher levels of caproic acid (C6:0) and capric acid (C10:0) than cow milk-based formulas of the same category (initial or follow-on) (p < 0.05). In addition, these IFs stood out in terms of conjugated linoleic acid (CLA) content (0.30%) compared to cow and specialist formulas (about 0.20%). It was shown that the average ratio of n6/n3 fatty acids was significantly lower in conventional IFs (6.07:1) compared to specialist IFs (8.10:1). The goat’s milk-based IFs had the most favorable values for individual lipid quality indices (index of desirable fatty acids (DFAs) = 62.46; index of hypercholesterolemic fatty acids (OFAs) = 25.94; index of atherogenicity (AI) = 0.71; index of thrombogenicity (TI) = 0.88; hypocholesterolemic/hypercholesterolemic ratio (H/H) = 2.05), while the specialist S-PH formula was characterized by the lowest DFA value (49.17) and the highest AI and TI indices (1.48 and 1.68). Multivariate analysis clearly classified the division of formulas into two groups—conventional and specialist—based on lipid quality indices. The results obtained provide new information on the variation in the lipid profile of IFs depending on the intended use of the formula and may serve as a basis for further research in this area. Full article
(This article belongs to the Special Issue Biologically Active Compounds in Functional Foods)
Show Figures

Figure 1

26 pages, 8845 KiB  
Article
Occurrence State and Genesis of Large Particle Marcasite in a Thick Coal Seam of the Zhundong Coalfield in Xinjiang
by Xue Wu, Ning Lü, Shuo Feng, Wenfeng Wang, Jijun Tian, Xin Li and Hayerhan Xadethan
Minerals 2025, 15(8), 816; https://doi.org/10.3390/min15080816 - 31 Jul 2025
Viewed by 176
Abstract
The Junggar Basin contains a large amount of coal resources and is an important coal production base in China. The coal seam in Zhundong coalfield has a large single-layer thickness and high content of inertinite, but large particle Fe-sulphide minerals are associated with [...] Read more.
The Junggar Basin contains a large amount of coal resources and is an important coal production base in China. The coal seam in Zhundong coalfield has a large single-layer thickness and high content of inertinite, but large particle Fe-sulphide minerals are associated with coal seams in some mining areas. A series of economic and environmental problems caused by the combustion of large-grained Fe-sulphide minerals in coal have seriously affected the economic, clean and efficient utilization of coal. In this paper, the ultra-thick coal seam of the Xishanyao formation in the Yihua open-pit mine of the Zhundong coalfield is taken as the research object. Through the analysis of coal quality, X-ray fluorescence spectrometer test of major elements in coal, inductively coupled plasma mass spectrometry test of trace elements, SEM-Raman identification of Fe-sulphide minerals in coal and LA-MC-ICP-MS test of sulfur isotope of marcasite, the coal quality characteristics, main and trace element characteristics, macro and micro occurrence characteristics of Fe-sulphide minerals and sulfur isotope characteristics of marcasite in the ultra-thick coal seam of the Xishanyao formation are tested. On this basis, the occurrence state and genesis of large particle Fe-sulphide minerals in the ultra-thick coal seam of the Xishanyao formation are clarified. The main results and understandings are as follows: (1) the occurrence state of Fe-sulphide minerals in extremely thick coal seams is clarified. The Fe-sulphide minerals in the extremely thick coal seam are mainly marcasite, and concentrated in the YH-2, YH-3, YH-8, YH-9, YH-14, YH-15 and YH-16 horizons. Macroscopically, Fe-sulphide minerals mainly occur in three forms: thin film Fe-sulphide minerals, nodular Fe-sulphide minerals, and disseminated Fe-sulphide minerals. Microscopically, they mainly occur in four forms: flake, block, spearhead, and crack filling. (2) The difference in sulfur isotope of marcasite was discussed, and the formation period of marcasite was preliminarily divided. The overall variation range of the δ34S value of marcasite is wide, and the extreme values are quite different. The polyflake marcasite was formed in the early stage of diagenesis and the δ34S value was negative, while the fissure filling marcasite was formed in the late stage of diagenesis and the δ34S value was positive. (3) The coal quality characteristics of the thick coal seam were analyzed. The organic components in the thick coal seam are mainly inertinite, and the inorganic components are mainly clay minerals and marcasite. (4) The difference between the element content in the thick coal seam of the Zhundong coalfield and the average element content of Chinese coal was compared. The major element oxides in the thick coal seam are mainly CaO and MgO, followed by SiO2, Al2O3, Fe2O3 and Na2O. Li, Ga, Ba, U and Th are enriched in trace elements. (5) The coal-accumulating environment characteristics of the extremely thick coal seam are revealed. The whole thick coal seam is formed in an acidic oxidation environment, and the horizon with Fe-sulphide minerals is in an acidic reduction environment. The acidic reduction environment is conducive to the formation of marcasite and is not conducive to the formation of pyrite. (6) There are many matrix vitrinite, inertinite content, clay content, and terrigenous debris in the extremely thick coal seam. The good supply of peat swamp, suitable reduction environment and pH value, as well as groundwater leaching and infiltration, together cause the occurrence of large-grained Fe-sulphide minerals in the extremely thick coal seam of the Xishanyao formation in the Zhundong coalfield. Full article
Show Figures

Figure 1

32 pages, 6657 KiB  
Article
Mechanisms of Ocean Acidification in Massachusetts Bay: Insights from Modeling and Observations
by Lu Wang, Changsheng Chen, Joseph Salisbury, Siqi Li, Robert C. Beardsley and Jackie Motyka
Remote Sens. 2025, 17(15), 2651; https://doi.org/10.3390/rs17152651 - 31 Jul 2025
Viewed by 298
Abstract
Massachusetts Bay in the northeastern United States is highly vulnerable to ocean acidification (OA) due to reduced buffering capacity from significant freshwater inputs. We hypothesize that acidification varies across temporal and spatial scales, with short-term variability driven by seasonal biological respiration, precipitation–evaporation balance, [...] Read more.
Massachusetts Bay in the northeastern United States is highly vulnerable to ocean acidification (OA) due to reduced buffering capacity from significant freshwater inputs. We hypothesize that acidification varies across temporal and spatial scales, with short-term variability driven by seasonal biological respiration, precipitation–evaporation balance, and river discharge, and long-term changes linked to global warming and river flux shifts. These patterns arise from complex nonlinear interactions between physical and biogeochemical processes. To investigate OA variability, we applied the Northeast Biogeochemistry and Ecosystem Model (NeBEM), a fully coupled three-dimensional physical–biogeochemical system, to Massachusetts Bay and Boston Harbor. Numerical simulation was performed for 2016. Assimilating satellite-derived sea surface temperature and sea surface height improved NeBEM’s ability to reproduce observed seasonal and spatial variability in stratification, mixing, and circulation. The model accurately simulated seasonal changes in nutrients, chlorophyll-a, dissolved oxygen, and pH. The model results suggest that nearshore areas were consistently more susceptible to OA, especially during winter and spring. Mechanistic analysis revealed contrasting processes between shallow inner and deeper outer bay waters. In the inner bay, partial pressure of pCO2 (pCO2) and aragonite saturation (Ωa) were influenced by sea temperature, dissolved inorganic carbon (DIC), and total alkalinity (TA). TA variability was driven by nitrification and denitrification, while DIC was shaped by advection and net community production (NCP). In the outer bay, pCO2 was controlled by temperature and DIC, and Ωa was primarily determined by DIC variability. TA changes were linked to NCP and nitrification–denitrification, with DIC also influenced by air–sea gas exchange. Full article
Show Figures

Figure 1

21 pages, 719 KiB  
Article
Changes in Ruminal Dynamics and Microbial Populations Derived from Supplementation with a Protein Concentrate for Cattle with the Inclusion of Non-Conventional Feeding Sources
by Diana Sofía Torres-Velázquez, Daniel Francisco Ramos-Rosales, Manuel Murillo-Ortiz, Jesús Bernardo Páez-Lerma, Juan Antonio Rojas-Contreras, Karina Aide Araiza-Ponce and Damián Reyes-Jáquez
Fermentation 2025, 11(8), 438; https://doi.org/10.3390/fermentation11080438 - 30 Jul 2025
Viewed by 340
Abstract
Feed supplementation strategies are essential for optimizing cattle productivity, and the incorporation of non-conventional feed resources may reduce both production costs and environmental impact. This study evaluated the effects of pelletized protein concentrates (including Acacia farnesiana, A. schaffneri, and Agave duranguensis [...] Read more.
Feed supplementation strategies are essential for optimizing cattle productivity, and the incorporation of non-conventional feed resources may reduce both production costs and environmental impact. This study evaluated the effects of pelletized protein concentrates (including Acacia farnesiana, A. schaffneri, and Agave duranguensis bagasse) on rumen fermentation parameters, microbial communities, and gas emissions. Fistulated bullocks received the concentrate daily, and ruminal contents were collected and filtered before and after supplementation to assess in vitro gas and methane production, pH, and microbial composition using high-throughput sequencing of 16S rRNA and mcrA amplicons. In addition, in situ degradability was evaluated during and after the supplementation period. Supplementation led to a significant (p < 0.05) reduction in degradability parameters and methane production, along with a marked decrease in the abundance of Methanobrevibacter and an increase in succinate-producing taxa. These effects were attributed to the enhanced levels of non-fiber carbohydrates, hemicellulose, crude protein, and the presence of bioactive secondary metabolites and methanol. Rumen microbiota composition was consistent with previously described core communities, and mcrA-based sequencing proved to be a valuable tool for targeted methanogen detection. Overall, the inclusion of non-conventional ingredients in protein concentrates may improve ruminal fermentation efficiency and contribute to methane mitigation in ruminants, although further in vivo trials on a larger scale are recommended. Full article
Show Figures

Figure A1

14 pages, 875 KiB  
Article
A Comparative Study of Brain Injury Biomarker S100β During General and Spinal Anesthesia for Caesarean Delivery: A Prospective Study
by Mungun Banzar, Nasantogtokh Erdenebileg, Tulgaa Surjavkhlan, Enkhtsetseg Jamsranjav, Munkhtsetseg Janlav and Ganbold Lundeg
Medicina 2025, 61(8), 1382; https://doi.org/10.3390/medicina61081382 - 30 Jul 2025
Viewed by 799
Abstract
Background and Objectives: Anesthetic agents may influence brain function, and emerging evidence suggests possible neurotoxicity under certain conditions. S100β is a well-established biomarker of brain injury and blood–brain barrier disruption, and its prolonged elevation beyond 6–12 h, despite a short half-life, may [...] Read more.
Background and Objectives: Anesthetic agents may influence brain function, and emerging evidence suggests possible neurotoxicity under certain conditions. S100β is a well-established biomarker of brain injury and blood–brain barrier disruption, and its prolonged elevation beyond 6–12 h, despite a short half-life, may indicate ongoing neuronal injury. Its use in cesarean section (C-section) remains limited, despite the potential neurological implications of both surgical stress and anesthetic technique. This study evaluates potential brain injury during caesarean section by comparing maternal and neonatal S100β levels under general and spinal anesthesia. Materials and Methods: This observational prospective study compared changes in the S100β brain damage biomarker in maternal (pre- and post-surgery) and umbilical artery blood during elective c-sections under general or spinal anesthesia. The 60 parturient women who underwent a C-section from 1 July 2021 to 30 December 2023 were evenly distributed into 2 groups: General anesthesia (GA) (n = 30) and Spinal anesthesia (SA) group (n = 30). It included healthy term pregnant women aged 18–40, ASA I–II and excluded those with major comorbidities or emergency conditions. Results: S100β concentrations slightly increased once the C-section was over in both the SA and GA groups, but without notable differences. In the SA and GA groups, preoperative S100β concentration in maternal blood was 195.1 ± 36.2 ng/L, 193.0 ± 54.3 ng/L, then increased to 200.9 ± 42.9 ng/L, 197.0 ± 42.7 at the end of operation. There was no statistically significant difference in S100β concentrations between the spinal and general anesthesia groups (p = 0.86). Conclusions: S100β concentrations slightly increased after C-section in both groups. The form of anesthesia seems to be irrelevant for the S100β level. However, further research is needed to confirm these findings and fully evaluate any potential long-term effects. Full article
(This article belongs to the Special Issue Advanced Research on Anesthesiology and Pain Management)
Show Figures

Figure 1

14 pages, 1354 KiB  
Article
Layered Structures Based on Ga2O3/GaS0.98Se0.02 for Gas Sensor Applications
by Veaceslav Sprincean, Mihail Caraman, Tudor Braniste and Ion Tiginyanu
Surfaces 2025, 8(3), 53; https://doi.org/10.3390/surfaces8030053 - 28 Jul 2025
Viewed by 268
Abstract
Efficient detection of toxic and flammable vapors remains a major technological challenge, especially for environmental and industrial applications. This paper reports on the fabrication technology and gas-sensing properties of nanostructured Ga2O3/GaS0.98Se0.02. The β-Ga2O [...] Read more.
Efficient detection of toxic and flammable vapors remains a major technological challenge, especially for environmental and industrial applications. This paper reports on the fabrication technology and gas-sensing properties of nanostructured Ga2O3/GaS0.98Se0.02. The β-Ga2O3 nanowires/nanoribbons with inclusions of Ga2S3 and Ga2Se3 microcrystallites were obtained by thermal treatment of GaS0.98Se0.02 slabs in air enriched with water vapors. The microstructure, crystalline quality, and elemental composition of the obtained samples were investigated using electron microscopy, X-ray diffraction, and Raman spectroscopy. The obtained structures show promising results as active elements in gas sensor applications. Vapors of methanol (CH3OH), ethanol (C2H5OH), and acetone (CH3-CO-CH3) were successfully detected using the nanostructured samples. The electrical signal for gas detection was enhanced under UV light irradiation. The saturation time of the sensor depends on the intensity of the UV radiation beam. Full article
Show Figures

Figure 1

17 pages, 8482 KiB  
Article
The Optimization of Culture Conditions for the Cellulase Production of a Thermostable Cellulose-Degrading Bacterial Strain and Its Application in Environmental Sewage Treatment
by Jiong Shen, Konglu Zhang, Yue Ren and Juan Zhang
Water 2025, 17(15), 2225; https://doi.org/10.3390/w17152225 - 25 Jul 2025
Viewed by 273
Abstract
A novel cellulose-degrading bacterial strain, D3-1, capable of degrading cellulose under medium- to high-temperature conditions, was isolated from soil samples and identified as Staphylococcus caprae through 16SrRNA gene sequencing. The strain’s cellulase production was optimized by controlling different factors, such as pH, temperature, [...] Read more.
A novel cellulose-degrading bacterial strain, D3-1, capable of degrading cellulose under medium- to high-temperature conditions, was isolated from soil samples and identified as Staphylococcus caprae through 16SrRNA gene sequencing. The strain’s cellulase production was optimized by controlling different factors, such as pH, temperature, incubation period, substrate concentration, nitrogen and carbon sources, and response surface methods. The results indicated that the optimal conditions for maximum cellulase activity were an incubation time of 91.7 h, a temperature of 41.8 °C, and a pH of 4.9, which resulted in a maximum cellulase activity of 16.67 U/mL, representing a 165% increase compared to pre-optimization levels. The above experiment showed that, when maize straw flour was utilized as a natural carbon source, strain D3-1 exhibited relatively high cellulase production. Furthermore, gas chromatography–mass spectrometry (GC-MS) analysis of products in the degradation liquid revealed the presence of primary sugars. The results indicated that, in the denitrification of simulated sewage, supplying maize straw flour degradation liquid (MSFDL) as the carbon source resulted in a carbon/nitrogen (C/N) ratio of 6:1 after a 24 h reaction with the denitrifying strain WH-01. The total nitrogen (TN) reduction was approximately 70 mg/L, which is equivalent to the removal efficiency observed in the glucose-fed denitrification process. Meanwhile, during a 4 h denitrification reaction in urban sewage without any denitrifying bacteria, but with MSFDL supplied as the carbon source, the TN removal efficiency reached 11 mg/L, which is approximately 70% of the efficiency of the glucose-fed denitrification process. Furthermore, experimental results revealed that strain D3-1 exhibits some capacity for nitrogen removal; when the cellulose-degrading strain D3-1 is combined with the denitrifying strain WH-01, the resulting TN removal rate surpasses that of a single denitrifying bacterium. In conclusion, as a carbon source in municipal sewage treatment, the degraded maize straw flour produced by strain D3-1 holds potential as a substitute for the glucose carbon source, and strain D3-1 has a synergistic effect with the denitrifying strain WH-01 on TN elimination. Thus, this research offers new insights and directions for advancement in environmental sewage treatment. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

Back to TopTop