Comparative Evaluation of Fat Quality in Conventional and Specialist Infant Formulas
Abstract
1. Introduction
2. Results
2.1. Composition and Types of IFs Used in This Study
2.2. Fatty Acid Profiles of the Tested IFs
2.3. Evaluation of PUFA Compliance in Infant Formulas
2.4. Evaluation of Lipid Quality Indices
2.5. Grouping of IFs Based on the Lipid Quality Indices and Their Interrelationships
2.5.1. Hierarchical Cluster Analysis (HCA)
2.5.2. Correlation Analysis
3. Discussion
Strengths and Limitations of This Study
4. Materials and Methods
4.1. Chemicals
4.2. Sample Selection
4.3. Fat Extraction
4.4. Chromatographic Determination of Fatty Acids
4.5. Lipid Quality Indices
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AA | Arachidonic acid |
AI | Index of atherogenicity |
ALA | α-Linolenic |
BCFAs | Branched-chain fatty acids |
CLA | Conjugated linoleic acid |
DFAs | Index of desirable fatty acids |
DHA | Docosahexaenoic fatty acid |
EPA | Eicosaenoic fatty acid |
HM | Human milk |
IF | Infant formula |
HCA | Hierarchical cluster analysis |
H/H | Hypocholesterolemic/Hypercholesterolemic ratio |
LA | Linoleic acid |
LCPUFAs | Long-chain polyunsaturated fatty acids |
MCFAs | Medium-chain fatty acids |
MUFAs | Monounsaturated fatty acids |
OFAs | Index of hypercholesterolemic fatty acids |
PUFAs | Polyunsaturated fatty acids |
SCFAs | Short-chain fatty acids |
SFAs | Saturated fatty acids |
TFA | Trans fatty acid |
TI | Index of thrombogenicity |
VA | Vaccenic acid |
References
- Chęcińska-Maciejewska, Z.; Ciborek, A.; Krauss, H.; Gibas-Dorna, M. Advantages of breastfeeding for the mother-infant dyad. J. Health Inequal. 2024, 10, 64–71. [Google Scholar] [CrossRef]
- Purkiewicz, A.; Czaplicki, S.; Pietrzak-Fiećko, R. The Occurence of Squalene in Human Milk and Infant Formula. Int. J. Environ. Res. Public Health 2022, 19, 12928. [Google Scholar] [CrossRef]
- Mendonça, M.A.; Araújo, W.M.C.; Borgo, L.Z.; De Rodrigues Alencar, E. Lipid profile of different infant formulas for infants. PLoS ONE 2017, 12, e0177812. [Google Scholar] [CrossRef] [PubMed]
- Infant and Young Child Feeding. Available online: https://www.who.int/news-room/fact-sheets/detail/infant-and-young-child-feeding (accessed on 22 June 2025).
- Infant Formula. Available online: https://www.fda.gov/food/resources-you-food/infant-formula (accessed on 22 June 2025).
- Bakshi, S.; Paswan, V.K.; Vadav, S.P.; Bhinchhar, B.K.; Kharkwal, S.; Rose, H.; Kanetkar, P.; Kumar, V.; Al-Zamani, Z.A.S.; Bunkar, D.S. A comprehensive review on infant formula: Nutritional and functional constituents, recent trends in processing and its impact on infants’ gut microbiota. Front. Nutr. 2023, 10, 1194679. [Google Scholar] [CrossRef] [PubMed]
- Dipasquale, V.; Serra, G.; Corsello, G.; Romano, C. Standard and Specialized Infant Formulas in Europe: Making, Marketing, and Health Outcomes. Nutr. Clin. Pract. 2019, 35, 273–281. [Google Scholar] [CrossRef]
- Jiang, Y.J.; Guo, M. Processing technology for infant formula. In Human Milk Biochemistry and Infant Formula Manufacturing Technology; Woodhead Publishing Series in Food Science, Technology and Nutrition; Guo, M., Ed.; Woodhead Publishing: Sawston, UK, 2021; pp. 223–240. [Google Scholar] [CrossRef]
- Purkiewicz, A.; Mumtaz, W.; Tońska, E.; Pietrzak-Fiećko, R. Mineral Content in Initial and Follow-On Infant Formulas in Poland: Nutrient Adequacy and Comparison with Breast Milk. Appl. Sci. 2024, 14, 10235. [Google Scholar] [CrossRef]
- Wu, D.; Zhang, L.; Zhang, Y.; Shi, J.; Tan, C.P.; Zheng, Z.; Liu, Y. Lipid Profiles of Human Milk and Infant Formulas: A Comparative Lipidomics Study. Foods 2023, 12, 600. [Google Scholar] [CrossRef]
- Seki, D.; Errerd, T.; Hall, L.J. The role of human milk fats in shaping neonatal development and the early life gut microbiota. Microbiome Res. Rep. 2023, 2, 8. [Google Scholar] [CrossRef]
- Baker, P.; Santos, T.; Neves, P.A.; Machado, P.; Smith, J.; Piwoz, E.; Barros, A.J.D.; Victoria, C.G.; McCoy, D. First-food systems transformations and the ultra-processing of infant and young child diets: The determinants, dynamics and consequences of the global rise in commercial milk formula consumption. Matern. Child. Nutr. 2021, 17, e13097. [Google Scholar] [CrossRef]
- Mazzocchi, A.; D’Oria, V.; De Cosmi, V.; Bettocchi, S.; Milani, G.P.; Silano, M.; Agostoni, C. The Role of Lipids in Human Milk and Infant Formulae. Nutrients 2018, 10, 567. [Google Scholar] [CrossRef]
- Mehrotra, V.; Sehgal, S.K.; Bangale, N.R. Fat structure and composition in human milk and infant formulas: Implications in infant health. Clin. Epidemiol. Glob. Health 2019, 7, 153–159. [Google Scholar] [CrossRef]
- Kompan, D.; Komprej, A. The Effect of Fatty Acids in Goat Milk on Health. Available online: https://www.intechopen.com/chapters/39464 (accessed on 30 June 2025).
- Djordjevic, J.; Ledina, T.; Baltic, M.Z.; Trbovic, D.; Babic, M.; Bulajic, S. Fatty acid profile of milk. IOP Conf. Ser Earth Environ. Sci. 2019, 333, 012057. [Google Scholar] [CrossRef]
- Hageman, J.H.J.; Danielsen, M.; Nieuwenhuizen, A.G.; Feitsma, A.L.; Dalsgaard, T.K. Comparison of bovine milk fat and vegetable fat for infant formula: Implications for infant health. Int. Dairy. J. 2019, 92, 37–49. [Google Scholar] [CrossRef]
- Paszczyk, B.; Tońska, E. Fatty Acid Content, Lipid Quality Indices, and Mineral Composition of Cow Milk and Yogurts Produced with Different Starter Cultures Enriched with Bifidobacterium bifidum. Appl. Sci. 2022, 12, 6558. [Google Scholar] [CrossRef]
- Delplanque, B.; Du, Q.; Martin, J.-C.; Guesnet, P. Lipids for infant formulas. Oilseeds Fats Crops Lipids 2018, 25, D305. [Google Scholar] [CrossRef]
- Markiewicz-Keszycka, M.; Czyżak-Runowska, G.; Lipińska, P.; Wójtowski, J. Fatty Acid Profile of Milk—A Review. Bull. Vet. Inst. Pulawy 2013, 57, 135. [Google Scholar] [CrossRef]
- Prosser, C.G.; Svetashev, V.I.; Vyssotski, M.V.; Lowry, D.J. Composition and distribution of fatty acids in triglycerides from goat infant formulas with milk fat. J. Dairy. Sci. 2010, 93, 2857–2862. [Google Scholar] [CrossRef]
- Mollica, M.P.; Trinchese, G.; Cimmino, F.; Penna, E.; Cavaliere, G.; Tudisco, R.; Musco, N.; Manca, C.; Catapano, A.; Monda, M.; et al. Milk Fatty Acid Profiles in Different Animal Species: Focus on the Potential Effect of Selected PUFAs on Metabolism and Brain Functions. Nutrients 2021, 13, 1111. [Google Scholar] [CrossRef]
- Gallier, S.; Tolenaars, L.; Prosser, C. Whole Goat Milk as a Source of Fat and Milk Fat Globule Membrane in Infant Formula. Nutrients 2020, 12, 3486. [Google Scholar] [CrossRef]
- Destaillats, F.; Oliveira, M.; Rakitsky, W.; Zhou, X.; Parker, L. Nervonic acid in infant nutrition: A forward-looking approach to enhancing neurodevelopmental outcomes. Front. Nutr. 2025, 12, 1635266. [Google Scholar] [CrossRef]
- CXS 72-1981; Standard for Infant Formula and Formulas for Special Medical Purposes Intended for Infants. FAO, United Nations Food and Agriculture Organization: Rome, Italy; WHO, World Health Organization: Geneva, Switzerland, 2024. Available online: https://www.isdi.org/wp-content/uploads/2020/04/CODEX-STAN-72-1981.pdf (accessed on 22 July 2025).
- Yu, J.; Yuan, T.; Zhang, X.; Jin, Q.; Wei, W.; Wang, X. Quantification of Nervonic Acid in Human Milk in the First 30 Days of Lactation: Influence of Lactation Stages and Comparison with Infant Formulae. Nutrients 2019, 11, 1892. [Google Scholar] [CrossRef]
- Rozporządzenie Delegowane Komisji (UE) 2016/127. Available online: https://eurlex.europa.eu/legal-content/PL/TXT/PDF/?uri=CELEX:32016R0128&from=SL (accessed on 9 February 2025).
- Bocquet, A.; Briend, A.; Chouraqui, J.-P.; Darmaun, D.; Feillet, F.; Frelut, M.-L.; Guimber, D.; Hankard, R.; Lapillonne, A.; Peretti, N.; et al. The new European regulatory framework for infant and follow-on formulas: Comments from the Committee of Nutrition of the French Society of Pediatrics (CN-SFP). Arch. Pédiatr. 2020, 27, 351–353. [Google Scholar] [CrossRef]
- Tounian, P.; Bellaïche, M.; Legrand, P. ARA or no ARA in infant formulae, that is the question. Arch. Pédiatr. 2021, 28, 69–74. [Google Scholar] [CrossRef]
- Koletzko, B.; Bergmann, K.; Thomas Brenna, J.; Calder, P.C.; Campoy, C.; Clandinin, M.T.; Colombo, J.; Daly, M.; Decsi, T.; Demmelmair, H.; et al. Should formula for infants provide arachidonic acid along with DHA? A position paper of the European Academy of Paediatrics and the Child Health Foundation. Am. J. Clin. Nutr. 2020, 111, 10–16. [Google Scholar] [CrossRef]
- Ahire, R.D.; Dhole, R.S. Supplementing with DHA and ARA for infant’s brain and vision development. Int. J. Ther. Innov. 2023, 1, 4–6. [Google Scholar] [CrossRef]
- Einerhand, A.W.C.; Mi, W.; Haandrikman, A.; Sheng, X.Y.; Calder, P.C. The Impact of Linoleic Acid on Infant Health in the Absence or Presence of DHA in Infant Formulas. Nutrients 2023, 15, 2187. [Google Scholar] [CrossRef]
- Kuratko, C.; Abril, J.R.; Hoffman, J.P.; Salem, N., Jr. 13-Enrichment of infant formula with omega-3 fatty acids. In Woodhead Publishing Series in Food Science, Technology and Nutrition, Food Enrichment with Omega-3 Fatty Acids; Jacobsen, C., Skall Nielsen, N., Frisenfeldt Horn, A., Moltke Sørensen, A.-D., Eds.; Woodhead Publishing: Sawston, UK, 2013; pp. 353–386. [Google Scholar]
- EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA); Turck, D.; Bohn, T.; Castenmiller, J.; De Henauw, S.; Hirsch-Ernst, K.I.; Maciuk, A.; Mangelsdorf, I.; McArdle, H.J.; Naska, A.; et al. Safety of oil from Schizochytrium sp. (strain CABIO-A-2) for use in infant and follow-on formula as a novel food pursuant to Regulation (EU) 2015/2283. EFSA J. 2023, 21, e8415. [Google Scholar] [CrossRef]
- Ruiz-Núñez, B.; Dijck-Brouwer, D.A.J.; Muskiet, F.A.J. The relation of saturated fatty acids with low-grade inflammation and cardiovascular disease. J. Nutr. Biochem. 2016, 36, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Pietrzak-Fiećko, R.; Kamelska-Sadowska, A.M. The Comparison of Nutritional Value of Human Milk with Other Mammals’ Milk. Nutrients 2020, 12, 1404. [Google Scholar] [CrossRef] [PubMed]
- Vanderhoof, J.; Moore, N.; De Boissieu, D. Evaluation of an Amino AcidBased Formula in Infants Not Responding to Extensively Hydrolyzed Protein Formula. J. Pediatr. Gastroenterol. Nutr. 2016, 63, 531–533. [Google Scholar] [CrossRef] [PubMed]
- PN-EN ISO 1211:2011; Milk-Determination of Fat Content-Gravimetric Method (Reference Method). ISO: Geneva, Switzerland, 2011.
- ISO 15884:2002 (IDF 182:2002); Milkfat: Preparation of Fatty Acid Methyl Esters. ISO: Geneva, Switzerland, 2002.
- Agilent ChemStation. Available online: https://www.agilent.com/cs/library/usermanuals/Public/G2070-91126_Understanding.pdf (accessed on 22 June 2025).
No | Code | Use * | Description of the Product * | Nutritional Value * | Preparation * |
---|---|---|---|---|---|
1 | K-CM1 | First-feeding IFs. | Conventional based on cow’s milk | E 478 kcal, F 24.6 g (of which SFA 11.6 g, MUFA 8 g, PUFA 3.6 g), C 52.9 g (of which S 52.2 g), P 9.4 g | 13.8 g of powder + 90 mL of water |
2 | K-GM1 | First-feeding IFs. | Conventional based on goat’s milk, contains DHA | E 511 kcal, F 26.4 g (of which SFA 9.3 g, MUFA 12.4 g, PUFA 4.1 g), C 57.4 g (of which S 57.4 g), P 10.1 g | 12.9 g of powder + 90 mL of water |
3 | K-CM2 | Follow-on feeding IFs. | Conventional based on cow’s milk | E: 472 kcal, F 22.2 g (of which SFA 10.4 g, MUFA 7.6 g, PUFA 3.5 g), C 56.2 g (of which S 55.6 g), P 9.7 g | 14.4 g of powder + 90 mL of water |
4 | K-GM2 | Follow-on feeding IFs. | Conventional based on goat’s milk, contains DHA and AA | E: 511 kcal, F 26.4 g (of which SFA 9.3 g, MUFA 12.4 g, PUFA 4.1 g), C 57.4 g (of which S 57.4 g), P 10.1 g | 12.9 g of powder + 90 mL of water |
5 | S-PH | Dietary management of gastrointestinal disorders, infant colic, and constipation. Nutritionally complete for infants up to 6 months of age. | Partially hydrolyzes milk proteins for easier digestion and faster gastric emptying. Contains B-palmitate and galacto-oligosaccharides | E: 496 kcal, F 25.9 g (of which SFA 13.3 g, MUFA 8.9 g, PUFA 3 g), C 51.1 g (of which S 5.9 g), P 12.6 g | 13.5 g of powder + 90 mL of water |
6 | S-S | Dietary management of cow’s milk protein intolerance, lactose intolerance, galactosemia, and cow’s milk protein allergy. Nutritionally complete for infants up to 6 months of age. | Based on soy proteins | E: 489 kcal, F 23.4 g (of which SFA 9.9 g, MUFA 9.2 g, PUFA 4.3 g), C 58.2 g (of which S 5 g), P 11.3 g | 14.1 g of powder + 90 mL of water |
7 | S-FH | Dietary management of cow’s milk protein allergy and other food allergies (such as soy protein), lactose intolerance, and secondary sucrose intolerance. Intended for the next feeding of infants. | Hypoallergenic, based on casein hydrolysate with a high degree of hydrolysis, contains probiotics | E: 504 kcal, F 25.2 g (of which SFA 10.4 g, MUFA nd g, PUFA nd g), C 57 g (of which S 25.9 g), P 12.4 g | 13.5 g of powder + 90 mL of water |
8 | S-A | Dietary management of infants from birth to 12 months with cow’s milk protein allergy, eosinophilic esophagitis, and other indications where amino acid preparations are recommended. | Hypoallergenic, suitable as the only food source for infants under 12 months, contains LCPUFA, probiotics, and prebiotics | E: 472 kcal, F 23.6 g (of which SFA 10.4 g, MUFA 9 g, PUFA 3.8 g), C 50 g (of which S 4.7 g), P 13.2 g | 14.4 g of powder + 90 mL of water |
Fatty Acids | Common Name | K-CM1 | K-CM2 | K-GM1 | K-GM2 | S-PH | S-S | S-FH | S-A |
---|---|---|---|---|---|---|---|---|---|
Saturated fatty acids (SFAs) | |||||||||
C4:0 | Butyric | 1.12 ± 0.04 c | 1.43 ± 0.01 b | 0.94 ± 0.01 d | 1.16 ± 0.02 c | 1.57 ± 0.00 a | ND | ND | ND |
C6:0 | Caproic | 0.82 ± 0.04 c | 1.04 ± 0.01 b | 1.02 ± 0.05 b | 1.22 ± 0.02 a | 1.05 ± 0.03 b | ND | ND | ND |
C8:0 | Caprylic | 0.98 ± 0.07 d | 1.41 ± 0.07 b | 1.17 ± 0.03 c | 1.51 ± 0.03 b | 0.97 ± 0.02 d | 1.17 ± 0.03 c | 1.63 ± 0.06 a | 1.63 ± 0.07 a |
C10:0 | Capric | 0.19 ± 0.01 g | 2.45 ± 0.06 c | 4.37 ± 0.03 b | 5.39 ± 0.03 a | 2.09 ± 0.06 d | 1.00 ± 0.02 f | 1.43 ± 0.07 e | 1.82 ± 0.21 d |
C12:0 | Lauric | 4.82 ± 0.37 c | 7.28 ± 0.01 b | 1.69 ± 0.27 d | 2.25 ± 0.04 d | 5.87 ± 0.14 c | 7.46 ± 0.19 b | 8.68 ± 0.31 a | 5.08 ± 0.09 c |
C14:0 | Myristic | 6.28 ± 0.10 b | 8.08 ± 0.05 a | 4.28 ± 0.27 c | 5.13 ± 0.14 b | 7.51 ± 0.43 a | 3.09 ± 0.29 d | 4.44 ± 0.03 c | 3.95 ± 0.60 c |
C15:0 | Pentadecylic | 0.49 ± 0.01 b | 0.62 ± 0.01 a | 0.45 ± 0.01 b | 0.50 ± 0.01 b | 0.66 ± 0.00 a | ND | 0.04 ± 0.00 c | ND |
C16:0 | Palmitic | 18.30 ± 0.38 b | 20.68 ± 0.12 b | 22.89 ± 0.55 b | 15.63 ± 1.67 b | 27.99 ± 0.73 a | 25.94 ± 2.70 a | 21.81 ± 0.55 b | 28.67 ± 2.73 a |
C17:0 | Margaric | 0.33 ± 0.01 b | 0.34 ± 0.02 b | 0.39 ± 0.01 a | 0.39 ± 0.01 a | 0.36 ± 0.02 b | 0.29 ± 0.03 b | 0.27 ± 0.01 b | 0.24 ± 0.00 c |
C18:0 | Stearic | 6.11 ± 0.34 a | 5.99 ± 0.06 a | 6.28 ± 0.06 a | 5.46 ± 0.34 a | 6.08 ± 0.07 a | 3.56 ± 0.14 b | 3.90 ± 0.05 b | 3.16 ± 0.02 c |
C19:0 | Nonadecanoic | 0.07 ± 0.01 b | 0.07 ± 0.01 b | 0.10 ± 0.00 a | 0.09 ± 0.00 a | 0.06 ± 0.01 b | ND | ND | 0.01 ± 0.00 c |
C20:0 | Arachidic | 0.21 ± 0.00 b | 0.19 ± 0.00 b | 0.27 ± 0.02 a | 0.25 ± 0.01 b | 0.22 ± 0.00 b | 0.32 ± 0.00 a | 0.31 ± 0.02 a | 0.25 ± 0.01 b |
C22:0 | Behenic | 0.30 ± 0.01 c | 0.28 ± 0.01 c | 0.42 ± 0.00 b | 0.42 ± 0.03 b | 0.15 ± 0.01 e | 0.17 ± 0.00 e | 0.24 ± 0.02 d | 0.49 ± 0.01 a |
C24:0 | Lignoceric | 0.15 ± 0.00 b | 0.12 ± 0.00 b | 0.22 ± 0.03 a | 0.17 ± 0.00 ab | ND | 0.14 ± 0.00 b | ND | 0.24 ± 0.01 a |
Total SFAs | 40.68 ± 2.80 b | 50.48 ± 0.02 a | 44.9 ± 0.31 b | 40.11 ± 1.78 b | 55.12 ± 0.26 a | 43.14 ± 2.22 b | 42.75 ± 0.72 b | 45.54 ± 3.50 b | |
Monounsaturated fatty acids (MUFAs) | |||||||||
C14:1 n5 | Myristoleic | 0.43 ± 0.02 b | 0.59 ± 0.01 a | 0.05 ± 0.00 c | 0.07 ± 0.01 c | 0.62 ± 0.00 a | ND | ND | ND |
C16:1 n7 | Palmitoleic | 0.89 ± 0.02 a | 1.06 ± 0.00 a | 0.51 ± 0.00 b | 0.50 ± 0.00 b | 1.06 ± 0.03 a | 1.20 ± 0.05 a | 1.02 ± 0.03 a | 1.13 ± 0.11 a |
C17:1 n9 | cis-10-heptadecenoic | 0.12 ± 0.01 a | 0.12 ± 0.01 a | 0.18 ± 0.02 a | 0.16 ± 0.01 a | 0.14 ± 0.02 a | 0.16 ± 0.02 a | 0.13 ± 0.00 a | 0.05 ± 0.01 b |
C18:1 n9 | Oleic | 32.32 ± 1.82 b | 29.43 ± 0.32 b | 35.58 ± 0.47 ab | 41.15 ± 2.04 a | 27.14 ± 0.06 b | 36.00 ± 1.45 ab | 34.84 ± 0.94 ab | 33.37 ± 3.48 b |
C20:1 n9 | Eicosenoic | 0.27 ± 0.02 b | 0.23 ± 0.01 b | 0.31 ± 0.01 a | 0.29 ± 0.01 ab | 0.26 ± 0.01 b | 0.30 ± 0.01 ab | 0.33 ± 0.03 a | 0.32 ± 0.01 a |
Total MUFAs | 35.71 ± 1.89 b | 32.97 ± 0.34 b | 38.61 ± 0.45 ab | 44.10 ± 2.01 a | 30.81 ± 0.06 b | 39.36 ± 1.44 ab | 37.68 ± 0.99 ab | 36.80 ± 3.52 b | |
Polyunsaturated fatty acids (PUFAs) | |||||||||
C18:2 n6 | Linoleic (LA) | 14.33 ± 1.50 b | 12.57 ± 0.01 b | 11.99 ± 0.57 b | 11.91 ± 0.52 b | 10.23 ± 0.12 bc | 14.99 ± 0.57 ab | 16.92 ± 0.08 a | 14.83 ± 0.17 ab |
C18:3 n6 | γ-linolenic acid (GLA) | 0.04 ± 0.00 a | 0.03 ± 0.00 a | 0.03 ± 0.00 a | 0.03 ± 0.00 a | 0.03 ± 0.00 a | ND | 0.03 ± 0.00 a | 0.04 ± 0.00 a |
C20:4 n6 | Arachidonic (AA) | 0.48 ± 0.03 a | 0.31 ± 0.00 b | 0.47 ± 0.07 a | 0.42 ± 0.01 ab | 0.39 ± 0.01 ab | 0.37 ± 0.01 b | 0.49 ± 0.02 a | 0.59 ± 0.01 a |
C18:3 n3 | α-linolenic (ALA) | 1.67 ± 0.00 a | 1.43 ± 0.01 b | 1.80 ± 0.03 a | 1.72 ± 0.03 a | 0.96 ± 0.02 c | 1.62 ± 0.07 a | 1.52 ± 0.11 ab | 1.54 ± 0.02 ab |
C20:5 n3 | Eicosapentaenoic (EPA) | 0.13 ± 0.00 a | 0.14 ± 0.00 a | 0.10 ± 0.00 b | 0.10 ± 0.00 b | ND | 0.10 ± 0.00 b | 0.09 ± 0.01 b | ND |
C22:6 n3 | Docosahexaenoic (DHA) | 0.47 ± 0.02 b | 0.54 ± 0.00 a | 0.46 ± 0.03 b | 0.41 ± 0.01 b | 0.28 ± 0.05 c | 0.33 ± 0.01 bc | 0.43 ± 0.01 b | 0.56 ± 0.03 a |
Total PUFAs | 17.5 ± 1.43 a | 15.38 ± 0.01 ab | 15.35 ± 0.65 ab | 15.11 ± 0.49 b | 12.28 ± 0.11 c | 17.47 ± 0.53 a | 19.50 ± 0.04 a | 17.64 ± 0.25 a | |
Branched-chain fatty acids (BCFAs) | |||||||||
isoC13:0 | Iso-tridecanoic | 0.03 ± 0.00 b | 0.02 ± 0.03 b | 0.02 ± 0.00 b | 0.02 ± 0.00 b | 0.05 ± 0.00 a | ND | ND | ND |
isoC14:0 | Iso-tetradecanoic | 0.03 ± 0.00 a | 0.03 ± 0.00 a | 0.04 ± 0.00 a | 0.05 ± 0.00 a | 0.04 ± 0.00 a | ND | ND | ND |
isoC15:0 | Iso-pentadecylic | 0.13 ± 0.04 a | 0.11 ± 0.01 a | 0.09 ± 0.00 a | 0.10 ± 0.01 a | 0.10 ± 0.01 a | ND | ND | ND |
anteisoC15:0 | Anteiso-pentadecylic | 0.21 ± 0.01 a | 0.22 ± 0.01 a | 0.14 ± 0.00 a | 0.17 ± 0.01 a | 0.24 ± 0.02 a | ND | ND | ND |
isoC16:0 | Isopalmitic | 0.11 ± 0.01 a | 0.12 ± 0.01 a | 0.12 ± 0.00 a | 0.12 ± 0.01 a | 0.11 ± 0.00 a | ND | ND | ND |
Total BCFAs | 0.50 ± 0.04 a | 0.50 ± 0.01 a | 0.41 ± 0.01 a | 0.45 ± 0.02 a | 0.54 ± 0.00 a | ND | ND | ND | |
Trans fatty acids (TFAs) | |||||||||
C16:1 t6 | Palmitelaidic | 0.17 ± 0.00 a | 0.17 ± 0.01 a | 0.20 ± 0.02 a | 0.17 ± 0.00 ab | 0.15 ± 0.01 a | 0.02 ± 0.00 b | 0.01 ± 0.00 b | ND |
C18:1 t6 | Petroselaidic | 0.11 ± 0.01 a | 0.09 ± 0.00 b | 0.09 ± 0.00 b | 0.06 ± 0.00 c | 0.10 ± 0.00 ab | ND | ND | ND |
C18:1 t9 | Elaidic | 0.07 ± 0.00 a | 0.08 ± 0.00 a | ND | 0.08 ± 0.00 a | 0.08 ± 0.01 a | ND | ND | ND |
C18:1 t11 | Vaccenic (VA) | 1.33 ± 0.08 a | 1.20 ± 0.01 a | 1.69 ± 0.01 a | 1.62 ± 0.00 a | 1.26 ± 0.01 a | 1.68 ± 0.08 a | 1.35 ± 0.12 a | 1.93 ± 0.05 a |
C18:2 c9t11 | Rumenic (RA, CLA) | 0.21 ± 0.02 b | 0.19 ± 0.01 b | 0.31 ± 0.00 a | 0.30 ± 0.01 a | 0.21 ± 0.01 b | ND | ND | ND |
C18:2 t9t12 | Trans isomers of linoleic acid | 0.09 ± 0.00 a | 0.10 ± 0.00 a | 0.11 ± 0.01 a | 0.12 ± 0.01 a | 0.10 ± 0.01 a | 0.03 ± 0.00 b | ND | 0.05 ± 0.00 b |
C18:2 t11t15 | 0.08 ± 0.01 a | 0.07 ± 0.00 a | 0.08 ± 0.00 a | 0.10 ± 0.00 a | 0.08 ± 0.01 a | 0.03 ± 0.00 b | 0.02 ± 0.00 b | 0.03 ± 0.00 b | |
Total TFAs | 2.06 ± 0.06 b | 1.99 ± 0.02 b | 2.48 ± 0.03 a | 2.44 ± 0.02 a | 1.98 ± 0.02 b | 1.76 ± 0.08 b | 1.38 ± 0.12 c | 2.01 ± 0.06 b | |
Fatty acid ratios | |||||||||
PUFA n6/PUFA n3 | 6.71 ± 0.69 ab | 6.29 ± 0.04 ab | 5.50 ± 0.27 c | 5.78 ± 0.35 b | 8.90 ± 0.29 a | 7.52 ± 0.49 a | 8.56 ± 0.61 a | 7.40 ± 0.10 a | |
DHA:LA | 0.03:1 | 0.04:1 | 0.04:1 | 0.03:1 | 0.03:1 | 0.02:1 | 0.03:1 | 0.04:1 | |
DHA:AA | 0.98:1 | 1.74:1 | 0.98:1 | 0.98:1 | 0.72:1 | 0.89:1 | 0.88:1 | 0.95:1 | |
LA:ALA | 8.58:1 | 8.79:1 | 6.66:1 | 6.92:1 | 10.66:1 | 9.25:1 | 11.13:1 | 9.63:1 |
IFs | PUFA | LA | ALA | AA | DHA | EPA | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
VL | VM | VL | VM | VL | VM | VL | VM | VL | VM | VL | VM | |
K-CM1 | 15.63 | 17.50 | 14.00 | 14.33 | 1.72 | 1.67 | 0.52 | 0.48 | 0.52 | 0.47 | 0.11 | 0.13 |
K-CM2 | 16.13 | 15.38 | 13.71 | 12.57 | 1.68 | 1.43 | 0.29 | 0.31 | 0.55 | 0.54 | 0.12 | 0.14 |
K-GM1 | 15.92 | 15.35 | 12.01 | 11.88 | 1.59 | 1.80 | 0.48 | 0.47 | 0.48 | 0.46 | ND | - |
K-GM2 | 15.92 | 15.11 | 12.01 | 11.91 | 1.59 | 1.72 | 0.48 | 0.42 | 0.45 | 0.41 | ND | - |
S-PH | 11.76 | 12.28 | 10.91 | 10.23 | 1.09 | 0.96 | 0.20 | 0.39 | 0.44 | 0.28 | ND | - |
S-S | 18.18 | 17.47 | 14.85 | 14.99 | 1.66 | 1.62 | ND | - | 0.48 | 0.33 | ND | - |
S-A | 16.18 | 17.64 | 13.09 | 14.83 | 1.32 | 1.54 | 0.50 | 0.59 | 0.50 | 0.56 | ND | - |
Lipid Quality Indices | K-CM1 | K-CM2 | K-GM1 | K-GM2 | S-PH | S-S | S-FH | S-A |
---|---|---|---|---|---|---|---|---|
DFA | 59.32 a | 54.34 b | 60.24 a | 64.67 a | 49.17 c | 60.39 a | 61.08 a | 57.60 b |
OFA | 29.4 bc | 36.04 b | 28.86 bc | 23.01 c | 41.37 a | 36.49 b | 34.93 b | 37.70 b |
AI | 0.91 b | 1.25 ab | 0.77 c | 0.65 c | 1.48 a | 0.81 bc | 0.84 bc | 0.91 b |
TI | 0.95 b | 1.17 b | 1.01 b | 0.74 c | 1.68 a | 0.97 b | 0.89 bc | 1.10 b |
H/H | 1.64 b | 1.21 b | 1.71 b | 2.38 a | 0.93 b | 1.44 b | 1.53 b | 1.32 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Purkiewicz, A.; Browarek, J.; Pietrzak-Fiećko, R. Comparative Evaluation of Fat Quality in Conventional and Specialist Infant Formulas. Molecules 2025, 30, 3221. https://doi.org/10.3390/molecules30153221
Purkiewicz A, Browarek J, Pietrzak-Fiećko R. Comparative Evaluation of Fat Quality in Conventional and Specialist Infant Formulas. Molecules. 2025; 30(15):3221. https://doi.org/10.3390/molecules30153221
Chicago/Turabian StylePurkiewicz, Aleksandra, Joanna Browarek, and Renata Pietrzak-Fiećko. 2025. "Comparative Evaluation of Fat Quality in Conventional and Specialist Infant Formulas" Molecules 30, no. 15: 3221. https://doi.org/10.3390/molecules30153221
APA StylePurkiewicz, A., Browarek, J., & Pietrzak-Fiećko, R. (2025). Comparative Evaluation of Fat Quality in Conventional and Specialist Infant Formulas. Molecules, 30(15), 3221. https://doi.org/10.3390/molecules30153221