Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (419)

Search Parameters:
Keywords = H2O splitting

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3422 KB  
Article
Binder-Free Spinel Co2CuO4 Nanosheet Electrodes with Cu-Driven Kinetic Enhancement for Alkaline OER Applications
by Abu Talha Aqueel Ahmed, Momin M. Mujtaba, Abu Saad Ansari and Sangeun Cho
Materials 2026, 19(2), 301; https://doi.org/10.3390/ma19020301 - 12 Jan 2026
Viewed by 163
Abstract
Developing electrocatalysts that are efficient and durable for the oxygen evolution reaction (OER) is essential for improving the energy efficiency of alkaline water splitting. Spinel-type transition-metal oxides have emerged as promising non-noble alternatives; however, their catalytic performance is often limited by sluggish charge [...] Read more.
Developing electrocatalysts that are efficient and durable for the oxygen evolution reaction (OER) is essential for improving the energy efficiency of alkaline water splitting. Spinel-type transition-metal oxides have emerged as promising non-noble alternatives; however, their catalytic performance is often limited by sluggish charge transport and insufficient utilization of active sites. Herein, we present a systematic comparative study of electrodeposited Co3O4 (CO-300) and Cu-substituted Co2CuO4 (CCO-300) nanosheet films directly grown on Ni foam. Structural, morphological, and spectroscopic analyses reveal that Cu2+ integration into Co-oxide spinel lattice modifies the local electronic environment and produces a more open and interconnected nanosheet architecture, thereby enhancing conductivity and increasing the density of accessible redox-active sites. As a result, the optimized CCO-300 exhibits superior catalytic performance at higher current densities, along with a smaller Tafel slope (44 mV dec–1), a larger electrochemically active surface area (ECSA), and reduced charge-transfer resistance compared to CCO-300, indicating accelerated reaction kinetics and improved electron-ion transport. Furthermore, the multistep chronopotentiometry measurements and long-term stability tests over 100 h at current densities of 10 and 250 mA cm–2 highlight the excellent operational stability of the CCO-300 catalyst. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Graphical abstract

18 pages, 2144 KB  
Article
Bacillus velezensis SQR9-Emitted Volatiles Enhance Arabidopsis Salt Tolerance via ROS Scavenging and Ion Transport Regulation
by Yucong Li, Liming Xia, Yanqiong Meng, Xinyu Shen, Xiang Wan, Fangqun Gan and Ruifu Zhang
Plants 2026, 15(2), 218; https://doi.org/10.3390/plants15020218 - 10 Jan 2026
Viewed by 251
Abstract
Salinity stress severely limits crop productivity worldwide. While plant growth-promoting rhizobacteria (PGPR) are known to alleviate abiotic stress, the specific mechanisms mediated by their volatile organic compounds (VOCs) remain largely elusive. In this study, an in vitro split-plate system was used to investigate [...] Read more.
Salinity stress severely limits crop productivity worldwide. While plant growth-promoting rhizobacteria (PGPR) are known to alleviate abiotic stress, the specific mechanisms mediated by their volatile organic compounds (VOCs) remain largely elusive. In this study, an in vitro split-plate system was used to investigate the effects of VOCs emitted by Bacillus velezensis SQR9 on Arabidopsis thaliana seedlings under salt stress. Exposure to SQR9 VOCs significantly enhanced Arabidopsis salt tolerance, evidenced by increased biomass and root growth. Mechanistically, SQR9 VOCs mitigated salt-induced damage by increasing chlorophyll content, modulating osmolytes, and reducing malondialdehyde (MDA) levels. SQR9 VOCs alleviated oxidative stress by decreasing ROS (H2O2, O2) accumulation and enhancing antioxidant enzyme (SOD, CAT, POD) activities. Furthermore, SQR9 VOCs maintained ion homeostasis by significantly reducing leaf Na+ accumulation, maintaining a high K+/Na+ ratio, and upregulating key ion transporter genes. Analysis of the headspace from SQR9 cultured on MSgg medium identified 2,3-butanediol (2,3-BD) as a major active VOC. Exogenous application of 2,3-BD successfully mimicked the growth-promoting and salt-tolerance-enhancing effects of SQR9. Our findings demonstrate that SQR9 VOCs, particularly 2,3-BD, systemically prime Arabidopsis for salt tolerance by co-activating the antioxidant defense system and the SOS ion homeostasis pathway. Full article
Show Figures

Figure 1

19 pages, 4926 KB  
Article
A Bipolar Membrane Containing Core–Shell Structured Fe3O4-Chitosan Nanoparticles for Direct Seawater Electrolysis
by Hyeon-Bee Song, Eun-Hye Jang and Moon-Sung Kang
Membranes 2026, 16(1), 23; https://doi.org/10.3390/membranes16010023 - 2 Jan 2026
Viewed by 469
Abstract
Seawater has attracted increasing attention as a promising resource for hydrogen production via electrolysis. However, multivalent ions present in seawater can reduce the efficiency of direct seawater electrolysis (DSWE) by forming inorganic precipitates at the cathode. Bipolar membranes (BPMs) can mitigate precipitate formation [...] Read more.
Seawater has attracted increasing attention as a promising resource for hydrogen production via electrolysis. However, multivalent ions present in seawater can reduce the efficiency of direct seawater electrolysis (DSWE) by forming inorganic precipitates at the cathode. Bipolar membranes (BPMs) can mitigate precipitate formation by regulating local pH, thereby enhancing DSWE efficiency. Accordingly, this study focuses on the fabrication of a high-performance BPM for DSWE applications. The water-splitting performance of BPMs is strongly dependent on the properties of the catalyst at the bipolar junction. Herein, iron oxide (Fe3O4) nanoparticles were coated with cross-linked chitosan to improve solvent dispersibility and catalytic activity. The resulting core–shell catalyst exhibited excellent dispersibility, facilitating uniform incorporation into the BPM. Water-splitting flux measurements identified an optimal catalyst loading of approximately 3 μg cm−2. The BPM containing Fe3O4–chitosan nanoparticles achieved a water-splitting flux of 26.2 μmol cm−2 min−1, which is 18.6% higher than that of a commercial BPM (BP-1E, Astom Corp., Tokyo, Japan). DSWE tests using artificial seawater as the catholyte and NaOH as the anolyte demonstrated lower cell voltage and stable catholyte acidification over 100 h compared to the commercial membrane. Full article
(This article belongs to the Special Issue Advanced Membrane Design for Hydrogen Technologies)
Show Figures

Graphical abstract

25 pages, 18570 KB  
Article
Study on Multi-Solid Waste Alkali-Activated Material Concrete via RSM
by Lijun Wang, Lin Mou, Jilong Jia, Zhichao Wan, Zhipeng Meng and Xiaolong Zhou
Buildings 2026, 16(1), 198; https://doi.org/10.3390/buildings16010198 - 1 Jan 2026
Viewed by 219
Abstract
This study prepares solid-waste-based alkali-activated material (AAM) concrete using ground granulated blast furnace slag (GGBFS), fly ash (FA), steel slag (SS), and desulfurized gypsum (DG) as primary raw materials, with Na2SiO3 as the activator. Taking the GGBFS content (X1 [...] Read more.
This study prepares solid-waste-based alkali-activated material (AAM) concrete using ground granulated blast furnace slag (GGBFS), fly ash (FA), steel slag (SS), and desulfurized gypsum (DG) as primary raw materials, with Na2SiO3 as the activator. Taking the GGBFS content (X1), Na2SiO3 content (X2), and water-to-binder ratio (X3) as independent variables and the 3-day, 7-day, and 28-day compressive strengths and slump as response values, it investigates the influence of each factor and their interactions, constructs a response surface prediction model, screens for the optimal mix proportion with comprehensive performance, and explores the microstructural characterization and strength formation mechanism of the AAM concrete via SEM and EDS. The results indicate the following: (1) compared with binary and ternary mixtures, the use of the quaternary solid waste mixture not only enhances strength and optimizes the microstructure but also increases the utilization rate of low-quality solid wastes; (2) the regression coefficients (R2) of the response surface models are all greater than 0.98, exhibiting good goodness of fit and rationality. Experimental validation confirms that each model shows excellent predictive capability; (3) AAM concrete exhibits comprehensively superior mechanical properties to ordinary cement, with leading early- and late-stage compressive strengths and splitting strengths, albeit with a slightly lower slump; (4) the performance synergy is prominent. Combined with microscopic analysis (highly polymerized C-S-H gels and a dense structure), the superiority of its macroscopic mechanical properties stems from the optimization of the microstructure, reflecting the intrinsic correlation of the “microscopic densification-macroscopic high strength. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

15 pages, 2020 KB  
Article
Comparative Analysis of G-Quadruplex DNAzyme Scaffolds and Split Modes for Programmable Biosensing
by Dunsin S. Osalaye, Raphael I. Adeoye, Sylvia O. Malomo and Femi J. Olorunniji
Catalysts 2026, 16(1), 27; https://doi.org/10.3390/catal16010027 - 30 Dec 2025
Viewed by 300
Abstract
G-quadruplex (G4) DNAzymes, guanine-rich sequences that fold into four-stranded structures and bind hemin to mimic peroxidase activity, are widely used in biosensing. Split G4 DNAzymes offer conditional activation upon target recognition, enabling high specificity and modularity. However, achieving low OFF-state leakage remains a [...] Read more.
G-quadruplex (G4) DNAzymes, guanine-rich sequences that fold into four-stranded structures and bind hemin to mimic peroxidase activity, are widely used in biosensing. Split G4 DNAzymes offer conditional activation upon target recognition, enabling high specificity and modularity. However, achieving low OFF-state leakage remains a major challenge. Here, we systematically characterized four representative G4 scaffolds, C-myc, Bcl2, PS5.M, and C-kit, under standardized ABTS/H2O2 conditions to assess their kinetic properties and suitability for split designs. C-myc exhibited the highest sustained activity and near-linear concentration dependence, making it ideal for quantitative sensing, while Bcl2 showed durable catalysis suited for extended read windows. C-kit produced rapid bursts with early plateaus, favoring binary outputs, and PS5.M initiated quickly but inactivated rapidly, suggesting potential application of systems requiring fast response. Split-mode analysis revealed that symmetric 2:2 partitions often retained significant activity, whereas asymmetric 3:1 splits reduced but did not eliminate leakage. Among the four G4 DNAzymes, PS5.M demonstrated the most promising OFF-state suppression. Design strategies to minimize leakage including non-classical splits, loop/flank edits, and template-assisted assembly could be used to optimize biosensor functionalities. These findings identify essential factors critical for designing robust split DNAzyme biosensors, advancing applications in diagnostics and molecular logic gates. Full article
(This article belongs to the Special Issue State-of-the-Art Enzyme Engineering and Biocatalysis in Europe)
Show Figures

Graphical abstract

13 pages, 3832 KB  
Article
Surface and Interface Modulation of V2O5/Ni(OH)2 Nanomaterials for Enhanced Alkaline Water Splitting
by Jia Feng, Yongren Yu, Yinxin Zhang, Haojie Sun, Xiaomei Wang, Shiwei Song, Yucai Li, Jian Wang, Depeng Zhao and Fang Hu
Molecules 2026, 31(1), 113; https://doi.org/10.3390/molecules31010113 - 29 Dec 2025
Viewed by 242
Abstract
To optimize the electrocatalytic reaction process through the synergistic effects of V and Ni, this study employed a two-step hydrothermal method to successfully construct a V2O5 composite structure grown on a Ni(OH)2 substrate (denoted V2O5/Ni(OH) [...] Read more.
To optimize the electrocatalytic reaction process through the synergistic effects of V and Ni, this study employed a two-step hydrothermal method to successfully construct a V2O5 composite structure grown on a Ni(OH)2 substrate (denoted V2O5/Ni(OH)2-2). Electrochemical evaluation revealed that this catalyst exhibits efficient bifunctional activity in 1.0 M KOH electrolyte. For the hydrogen evolution reaction (HER), it requires a mere 89.6 mV overpotential to achieve a current density of −10 mA cm−2. The catalyst also demonstrates excellent performance in the oxygen evolution reaction (OER), demanding only 198 mV overpotential to drive a current density of 10 mA cm−2, while maintaining low overpotential increases even at high current densities. Furthermore, it exhibits outstanding long-term stability during a 12 h continuous test. When assembled as a dual-electrode overall water splitting device, the system requires a voltage of only 2.82 V to drive a high current density of 100 mA cm−2, showcasing its significant potential for practical applications. Full article
(This article belongs to the Section Electrochemistry)
Show Figures

Figure 1

15 pages, 3511 KB  
Article
Oxygen Bridge Governs OER via Deep Self-Reconstruction in Fe–Co Oxyhydroxides
by Mingyu Liu, Bowen Pei, Hongyu Ba, Wei Ni, Huaheng Zhao, Shuang Chen, Jiamin Zhao and Jinsheng Zhao
Molecules 2026, 31(1), 96; https://doi.org/10.3390/molecules31010096 - 25 Dec 2025
Viewed by 438
Abstract
The oxygen evolution reaction (OER) in water splitting involves complex multi-electron–proton transfer processes and represents the rate-determining step limiting overall electrolysis efficiency. Developing non-noble-metal catalysts with high activity and stability is therefore essential. Herein, a heterogeneous synthesis strategy was employed to in situ [...] Read more.
The oxygen evolution reaction (OER) in water splitting involves complex multi-electron–proton transfer processes and represents the rate-determining step limiting overall electrolysis efficiency. Developing non-noble-metal catalysts with high activity and stability is therefore essential. Herein, a heterogeneous synthesis strategy was employed to in situ construct an iron-rich layered sulfate precursor (Fe0.42Co0.58-SO4/NF) on nickel foam, which underwent deep self-reconstruction in alkaline electrolyte to form nanoflower-like Fe0.42Co0.58OOH/NF. The optimized catalyst maintained its iron-rich composition and hierarchical structure, delivering outstanding OER performance with an overpotential of 220 mV at 10 mA·cm−2, a Tafel slope of 31.9 mV·dec−1, and stability exceeding 12 h at 600 mA·cm−2. Synchrotron analyses revealed dynamic transitions between mono-μ-O and di-μ-O Fe–M (M = Fe, Co) oxygen bridges during reconstruction, which enhanced both structural robustness and active-site density. The Fe-rich environment promoted the formation of Fe3+–O–Fe3+ units that synergized with Co4+ species to activate the lattice oxygen mechanism (LOM), thereby accelerating OER kinetics. This work elucidates the key role of oxygen-bridge geometry in optimizing catalytic activity and durability, providing valuable insights into the rational design of Fe–Co-based non-noble-metal catalysts with high iron content for efficient water oxidation. Full article
(This article belongs to the Special Issue Advanced Nanomaterials for Electrocatalysis)
Show Figures

Graphical abstract

22 pages, 5875 KB  
Article
Experimental Investigation on Factors Influencing the Early-Age Strength of Geopolymer Paste, Mortar, and Concrete
by Shiyu Yang, Jamal A. Abdalla, Rami A. Hawileh, Jianhua Liu, Yaqin Yu and Zhigang Zhang
Materials 2025, 18(24), 5648; https://doi.org/10.3390/ma18245648 - 16 Dec 2025
Viewed by 312
Abstract
This study systematically investigates the key parameters governing the mechanical performance of fly ash-based geopolymer across paste, mortar, and concrete scales. Comprehensive mechanical testing, combined with SEM and MIP analyses, elucidated the relationships between activator composition, pore structure, and strength development. A key [...] Read more.
This study systematically investigates the key parameters governing the mechanical performance of fly ash-based geopolymer across paste, mortar, and concrete scales. Comprehensive mechanical testing, combined with SEM and MIP analyses, elucidated the relationships between activator composition, pore structure, and strength development. A key innovation is the development of a cross-scale quantitative framework linking mortar strength to concrete compressive strength, enabling preliminary predictive capability across material scales. Grey relational analysis identified curing temperature as the most influential factor, followed by SiO2/Na2O and H2O/Na2O ratios. Thermal curing accelerates strength development and temperatures of 70~80 °C markedly enhance reaction rates. Both compressive and flexural/splitting tensile strengths increase and then decrease with NaOH concentration or sodium silicate modulus, with optimal performance at 24~26% NaOH and SiO2/Na2O ratio of 1.2~1.4, while increasing H2O/Na2O reduces strength nearly linearly, constrained by workability. Concrete compressive strength rises with coarse aggregate content up to 60~70% before declining. SEM and MIP confirm that optimal activator formulations produce a dense, homogeneous gel matrix with lower porosity and fewer unreacted particles. Strong square-root correlations between compressive and tensile-related strengths were observed across all material systems. Overall, this work establishes a quantitative foundation for geopolymer mix design and provides actionable guidance for developing high-performance, low-carbon geopolymer concrete. Full article
Show Figures

Graphical abstract

15 pages, 2964 KB  
Article
Vacuum-Treated Brown Mesoporous TiO2 Nanospheres with Tailored Defect Structures for Enhanced Photoresponsive Properties
by Yue Gao, Ting Feng, Xuan Qi, Hao Yan, Jinfeng Du, Yu Zhang and Junfeng Zhang
Molecules 2025, 30(24), 4746; https://doi.org/10.3390/molecules30244746 - 12 Dec 2025
Viewed by 349
Abstract
TiO2 Nanospheres with a large surface area were synthesized via a hydrothermal reaction using titanium glycolate. The samples were subsequently subjected to different vacuum oven treatment times (2, 4, 6, and 8 h), resulting in Ti3+ self-doping. Comprehensive characterization was performed [...] Read more.
TiO2 Nanospheres with a large surface area were synthesized via a hydrothermal reaction using titanium glycolate. The samples were subsequently subjected to different vacuum oven treatment times (2, 4, 6, and 8 h), resulting in Ti3+ self-doping. Comprehensive characterization was performed using transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The synthesized TiO2 Nanospheres exhibited significantly enhanced photocurrent and efficient photocatalytic activity under visible light irradiation, demonstrating their potential for applications in solar-driven water splitting. The results highlight the influence of Ti3+ self-doping on improving the photoactivity and photosensitivity of the material. Full article
Show Figures

Figure 1

15 pages, 1996 KB  
Article
Interplay Between Ionic Liquids, Kolbe Chemistry, and 2D Photocatalyst Supports in Aqueous CO2 Photoreduction over Pd/TiO2 and Pd/g-C3N4
by Yulan Peng, Pierre-Yves Dugas, Kai-Chung Szeto, Catherine C. Santini and Stéphane Daniele
Catalysts 2025, 15(12), 1128; https://doi.org/10.3390/catal15121128 - 2 Dec 2025
Viewed by 441
Abstract
The photocatalytic reduction of CO2 in aqueous media offers a sustainable route for solar-to-fuel conversion, yet remains challenged by CO2’s thermodynamic stability and kinetic inertness, low solubility, and competitive hydrogen evolution. Here, we investigate the interplay between ionic liquids (ILs), [...] Read more.
The photocatalytic reduction of CO2 in aqueous media offers a sustainable route for solar-to-fuel conversion, yet remains challenged by CO2’s thermodynamic stability and kinetic inertness, low solubility, and competitive hydrogen evolution. Here, we investigate the interplay between ionic liquids (ILs), photocatalyst supports, and additive composition in directing product selectivity among CO, CH4, and H2. Using imidazolium acetate as a benchmark, we demonstrate that ILs not only pre-activate CO2 but can also undergo decomposition pathways under illumination, notably Kolbe-type reactions leading to methane formation from acetate rather than from CO2. Comparative studies of Pd-decorated TiO2 and g-C3N4 nanosheets reveal distinct behaviors driven by their interfacial interactions with the imidazolim-based ionic liquid: weak interaction with TiO2 strongly promotes hydrogen evolution, whereas strong coupling with g-C3N4 synergizes with C1C4ImOAc to trigger acetate-derived Kolbe reactivity. The systematic evaluation of alternative salts confirms the determinant role of anion basicity and medium-pH-basic anions facilitate CO2 activation, whereas weakly basic or non-coordinating anions favor water splitting. Overall, these results clarify the dual role of ionic liquids as both CO2 activators and sacrificial agents, and highlight design principles for improving product selectivity and efficiency in aqueous CO2 photoreduction systems. Full article
(This article belongs to the Special Issue Ionic Liquids and Deep Eutectic Solvents in Catalysis)
Show Figures

Graphical abstract

12 pages, 3084 KB  
Article
Solar-Assisted PEM Water Electrolysis with Symmetric IrO2 Electrodes for Hydrogen-Rich Water Production
by Yi-Hao Pai, Chih-Cheng Kao, Zheng-Yu Li and Cheng-Kang Tsai
Appl. Sci. 2025, 15(23), 12411; https://doi.org/10.3390/app152312411 - 23 Nov 2025
Viewed by 599
Abstract
Hydrogen-rich water (HRW) has attracted significant attention for its physiological and therapeutic potential, driving efforts to develop a green and direct production approach. In particular, if solar energy could be utilized to power the process and the power-generation and water-production modules could be [...] Read more.
Hydrogen-rich water (HRW) has attracted significant attention for its physiological and therapeutic potential, driving efforts to develop a green and direct production approach. In particular, if solar energy could be utilized to power the process and the power-generation and water-production modules could be integrated into a single device, it would greatly enhance portability and user convenience, making it an ideal solution for personalized healthcare and outdoor applications. We demonstrate solar-assisted proton exchange membrane (PEM) electrolysis using symmetric IrO2 electrodes at both cathode and anode to directly generate HRW. The symmetric design simplifies manufacturing, mitigates lifetime mismatch and metal-ion cross-contamination. IrO2 films were electrodeposited on stainless steel substrates and annealed at 400–700 °C. When coupled with a 100 cm2 Si solar cell, the electrode annealed at 550 °C—featuring ~6 nm IrO2 nanocrystals embedded in an amorphous matrix—exhibited the highest hydrogen production rate. At an applied voltage of 4 V, this 550 °C-annealed IrO2 electrode produced approximately 1800 μmol h−1 of H2, corresponding to about 44 mL h−1 of H2 at 25 °C and 1 atm. Corrosion tests show the HRW is less aggressive to iron than DI, RO, and tap water, suggesting better compatibility with metallic components. During water splitting, the oxidation–reduction potential (ORP) rapidly decreases to <−300 mV within 0–10 min and then stabilizes, with the 550 °C–annealed electrode exhibiting the lowest ORP. Upon air exposure, the ORP increases by ~200 mV over 45–70 min yet remains reductive for >120 min, indicating persistent dissolved H2 and sustained performance. Overall, the symmetric IrO2 architecture provides a green, stable, and direct route to HRW production. Full article
Show Figures

Figure 1

23 pages, 6036 KB  
Article
The Impact of Composite Alkali Activator on the Mechanical Properties and Enhancement Mechanisms in Aeolian Sand Powder–Aeolian Sand Concrete
by Haijun Liu and Yaohong Wang
Buildings 2025, 15(23), 4213; https://doi.org/10.3390/buildings15234213 - 21 Nov 2025
Viewed by 374
Abstract
Against the backdrop of China’s Western Development Strategy, numerous infrastructure projects are being constructed in desert regions. Utilizing local aeolian sand (AS) as a raw material for concrete production offers significant cost-saving potential but is hindered by challenges such as limited applicability and [...] Read more.
Against the backdrop of China’s Western Development Strategy, numerous infrastructure projects are being constructed in desert regions. Utilizing local aeolian sand (AS) as a raw material for concrete production offers significant cost-saving potential but is hindered by challenges such as limited applicability and inadequate mechanical strength of the resulting concrete. To address these limitations, aeolian sand was ground into aeolian sand powder (ASP) and subjected to treatment with single alkali activators (NaOH, Na2SiO3) and a composite alkali activator (NaOH + Na2SiO3). The treated and untreated ASP was then used to replace 50% of cement by mass for the preparation of aeolian sand powder–aeolian sand concrete (ASPC). Mechanical performance tests and advanced characterization techniques (SEM, TG-DSC, XRD, FTIR, nanoindentation, and NMR) were employed to investigate the effects of different activators on the mechanical properties of ASPC and elucidate the underlying enhancement mechanisms. The results demonstrated that the composite activator outperformed its single-activator counterparts: ASPC-4-6 (incorporating 4% NaOH and 6% Na2SiO3) exhibited 16.3–23.1% higher compressive strength and 12.1–17.6% higher splitting tensile strength across all curing ages compared to plain ASPC. Under the influence of OH from the composite activator, ASP showed more pronounced reductions in potassium feldspar, montmorillonite, and SiO2 content, accompanied by the formation of C-S-H gel—replacing the amorphous, water-absorbent N-A-S-H generated by single activators. The presence of highly polymerized hydration products and more stable potassium A-type zeolites in ASPC-4-6 led to a reduction in macropore volume, optimization of pore structure, and refinement of the aggregate–mortar inter-facial transition zone. These micro-structural improvements collectively contributed to the significant enhancement of mechanical properties. This study provides novel insights into the large-scale and multi-dimensional utilization of aeolian sand in concrete. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

13 pages, 3165 KB  
Article
Calcined Xerogels of C/TiO2 Nanostructures for Solar-Driven Photocatalytic Hydrogen Production
by Yong Li, Hongpeng Zhang, Canni Zhuo, Xixi Sun, Jiaqi Gao and Yali Zhao
Gels 2025, 11(11), 911; https://doi.org/10.3390/gels11110911 - 14 Nov 2025
Viewed by 453
Abstract
The solar-driven water splitting for the production of renewable green hydrogen fundamentally relies on the exploration of efficient photocatalysts. Nanostructured TiO2 is widely recognized as a promising material for photocatalysis, yet it remains hindered by inadequate light harvesting and fast photogenerated carrier [...] Read more.
The solar-driven water splitting for the production of renewable green hydrogen fundamentally relies on the exploration of efficient photocatalysts. Nanostructured TiO2 is widely recognized as a promising material for photocatalysis, yet it remains hindered by inadequate light harvesting and fast photogenerated carrier recombination. Herein, calcined C/TiO2 xerogels with yolk–shell and core–shell nanostructures (denoted as YS-C/TiO2 and CS-C/TiO2) were designed and fabricated via a typical sol–gel–calcination assisted approach. Thanks to the encapsulation of carbon nanospheres into TiO2, it effectively enhances light absorption, improves carrier separation, and lessens carrier recombination, making the well-designed YS-C/TiO2 composite display a remarkable hydrogen evolution rate of 975 µmol g−1 h−1 under simulated solar light irradiation and without the use of any co-catalyst, which is approximately 21.7 times that of the commercial TiO2. The work provides an efficacious design concept in developing nanostructured TiO2-based photocatalysts and in boosting broad photocatalytic applications. Full article
(This article belongs to the Section Gel Chemistry and Physics)
Show Figures

Figure 1

17 pages, 2265 KB  
Article
Self-Supported Polyhedral-like Co3S4 Nanostructures Enabling Efficient High Current Hydrogen Evolution Reaction
by Abu Talha Aqueel Ahmed, Sangeun Cho, Abu Saad Ansari, Yongcheol Jo and Atanu Jana
Materials 2025, 18(21), 5025; https://doi.org/10.3390/ma18215025 - 4 Nov 2025
Viewed by 551
Abstract
The advancement of overall water-splitting technologies relies on the development of earth-abundant electrocatalysts that efficiently produce H2 as a chemical fuel while offering high catalytic efficiency, structural robustness, and low-cost synthesis. Therefore, we aim to develop a cost-effective and durable non-noble electrocatalyst [...] Read more.
The advancement of overall water-splitting technologies relies on the development of earth-abundant electrocatalysts that efficiently produce H2 as a chemical fuel while offering high catalytic efficiency, structural robustness, and low-cost synthesis. Therefore, we aim to develop a cost-effective and durable non-noble electrocatalyst for overall water splitting. A straightforward hydrothermal approach was employed to fabricate freestanding polyhedral Co3O4 on a microporous Ni foam scaffold, followed by anion-exchange transformation in the presence of Na2S solution to yield its conductive sulfide analog. The engineered Co3S4 electrode delivers remarkable HER activity in 1.0 M KOH, requiring a low overpotential (<100 mV) to drive 10 mA cm−2, far outperforming its pristine oxide counterpart and even closely benchmarking with a commercial Pt/C catalyst. This exceptional performance is governed by the synergistic effects of enhanced electrical conductivity, abundant catalytic sites, and accelerated charge-transfer kinetics introduced through sulfur substitution. Furthermore, the optimized Co3S4 electrodes enable a bifunctional overall water-splitting device that achieves a cell voltage of >1.76 V at 100 mA cm−2 and maintains prolonged operational stability for over 100 hrs. of continuous operation. Post-stability analyses confirm insignificant phase preservation during testing, ensuring sustained activity throughout the electrolysis process. This study highlights the potential of anion-exchanged Co3S4 as a cost-effective and durable catalyst for high-performance HER and full-cell water-splitting applications. Full article
Show Figures

Graphical abstract

27 pages, 15115 KB  
Article
Macro-Meso Characteristics and Damage Mechanism of Cement-Stabilized Macadam Under Freeze–Thaw Cycles and Scouring
by Hongfu Liu, Sirui Zhou, Ao Kuang, Dongzhao Jin, Xinghai Peng and Songtao Lv
Materials 2025, 18(21), 4874; https://doi.org/10.3390/ma18214874 - 24 Oct 2025
Viewed by 627
Abstract
This study quantifies the effects of freeze–thaw (FT) cycling and dynamic water scouring, and establishes links between mesoscale pore evolution and macroscale strength degradation in cement-stabilized macadam (CSM) bases. The objective is to provide quantitative indicators for durability design and non-destructive evaluation of [...] Read more.
This study quantifies the effects of freeze–thaw (FT) cycling and dynamic water scouring, and establishes links between mesoscale pore evolution and macroscale strength degradation in cement-stabilized macadam (CSM) bases. The objective is to provide quantitative indicators for durability design and non-destructive evaluation of CSM bases. First, laboratory tests were conducted to simulate alpine service conditions: CSM cylindrical specimens (Ø150 × 150 mm) with 4.5% cement content, cured for 28 days, were exposed to 0, 5, or 20 FT cycles (−18 °C for 16 h ↔ +25 °C for 8 h), followed by dynamic water scouring (0.5 MPa, 10 Hz) for 15, 30, or 60 min. Second, the resulting damage was tracked at two scales. Acoustic emission (AE) sensors monitored internal damage during subsequent splitting tests, while industrial computed tomography (CT) was used to scan selected specimens and quantify porosity, pore number, and average pore diameter. Third, gray relational analysis correlated pore structure parameters with strength loss. The results indicate that under 30 min of scouring, increasing FT cycles from 0 to 20 increased mass loss from 0.33% to 1.27% and reduced splitting strength by 28.8%. AE cumulative ringing count and energy decreased by 97.9% and 98.4%, respectively, indicating severe internal degradation. CT scans revealed porosity and pore count increased monotonically with FT cycles, while average pore diameter decreased (dominated by microcrack formation). Frost-heave pressure and cyclic suction enlarged edge pores and interconnected internal voids, accelerating erosion of cement paste. FT cycles compromise the cement–aggregate interfacial bond, thereby predisposing the matrix to accelerated deterioration under dynamic scouring; the ensuing evolution of pore structure emerges as the pivotal mechanism governing strength degradation. Average pore diameter exhibited the strongest correlation with splitting strength (r = 0.763), and its change was the primary driver of strength loss (r = 0.774). These findings facilitate optimizing cement dosage, validating non-destructive evaluation models for in-service base courses, and erosion durability of road base materials in permafrost regions. Full article
Show Figures

Figure 1

Back to TopTop