Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (28,661)

Search Parameters:
Keywords = H2/H∞ controller

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2036 KiB  
Article
Scalable Chemical Vapor Deposition of Silicon Carbide Thin Films for Photonic Integrated Circuit Applications
by Souryaya Dutta, Alex Kaloyeros, Animesh Nanaware and Spyros Gallis
Appl. Sci. 2025, 15(15), 8603; https://doi.org/10.3390/app15158603 (registering DOI) - 2 Aug 2025
Abstract
Highly integrable silicon carbide (SiC) has emerged as a promising platform for photonic integrated circuits (PICs), offering a comprehensive set of material and optical properties that are ideal for the integration of nonlinear devices and solid-state quantum defects. However, despite significant progress in [...] Read more.
Highly integrable silicon carbide (SiC) has emerged as a promising platform for photonic integrated circuits (PICs), offering a comprehensive set of material and optical properties that are ideal for the integration of nonlinear devices and solid-state quantum defects. However, despite significant progress in nanofabrication technology, the development of SiC on an insulator (SiCOI)-based photonics faces challenges due to fabrication-induced material optical losses and complex processing steps. An alternative approach to mitigate these fabrication challenges is the direct deposition of amorphous SiC on an insulator (a-SiCOI). However, there is a lack of systematic studies aimed at producing high optical quality a-SiC thin films, and correspondingly, on evaluating and determining their optical properties in the telecom range. To this end, we have studied a single-source precursor, 1,3,5-trisilacyclohexane (TSCH, C3H12Si3), and chemical vapor deposition (CVD) processes for the deposition of SiC thin films in a low-temperature range (650–800 °C) on a multitude of different substrates. We have successfully demonstrated the fabrication of smooth, uniform, and stoichiometric a-SiCOI thin films of 20 nm to 600 nm with a highly controlled growth rate of ~0.5 Å/s and minimal surface roughness of ~5 Å. Spectroscopic ellipsometry and resonant micro-photoluminescence excitation spectroscopy and mapping reveal a high index of refraction (~2.7) and a minimal absorption coefficient (<200 cm−1) in the telecom C-band, demonstrating the high optical quality of the films. These findings establish a strong foundation for scalable production of high-quality a-SiCOI thin films, enabling their application in advanced chip-scale telecom PIC technologies. Full article
(This article belongs to the Section Materials Science and Engineering)
Show Figures

Figure 1

12 pages, 757 KiB  
Brief Report
DNA-Programmable Oligonucleotide Insecticide Eriola-11 Targets Mitochondrial 16S rRNA and Exhibits Strong Insecticidal Activity Against Woolly Apple Aphid (Eriosoma lanigerum) Hausmann
by Vol Oberemok, Kate Laikova, Oksana Andreeva, Anastasia Dmitrienko, Tatiana Rybareva, Jamin Ali and Nikita Gal’chinsky
Int. J. Mol. Sci. 2025, 26(15), 7486; https://doi.org/10.3390/ijms26157486 (registering DOI) - 2 Aug 2025
Abstract
The potent and selective ‘genetic zipper’ method for insect pest control consists of three essential components: an antisense DNA (the finder), its complementary mature rRNA or pre-rRNA of the pest (the target), and the host’s endogenous DNA-guided rRNase (the degrader). Although this approach [...] Read more.
The potent and selective ‘genetic zipper’ method for insect pest control consists of three essential components: an antisense DNA (the finder), its complementary mature rRNA or pre-rRNA of the pest (the target), and the host’s endogenous DNA-guided rRNase (the degrader). Although this approach has been validated, the spectrum of effective rRNA targets remains insufficiently explored. In this study, we report for the first time the insecticidal efficacy of a novel oligonucleotide insecticide, Eriola-11, which targets the mitochondrial 16S rRNA of the woolly apple aphid Eriosoma lanigerum Hausmann. We hypothesized that the antisense-mediated silencing of mitochondrial rRNA would impair aphid viability and lead to physiological disruptions associated with mitochondrial energy metabolism. Eriola-11 was applied either once or twice (with a 24 h interval) to aphid-infested plants, and aphid mortality was recorded over 14 days. Mitochondrial 16S rRNA expression levels were quantified using molecular assays, and the degradation kinetics of Eriola-11 were assessed in aphid tissue homogenates. Results showed significant insecticidal activity, with 67.55% mortality after a single treatment and 83.35% after two treatments. Treated aphids exhibited the loss of their characteristic white woolly wax covering, and mitochondrial 16S rRNA expression was reduced 0.66-fold relative to the control. Additionally, Eriola-11 was fully degraded by aphid DNases from tissue homogenates within 3 h, highlighting its rapid biodegradability. These findings establish mitochondrial 16S rRNA as a viable target for antisense insecticides and expand the catalogue of potential rRNA-based targets, offering a promising avenue for environmentally sustainable pest control strategies. Full article
(This article belongs to the Special Issue Antisense Oligonucleotides: Versatile Tools with Broad Applications)
Show Figures

Figure 1

24 pages, 8010 KiB  
Article
Mono-(Ni, Au) and Bimetallic (Ni-Au) Nanoparticles-Loaded ZnAlO Mixed Oxides as Sunlight-Driven Photocatalysts for Environmental Remediation
by Monica Pavel, Liubovi Cretu, Catalin Negrila, Daniela C. Culita, Anca Vasile, Razvan State, Ioan Balint and Florica Papa
Molecules 2025, 30(15), 3249; https://doi.org/10.3390/molecules30153249 (registering DOI) - 2 Aug 2025
Abstract
A facile and versatile strategy to obtain NPs@ZnAlO nanocomposite materials, comprising controlled-size nanoparticles (NPs) within a ZnAlO matrix is reported. The mono-(Au, Ni) and bimetallic (Ni-Au) NPs serving as an active phase were prepared by the polyol-alkaline method, while the ZnAlO support was [...] Read more.
A facile and versatile strategy to obtain NPs@ZnAlO nanocomposite materials, comprising controlled-size nanoparticles (NPs) within a ZnAlO matrix is reported. The mono-(Au, Ni) and bimetallic (Ni-Au) NPs serving as an active phase were prepared by the polyol-alkaline method, while the ZnAlO support was obtained via the thermal decomposition of its corresponding layered double hydroxide (LDH) precursors. X-ray diffraction (XRD) patterns confirmed the successful fabrication of the nanocomposites, including the synthesis of the metallic NPs, the formation of LDH-like structure, and the subsequent transformation to ZnO phase upon LDH calcination. The obtained nanostructures confirmed the nanoplate-like morphology inherited from the original LDH precursors, which tended to aggregate after the addition of gold NPs. According to the UV-Vis spectroscopy, loading NPs onto the ZnAlO support enhanced the light absorption and reduced the band gap energy. ATR-DRIFT spectroscopy, H2-TPR measurements, and XPS analysis provided information about the functional groups, surface composition, and reducibility of the materials. The catalytic performance of the developed nanostructures was evaluated by the photodegradation of bisphenol A (BPA), under simulated solar irradiation. The conversion of BPA over the bimetallic Ni-Au@ZnAlO reached up to 95% after 180 min of irradiation, exceeding the monometallic Ni@ZnAlO and Au@ZnAlO catalysts. Its enhanced activity was correlated with good dispersion of the bimetals, narrower band gap, and efficient charge carrier separation of the photo-induced e/h+ pairs. Full article
Show Figures

Figure 1

15 pages, 3579 KiB  
Article
Dual-Control-Gate Reconfigurable Ion-Sensitive Field-Effect Transistor with Nickel-Silicide Contacts for Adaptive and High-Sensitivity Chemical Sensing Beyond the Nernst Limit
by Seung-Jin Lee, Seung-Hyun Lee, Seung-Hwa Choi and Won-Ju Cho
Chemosensors 2025, 13(8), 281; https://doi.org/10.3390/chemosensors13080281 (registering DOI) - 2 Aug 2025
Abstract
In this study, we propose a bidirectional chemical sensor platform based on a reconfigurable ion-sensitive field-effect transistor (R-ISFET) architecture. The device incorporates Ni-silicide Schottky barrier source/drain (S/D) contacts, enabling ambipolar conduction and bidirectional turn-on behavior for both p-type and n-type configurations. Channel polarity [...] Read more.
In this study, we propose a bidirectional chemical sensor platform based on a reconfigurable ion-sensitive field-effect transistor (R-ISFET) architecture. The device incorporates Ni-silicide Schottky barrier source/drain (S/D) contacts, enabling ambipolar conduction and bidirectional turn-on behavior for both p-type and n-type configurations. Channel polarity is dynamically controlled via the program gate (PG), while the control gate (CG) suppresses leakage current, enhancing operational stability and energy efficiency. A dual-control-gate (DCG) structure enhances capacitive coupling, enabling sensitivity beyond the Nernst limit without external amplification. The extended-gate (EG) architecture physically separates the transistor and sensing regions, improving durability and long-term reliability. Electrical characteristics were evaluated through transfer and output curves, and carrier transport mechanisms were analyzed using band diagrams. Sensor performance—including sensitivity, hysteresis, and drift—was assessed under various pH conditions and external noise up to 5 Vpp (i.e., peak-to-peak voltage). The n-type configuration exhibited high mobility and fast response, while the p-type configuration demonstrated excellent noise immunity and low drift. Both modes showed consistent sensitivity trends, confirming the feasibility of complementary sensing. These results indicate that the proposed R-ISFET sensor enables selective mode switching for high sensitivity and robust operation, offering strong potential for next-generation biosensing and chemical detection. Full article
(This article belongs to the Section Electrochemical Devices and Sensors)
Show Figures

Figure 1

27 pages, 1561 KiB  
Article
The Effect of a Pectin Coating with Gamma-Decalactone on Selected Quality Attributes of Strawberries During Refrigerated Storage
by Gabriela Kozakiewicz, Jolanta Małajowicz, Karolina Szulc, Magdalena Karwacka, Agnieszka Ciurzyńska, Anna Żelazko, Monika Janowicz and Sabina Galus
Coatings 2025, 15(8), 903; https://doi.org/10.3390/coatings15080903 (registering DOI) - 2 Aug 2025
Abstract
This study investigated the effect of an apple pectin coating enriched with gamma-decalactone (GDL) on the physicochemical and microbiological quality of strawberries over 9 days of refrigerated storage. Strawberries were coated with pectin solutions containing a plasticizer and emulsifier, with or without GDL, [...] Read more.
This study investigated the effect of an apple pectin coating enriched with gamma-decalactone (GDL) on the physicochemical and microbiological quality of strawberries over 9 days of refrigerated storage. Strawberries were coated with pectin solutions containing a plasticizer and emulsifier, with or without GDL, and compared to uncoated controls. The coatings were evaluated for their effects on fruit mass loss, pH, extract content (°Brix), firmness, color parameters (L*, a*, b*, C*, h*, ΔE), and microbial spoilage. The pectin coating limited changes in extract, pH, and color and slowed firmness loss. Notably, GDL-enriched coatings significantly reduced spoilage (14.29% after 9 days vs. 57.14% in the control) despite accelerating pulp softening. Extract content increased the most in the GDL group (from 9.92 to 12.00 °Brix), while mass loss reached up to 22.8%. Principal Component Analysis (PCA) confirmed coating type as a major factor differentiating sample quality over time. These findings demonstrate the potential of bioactive pectin-based coatings to enhance fruit preservation and support the development of active packaging strategies. Further studies should optimize coating composition and control the release kinetics of functional compounds. Full article
(This article belongs to the Special Issue Preparation and Applications of Bio-Based Polymer Coatings)
Show Figures

Figure 1

16 pages, 1690 KiB  
Article
Effect of Photobiomodulation on Post-Endodontic Pain Following Single-Visit Treatment: A Randomized Double-Blind Clinical Trial
by Glaucia Gonçales Abud Machado, Giovanna Fontgalland Ferreira, Erika da Silva Mello, Ellen Sayuri Ando-Suguimoto, Vinicius Leão Roncolato, Marcia Regina Cabral Oliveira, Janainy Altrão Tognini, Adriana Fernandes Paisano, Cleber Pinto Camacho, Sandra Kalil Bussadori, Lara Jansiski Motta, Cinthya Cosme Gutierrez Duran, Raquel Agnelli Mesquita-Ferrari, Kristianne Porta Santos Fernandes and Anna Carolina Ratto Tempestini Horliana
J. Pers. Med. 2025, 15(8), 347; https://doi.org/10.3390/jpm15080347 (registering DOI) - 2 Aug 2025
Abstract
The evidence for photobiomodulation in reducing postoperative pain after endodontic instrumentation is classified as low or very low certainty, indicating a need for further research. Longitudinal pain assessments over 24 h are crucial, and studies should explore these pain periods. Background/Objectives: This [...] Read more.
The evidence for photobiomodulation in reducing postoperative pain after endodontic instrumentation is classified as low or very low certainty, indicating a need for further research. Longitudinal pain assessments over 24 h are crucial, and studies should explore these pain periods. Background/Objectives: This double-blind, randomized controlled clinical trial evaluated the effect of PBM on pain following single-visit endodontic treatment of maxillary molars at 4, 8, 12, and 24 h. Primary outcomes included pain at 24 h; secondary outcomes included pain at 4, 8, and 12 h, pain during palpation/percussion, OHIP-14 analysis, and frequencies of pain. Methods: Approved by the Research Ethics Committee (5.598.290) and registered in Clinical Trials (NCT06253767), the study recruited adults (21–70 years) requiring endodontic treatment in maxillary molars. Fifty-eight molars were randomly assigned to two groups: the PBM Group (n = 29), receiving conventional endodontic treatment with PBM (100 mW, 333 mW/cm2, 9 J distributed at 3 points near root apices), and the control group (n = 29), receiving conventional treatment with PBM simulation. Pain was assessed using the Visual Analog Scale. Results: Statistical analyses used chi-square and Mann–Whitney tests, with explained variance (η2). Ten participants were excluded, leaving 48 patients for analysis. No significant differences were observed in postoperative pain at 24, 4, 8, or 12 h, or in palpation/percussion or OHIP-14 scores. Pain frequencies ranged from 12.5% to 25%. Conclusions: PBM does not influence post-treatment pain in maxillary molars under these conditions. These results emphasize the importance of relying on well-designed clinical trials to guide treatment decisions, and future research should focus on personalized dosimetry adapted to the anatomical characteristics of the treated dental region to enhance the accuracy and efficacy of therapeutic protocols. Full article
(This article belongs to the Special Issue Towards Precision Anesthesia and Pain Management)
Show Figures

Figure 1

13 pages, 906 KiB  
Article
Integrated Flushing and Corrosion Control Measures to Reduce Lead Exposure in Households with Lead Service Lines
by Fatemeh Hatam, Mirjam Blokker and Michele Prevost
Water 2025, 17(15), 2297; https://doi.org/10.3390/w17152297 (registering DOI) - 2 Aug 2025
Abstract
The quality of water in households can be affected by plumbing design and materials, water usage patterns, and source water quality characteristics. These factors influence stagnation duration, disinfection residuals, metal release, and microbial activity. In particular, stagnation can degrade water quality and increase [...] Read more.
The quality of water in households can be affected by plumbing design and materials, water usage patterns, and source water quality characteristics. These factors influence stagnation duration, disinfection residuals, metal release, and microbial activity. In particular, stagnation can degrade water quality and increase lead release from lead service lines. This study employs numerical modeling to assess how combined corrosion control and flushing strategies affect lead levels in household taps with lead service lines under reduced water use. To estimate potential health risks, the U.S. EPA model is used to predict the percentage of children likely to exceed safe blood lead levels. Lead exceedances are assessed based on various regulatory requirements. Results show that exceedances at the kitchen tap range from 3 to 74% of usage time for the 5 µg/L standard, and from 0 to 49% for the 10 µg/L threshold, across different scenarios. Implementing corrosion control treatment in combination with periodic flushing proves effective in lowering lead levels under the studied low-consumption scenarios. Under these conditions, the combined strategy limits lead exceedances above 5 µg/L to only 3% of usage time, with none above 10 µg/L. This demonstrates its value as a practical short-term strategy for households awaiting full pipe replacement. Targeted flushing before peak water use reduces the median time that water remains stagnant in household pipes from 8 to 3 h at the kitchen tap under low-demand conditions. Finally, the risk model indicates that the combined approach can reduce the predicted percentage of children with blood lead levels exceeding 5 μg/dL from 61 to 6% under low water demand. Full article
Show Figures

Figure 1

34 pages, 7571 KiB  
Article
Passive Design for Residential Buildings in Arid Desert Climates: Insights from the Solar Decathlon Middle East
by Esra Trepci and Edwin Rodriguez-Ubinas
Buildings 2025, 15(15), 2731; https://doi.org/10.3390/buildings15152731 (registering DOI) - 2 Aug 2025
Abstract
This study investigates the effectiveness of passive design in low-rise residential buildings located in arid desert climates, using the Dubai Solar Decathlon Middle East (SDME) competition as a case study. This full-scale experiment offers a unique opportunity to evaluate design solutions under controlled, [...] Read more.
This study investigates the effectiveness of passive design in low-rise residential buildings located in arid desert climates, using the Dubai Solar Decathlon Middle East (SDME) competition as a case study. This full-scale experiment offers a unique opportunity to evaluate design solutions under controlled, realistic conditions; prescriptive, modeled performance; and monitored performance assessments. The prescriptive assessment reviews geometry, orientation, envelope thermal properties, and shading. Most houses adopt compact forms, with envelope-to-volume and envelope-to-floor area ratios averaging 1 and 3.7, respectively, and window-to-wall ratios of approximately 17%, favoring north-facing openings to optimize daylight while reducing heat gain. Shading is strategically applied, horizontal on south façades and vertical on east and west. The thermal properties significantly exceed the local code requirements, with wall performance up to 80% better than that mandated. The modeled assessment uses Building Energy Models (BEMs) to simulate the impact of prescriptive measures on energy performance. Three variations are applied: assigning minimum local code requirements to all the houses to isolate the geometry (baseline); removing shading; and applying actual envelope properties. Geometry alone accounts for up to 60% of the variation in cooling intensity; shading reduces loads by 6.5%, and enhanced envelopes lower demand by 14%. The monitored assessment uses contest-period data. Indoor temperatures remain stable (22–25 °C) despite outdoor fluctuations. Energy use confirms that houses with good designs and airtightness have lower cooling loads. Airtightness varies widely (avg. 14.5 m3/h/m2), with some well-designed houses underperforming due to construction flaws. These findings highlight the critical role of passive design as the first layer for improving the energy performance of the built environment and advancing toward net-zero targets, specifically in arid desert climates. Full article
(This article belongs to the Special Issue Climate-Responsive Architectural and Urban Design)
Show Figures

Figure 1

20 pages, 11379 KiB  
Article
Silk Fibroin–Alginate Aerogel Beads Produced by Supercritical CO2 Drying: A Dual-Function Conformable and Haemostatic Dressing
by Maria Rosaria Sellitto, Domenico Larobina, Chiara De Soricellis, Chiara Amante, Giovanni Falcone, Paola Russo, Beatriz G. Bernardes, Ana Leite Oliveira and Pasquale Del Gaudio
Gels 2025, 11(8), 603; https://doi.org/10.3390/gels11080603 (registering DOI) - 2 Aug 2025
Abstract
Infection control and bleeding management in deep wounds remain urgent and unmet clinical challenges that demand innovative, multifunctional, and sustainable solutions. Unlike previously reported sodium alginate and silk fibroin-based gel formulations, the present work introduces a dual-functional system combining antimicrobial and haemostatic activity [...] Read more.
Infection control and bleeding management in deep wounds remain urgent and unmet clinical challenges that demand innovative, multifunctional, and sustainable solutions. Unlike previously reported sodium alginate and silk fibroin-based gel formulations, the present work introduces a dual-functional system combining antimicrobial and haemostatic activity in the form of conformable aerogel beads. This dual-functional formulation is designed to absorb exudate, promote clotting, and provide localized antimicrobial action, all essential for accelerating wound repair in high-risk scenarios within a single biocompatible system. Aerogel beads were obtained by supercritical drying of a silk fibroin–sodium alginate blend, resulting in highly porous, spherical structures measuring 3–4 mm in diameter. The formulations demonstrated efficient ciprofloxacin encapsulation (42.75–49.05%) and sustained drug release for up to 12 h. Fluid absorption reached up to four times their weight in simulated wound fluid and was accompanied by significantly enhanced blood clotting, outperforming a commercial haemostatic dressing. These findings highlight the potential of silk-based aerogel beads as a multifunctional wound healing platform that combines localized antimicrobial delivery, efficient fluid and exudate management, biodegradability, and superior haemostatic performance in a single formulation. This work also shows for the first time how the prilling encapsulation technique with supercritical drying is able to successfully produce silk fibroin and sodium alginate composite aerogel beads. Full article
(This article belongs to the Special Issue Aerogels and Composites Aerogels)
Show Figures

Figure 1

18 pages, 6860 KiB  
Article
Molecular Characterization and Antiviral Function Against GCRV of Complement Factor D in Barbel Chub (Squaliobarbus curriculus)
by Yu Xiao, Zhao Lv, Yuling Wei, Mengyuan Zhang, Hong Yang, Chao Huang, Tiaoyi Xiao and Yilin Li
Fishes 2025, 10(8), 370; https://doi.org/10.3390/fishes10080370 (registering DOI) - 2 Aug 2025
Abstract
The barbel chub (Squaliobarbus curriculus) exhibits remarkable resistance to grass carp reovirus (GCRV), a devastating pathogen in aquaculture. To reveal the molecular basis of this resistance, we investigated complement factor D (DF)—a rate-limiting serine protease governing alternative complement pathway activation. Molecular [...] Read more.
The barbel chub (Squaliobarbus curriculus) exhibits remarkable resistance to grass carp reovirus (GCRV), a devastating pathogen in aquaculture. To reveal the molecular basis of this resistance, we investigated complement factor D (DF)—a rate-limiting serine protease governing alternative complement pathway activation. Molecular cloning revealed that the barbel chub DF (ScDF) gene encodes a 1251-bp cDNA sequence translating into a 250-amino acid protein. Crucially, bioinformatic characterization identified a unique N-glycosylation site at Asn139 in ScDF, representing a structural divergence absent in grass carp (Ctenopharyngodon idella) DF (CiDF). While retaining a conserved Tryp_SPc domain harboring the catalytic triad (His61, Asp109, and Ser204) and substrate-binding residues (Asp198, Ser219, and Gly221), sequence and phylogenetic analyses confirmed ScDF’s evolutionary conservation, displaying 94.4% amino acid identity with CiDF and clustering within the Cyprinidae. Expression profiling revealed constitutive ScDF dominance in the liver, and secondary prominence was observed in the heart. Upon GCRV challenge in S. curriculus kidney (SCK) cells, ScDF transcription surged to a 438-fold increase versus uninfected controls at 6 h post-infection (hpi; p < 0.001)—significantly preceding the 168-hpi response peak documented for CiDF in grass carp. Functional validation showed that ScDF overexpression suppressed key viral capsid genes (VP2, VP5, and VP7) and upregulated the interferon regulator IRF9. Moreover, recombinant ScDF protein incubation induced interferon pathway genes and complement C3 expression. Collectively, ScDF’s rapid early induction (peaking at 6 hpi) and multi-pathway coordination may contribute to barbel chub’s GCRV resistance. These findings may provide molecular insights into the barbel chub’s high GCRV resistance compared to grass carp and novel perspectives for anti-GCRV breeding strategies in fish. Full article
(This article belongs to the Special Issue Molecular Design Breeding in Aquaculture)
Show Figures

Figure 1

17 pages, 1488 KiB  
Article
Experimental Investigation of Impact Mechanisms of Seeding Quality for Ridge-Clearing No-Till Seeder Under Strip Tillage
by Yuanyuan Gao, Yongyue Hu, Shuo Yang, Xueguan Zhao, Shengwei Lu, Hanjie Dou, Qingzhen Zhu, Peiying Li and Yongyun Zhu
Agronomy 2025, 15(8), 1875; https://doi.org/10.3390/agronomy15081875 (registering DOI) - 1 Aug 2025
Abstract
Under conservation tillage in the Huang-Huai-Hai wheat–maize rotation area, the ridge-clearing no-till seeder for strip tillage mitigates the adverse impacts of surface residues on seeding quality by clearing stubble specifically within the seed rows, demonstrating significant potential for application and promotion. However, the [...] Read more.
Under conservation tillage in the Huang-Huai-Hai wheat–maize rotation area, the ridge-clearing no-till seeder for strip tillage mitigates the adverse impacts of surface residues on seeding quality by clearing stubble specifically within the seed rows, demonstrating significant potential for application and promotion. However, the inadequate understanding of the seeder’s operational performance and governing mechanisms under varying field conditions hinders its high-quality and efficient implementation. To address this issue, this study selected the stubble height, forward speed, and stubble knife rotational speed (PTO speed) as experimental factors. Employing a three-factor quasi-level orthogonal experimental design, coupled with response surface regression analysis, this research systematically elucidated the interaction mechanisms among these factors concerning the seeding depth consistency and seed spacing uniformity of the seeder. An optimized parameter-matching model was subsequently derived through equation system solving. Field trials demonstrated that a lower forward speed improved the seed spacing uniformity and seeding depth consistency, whereas high speeds increased the missing rates and spacing deviations. An appropriate stubble height enhanced the seed spacing accuracy, but an excessive height compromised depth precision. Higher PTO speeds reduced multiple indices but impaired depth accuracy. Response surface analysis based on the regression models demonstrated that the peak value of the seed spacing qualification index occurred within the forward speed range of 8–9 km/h and the stubble height range of 280–330 mm, with the stubble height being the dominant factor. Similarly, the peak value of the seeding depth qualification index occurred within the stubble height range of 300–350 mm and the forward speed range of 7.5–9 km/h, with the forward speed as the primary factor. Validation confirmed that combining stubble heights of 300−330 mm, forward speeds of 8−9 km/h, and PTO speeds of 540 r/min optimized both metrics. This research reveals nonlinear coupling relationships between operational parameters and seeding quality metrics, establishes a stubble–speed dynamic matching model, and provides a theoretical foundation for the intelligent control of seeders in conservation tillage systems. Full article
(This article belongs to the Collection AI, Sensors and Robotics for Smart Agriculture)
23 pages, 3817 KiB  
Article
Experimental and Numerical Study on the Restitution Coefficient and the Corresponding Elastic Collision Recovery Mechanism of Rapeseed
by Chuandong Liu, Haoping Zhang, Zebao Li, Zhiheng Zeng, Xuefeng Zhang, Lian Gong and Bin Li
Agronomy 2025, 15(8), 1872; https://doi.org/10.3390/agronomy15081872 (registering DOI) - 1 Aug 2025
Abstract
In this study, we aimed to address the lack of systematic research on key collision dynamics parameters (elastic restitution coefficient) in the full mechanization of rapeseed operations, which hinders the development of precision agriculture. In this present work, the restitution coefficient of rapeseed [...] Read more.
In this study, we aimed to address the lack of systematic research on key collision dynamics parameters (elastic restitution coefficient) in the full mechanization of rapeseed operations, which hinders the development of precision agriculture. In this present work, the restitution coefficient of rapeseed was systematically investigated, and a predictive model (R2 = 0.959) was also established by using Box–Behnken design response surface methodology (BBD-RSM). The results show that the collision restitution coefficient varies in the range of 0.539–0.649, with the key influencing factors ranked as follows: moisture content (Mc) > material layer thickness (L) > drop height (H). The EDEM simulation methodology was adopted to validate the experimental results, and the results show that there is a minimal relative error (−1% < δ < 1%) between the measured and simulated rebound heights, indicating that the established model shows a reliable prediction performance. Moreover, by comprehensively analyzing stress, strain, and energy during the collision process between rapeseed and Q235 steel, it can be concluded that the process can be divided into five stages—free fall, collision compression, collision recovery, rebound oscillation, and rebound stabilization. The maximum stress (1.19 × 10−2 MPa) and strain (6.43 × 10−6 mm) were observed at the beginning of the collision recovery stage, which can provide some theoretical and practical basis for optimizing and designing rapeseed machines, thus achieving the goals of precise control, harvest loss reduction, and increased yields. Full article
(This article belongs to the Section Precision and Digital Agriculture)
19 pages, 1636 KiB  
Article
Persistence of Phytoplasma and Control Efficacy of Oxytetracycline Tree Injection for Elaeocarpus sylvestris (Lour.) Poir. var. ellipticus (Thunb.) H.Hara Decline Disease
by Geon-Woo Lee, Kyung-Don Kang, Yeong-Don Lee, Sun-Keun Lee and Sang-Sub Han
Forests 2025, 16(8), 1260; https://doi.org/10.3390/f16081260 (registering DOI) - 1 Aug 2025
Abstract
Elaeocarpus sylvestris (Lour.) Poir. var. ellipticus (Thunb.) H.Hara, an evergreen tree species native to Jeju Island, South Korea, has experienced a progressive decline associated with phytoplasma infection. This study aimed to evaluate the efficacy of oxytetracycline-based tree injection for suppressing phytoplasma and improving [...] Read more.
Elaeocarpus sylvestris (Lour.) Poir. var. ellipticus (Thunb.) H.Hara, an evergreen tree species native to Jeju Island, South Korea, has experienced a progressive decline associated with phytoplasma infection. This study aimed to evaluate the efficacy of oxytetracycline-based tree injection for suppressing phytoplasma and improving tree vitality. Two formulations—oxytetracycline hydrochloride (4.3%) and oxytetracycline calcium alkyltrimethyl ammonium (17%)—were administered to 40 infected individuals across two sites using a gravity-fed injection system. Treatment efficacy was evaluated based on chlorophyll content as an indicator of physiological recovery, while phytoplasma presence was assessed by PCR at 150 days after injection. The oxytetracycline hydrochloride group showed the highest suppression, with a 70% phytoplasma non-detection rate as determined by PCR analysis. Treated trees exhibited significantly higher chlorophyll content compared to untreated infected controls. These findings suggest that minimally invasive tree injection using oxytetracycline can provide temporary suppression of phytoplasma and support physiological recovery in E. sylvestris. Full article
(This article belongs to the Special Issue Forest Pathogen Detection, Diagnosis and Control)
16 pages, 1141 KiB  
Article
Coordinated Roles of Osmotic Adjustment, Antioxidant Defense, and Ion Homeostasis in the Salt Tolerance of Mulberry (Morus alba L. ‘Tailai Sang’) Seedlings
by Nan Xu, Tiane Wang, Yuan Wang, Juexian Dong and Yu Shaopeng
Forests 2025, 16(8), 1258; https://doi.org/10.3390/f16081258 (registering DOI) - 1 Aug 2025
Abstract
Soil salinization severely limits plant growth and productivity. Mulberry (Morus alba L.), an economically and ecologically important tree, is widely cultivated, yet its salt-tolerance mechanisms at the seedling stage remain insufficiently understood. This study investigated the physiological and biochemical responses of two-year-old [...] Read more.
Soil salinization severely limits plant growth and productivity. Mulberry (Morus alba L.), an economically and ecologically important tree, is widely cultivated, yet its salt-tolerance mechanisms at the seedling stage remain insufficiently understood. This study investigated the physiological and biochemical responses of two-year-old mulberry (‘Tailai Sang’) seedlings subjected to six NaCl treatments (0, 50, 100, 150, 200, and 300 mmol L−1) for 28 days. Results showed that growth parameters and photosynthetic gas exchange exhibited dose-dependent declines. The reduction in net photosynthetic rate (Pn) was attributed to both stomatal limitations (decreased stomatal conductance) and non-stomatal limitations, as evidenced by a significant decrease in the maximum quantum efficiency of photosystem II (Fv/Fm) under high salinity. To cope with osmotic stress, seedlings accumulated compatible solutes, including soluble sugars, proteins, and proline. Critically, mulberry seedlings demonstrated effective ion homeostasis by sequestering Na+ in the roots to maintain a high K+/Na+ ratio in leaves, a mechanism that was compromised above 150 mmol L−1. Concurrently, indicators of oxidative stress—malondialdehyde (MDA) and H2O2—rose significantly with salinity, inducing the activities of antioxidant enzymes (SOD, CAT, APX, and GR), which peaked at 150 mmol L−1 before declining under extreme stress. A biomass-based LC50 of 179 mmol L−1 NaCl was determined. These findings elucidate that mulberry salt tolerance is a coordinated process involving three key mechanisms: osmotic adjustment, selective ion distribution, and a robust antioxidant defense system. This study establishes an indicative tolerance threshold under controlled conditions and provides a physiological basis for further field-based evaluations of ‘Tailai Sang’ mulberry for cultivation on saline soils. Full article
Show Figures

Figure 1

14 pages, 3725 KiB  
Article
Gut Hormones and Postprandial Metabolic Effects of Isomaltulose vs. Saccharose Consumption in People with Metabolic Syndrome
by Jiudan Zhang, Dominik Sonnenburg, Stefan Kabisch, Stephan Theis, Margrit Kemper, Olga Pivovarova-Ramich, Domenico Tricò, Sascha Rohn and Andreas F. H. Pfeiffer
Nutrients 2025, 17(15), 2539; https://doi.org/10.3390/nu17152539 (registering DOI) - 1 Aug 2025
Abstract
Background: Low-glycemic index (GI) carbohydrates like isomaltulose (ISO) are known to enhance incretin release and to improve postprandial glucose control at the following meal (an effect known as second meal effect, or SME), which is particularly beneficial for individuals with metabolic syndrome (MetS). [...] Read more.
Background: Low-glycemic index (GI) carbohydrates like isomaltulose (ISO) are known to enhance incretin release and to improve postprandial glucose control at the following meal (an effect known as second meal effect, or SME), which is particularly beneficial for individuals with metabolic syndrome (MetS). This study aimed to assess the most effective preprandial interval of ISO- or saccharose (SUC) snacks (1 h vs. 3 h preload) to enhance prandial incretin responses to a subsequent meal. Methods: In a randomized crossover design, 15 participants with MetS completed four experimental conditions on four non-consecutive days, combining two preload types (ISO or SUC) and two preload timings (Intervention A: 3 h preload; Intervention B: 1 h preload). Specifically, the four conditions were (1) ISO + Intervention A, (2) SUC + Intervention A, (3) ISO + Intervention B, and (4) SUC + Intervention B. The order of conditions was randomized and separated by a 3–7-day washout period to minimize carryover effects. On each study day, participants consumed two mixed meal tests (MMT-1 and MMT-2) with a standardized preload (50 g ISO or SUC) administered either 3 h or 1 h prior to MMT-2. Blood samples were collected over 9 h at 15 predefined time points for analysis of glucose, insulin, C-peptide, and incretin hormones (GLP-1, GIP, and PYY). Results: The unique digestion profile of ISO resulted in a blunted glucose ascent rate (ΔG/Δt: 0.28 vs. 0.53 mmol/L/min for SUC, p < 0.01), paralleled by synonyms PYY elevation over 540 min monitoring, compared with SUC. ISO also led to higher and more sustained GLP-1 and PYY levels, while SUC induced a stronger GIP response. Notably, the timing of ISO consumption significantly influenced PYY secretion, with the 3 h preload showing enhanced PYY responses and a more favorable SME compared to the 1 h preload. Conclusions: ISO, particularly when consumed 3 h before a meal (vs. 1 h), offers significant advantages over SUC by elevating PYY levels, blunting the glucose ascent rate, and sustaining GLP-1 release. This synergy enhances the second meal effect, suggesting ISO’s potential for managing postprandial glycemic excursions in MetS. Full article
(This article belongs to the Section Nutrition and Metabolism)
Back to TopTop