Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (956)

Search Parameters:
Keywords = Great Lakes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 26161 KiB  
Article
Adaptive Intermodal Transportation for Freight Resilience: An Integrated and Flexible Strategy for Managing Disruptions
by Siyavash Filom, Satrya Dewantara, Mahnam Saeednia and Saiedeh Razavi
Logistics 2025, 9(3), 107; https://doi.org/10.3390/logistics9030107 - 6 Aug 2025
Abstract
Background: Disruptions in freight transportation—such as service delays, infrastructure failures, and labor strikes—pose significant challenges to the reliability and efficiency of intermodal networks. To address these challenges, this study introduces Adaptive Intermodal Transportation (AIT), a resilient and flexible planning framework that enhances [...] Read more.
Background: Disruptions in freight transportation—such as service delays, infrastructure failures, and labor strikes—pose significant challenges to the reliability and efficiency of intermodal networks. To address these challenges, this study introduces Adaptive Intermodal Transportation (AIT), a resilient and flexible planning framework that enhances Synchromodal Freight Transport (SFT) by integrating real-time disruption management. Methods: Building on recent advances, we propose two novel strategies: (1) Reassign with Delay Buffer, which enables dynamic rerouting of shipments within a user-defined delay tolerance, and (2) (De)Consolidation, which allows splitting or merging of shipments across services depending on available capacity. These strategies are incorporated into a re-planning module that complements a baseline optimization model and a continuous disruption-monitoring system. Numerical experiments conducted on a Great Lakes-based case study evaluate the performance of the proposed strategies against a benchmark approach. Results: Results show that under moderate and high-disruption conditions, the proposed strategies reduce delay and disruption-incurred costs while increasing the percentage of matched shipments. The Reassign with Delay Buffer strategy offers controlled flexibility, while (De)Consolidation improves resource utilization in constrained environments. Conclusions: Overall, the AIT framework demonstrates strong potential for improving operational resilience in intermodal freight systems by enabling adaptive, disruption-aware planning decisions. Full article
Show Figures

Figure 1

19 pages, 4452 KiB  
Article
Artificial Surface Water Construction Aggregated Water Loss Through Evaporation in the North China Plain
by Ziang Wang, Yan Zhou, Wenge Zhang, Shimin Tian, Yaoping Cui, Haifeng Tian, Xiaoyan Liu and Bing Han
Remote Sens. 2025, 17(15), 2698; https://doi.org/10.3390/rs17152698 - 4 Aug 2025
Abstract
As a typical grain base with a dense population and high-level urbanization, the North China Plain (NCP) faces a serious threat to its sustainable development due to water shortage. Surface water area (SWA) is a key indicator for continuously measuring the trends of [...] Read more.
As a typical grain base with a dense population and high-level urbanization, the North China Plain (NCP) faces a serious threat to its sustainable development due to water shortage. Surface water area (SWA) is a key indicator for continuously measuring the trends of regional water resources and assessing their current status. Therefore, a deep understanding of its changing patterns and driving forces is essential for achieving the sustainable management of water resources. In this study, we examined the interannual variability and trends of SWA in the NCP from 1990 to 2023 using annual 30 m water body maps generated from all available Landsat imagery, a robust water mapping algorithm, and the cloud computing platform Google Earth Engine (GEE). The results showed that the SWA in the NCP has significantly increased over the past three decades. The continuous emergence of artificial reservoirs and urban lakes, along with the booming aquaculture industry, are the main factors driving the growth of SWA. Consequently, the expansion of artificial water bodies resulted in a significant increase in water evaporation (0.16 km3/yr). Moreover, the proportion of water evaporation to regional evapotranspiration (ET) gradually increased (0–0.7%/yr), indicating that the contribution of water evaporation from artificial water bodies to ET is becoming increasingly prominent. Therefore, it can be concluded that the ever-expanding artificial water bodies have become a new hidden danger affecting the water security of the NCP through evaporative loss and deserve close attention. This study not only provides us with a new perspective for deeply understanding the current status of water resources security in the NCP but also provides a typical case with great reference value for the analysis of water resources changes in other similar regions. Full article
Show Figures

Figure 1

12 pages, 2703 KiB  
Article
Holocene Climate Shifts Driving Black Soil Formation in NE China: Palynology and AMS14C Dating Insights
by Hongwen Zhang, Haiwei Song, Xiangxi Lv, Wenlong Pang, Wenjun Pang, Xin Li, Yingxue Li and Jiliang Shao
Quaternary 2025, 8(3), 41; https://doi.org/10.3390/quat8030041 - 31 Jul 2025
Viewed by 165
Abstract
In this study, 14 palynological samples and nine AMS 14C dating samples were collected from two representative black soil profiles in the Xingkai Lake Plain to examine climate changes and their impacts on environmental evolution since the Holocene. The systematic identification, analysis, [...] Read more.
In this study, 14 palynological samples and nine AMS 14C dating samples were collected from two representative black soil profiles in the Xingkai Lake Plain to examine climate changes and their impacts on environmental evolution since the Holocene. The systematic identification, analysis, and research of palynological data reveal that the black soil profiles in the Xingkai Lake Plain can be categorized into the following three distinct palynological assemblage zones: the lower zone (11.7–7.5 ka BP) is characterized by Pinus-Laevgatomonoleti-Amaranthaceae-Artemisia, having a cold, dry climate; the middle zone (7.5–2.5 ka BP) features Quercus-Juglans-Polygonum-Cyperaceae, with a warm and humid climate; and the upper zone (2.5 ka BP to present) consists of Pinus-Quercus-Betula, indicating a cold and dry climate. Furthermore, field lithostratigraphic observations of the two black soil profiles suggest that late Pleistocene loessial clay serves as the parent material in this region. Quaternary geology, section lithology, palynology, and AMS 14C dating results indicate that a significant portion of black soil in the Xingkai Lake Plain was primarily formed during the Great Warm Period following the middle Holocene. These insights not only enhance our understanding of Holocene climate dynamics in Northeast China but also provide a substantial scientific foundation for further studies on related topics. Full article
Show Figures

Figure 1

17 pages, 1939 KiB  
Article
Comprehensive Assessment of Water Quality of China’s Largest Freshwater Lake Under the Impact of Extreme Floods and Droughts
by Zhiyu Mao, Junxiang Cheng, Ligang Xu, Mingliang Jiang and Hailin You
Hydrology 2025, 12(7), 192; https://doi.org/10.3390/hydrology12070192 - 14 Jul 2025
Viewed by 776
Abstract
Poyang Lake, a large floodplain lake, plays a crucial role in the ecological safety and quality of life in surrounding areas. Over the past decade (2013–2022), amid economic development and environmental changes, the water environment of Poyang Lake has encountered complex challenges. This [...] Read more.
Poyang Lake, a large floodplain lake, plays a crucial role in the ecological safety and quality of life in surrounding areas. Over the past decade (2013–2022), amid economic development and environmental changes, the water environment of Poyang Lake has encountered complex challenges. This study evaluated the water quality of Poyang Lake in a recent 10-year span by the water quality index (WQI), trophic level index (TLI) and a newly constructed comprehensive evaluation index, and it analyzed the trend of water quality change under extreme events. Meanwhile, the main factors affecting the water quality of Poyang Lake were analyzed by partial least squares (PLS), a multivariate statistical method that accounts for multicollinearity. The results indicate that: (1) The water quality of Poyang Lake in summer and autumn is slightly worse than that in spring and winter. Each water quality index reflects the distinct states of the water environment in Poyang Lake. (2) Each water quality evaluation index responds differently to influencing factors. (3) Extreme flood and drought events have markedly different impacts on the water environment of Poyang Lake, exhibiting significant spatial heterogeneity. Domestic sewage discharge and total water resources have a relatively great impact on the water environment of Poyang Lake. The results of this study provide important insights for water quality management and policy formulation in Poyang Lake, supporting sustainable regional development. Full article
Show Figures

Figure 1

33 pages, 3983 KiB  
Article
Digital Twin-Driven SimLean-TRIZ Framework in Cold Room Door Production
by Thenarasu M, Sumesh Arangot, Narassima M S, Olivia McDermott and Arjun Panicker
Modelling 2025, 6(3), 67; https://doi.org/10.3390/modelling6030067 - 14 Jul 2025
Viewed by 441
Abstract
The study aims to increase productivity in the cold room door manufacturing industry by addressing non-value-adding operations, identifying bottlenecks, and reducing processing time through digital twin (DT)-based simulation. The goal is to eliminate the need for supply chain outsourcing and increase overall efficiency. [...] Read more.
The study aims to increase productivity in the cold room door manufacturing industry by addressing non-value-adding operations, identifying bottlenecks, and reducing processing time through digital twin (DT)-based simulation. The goal is to eliminate the need for supply chain outsourcing and increase overall efficiency. The research involves developing a DT of the existing production process for five distinct categories of cold room doors: flush door, single door, double door, face-mounted door, and sliding door. Simulation was used to uncover problems at multiple stations, encompassing curing, welding, and packing. Lean principles were used to identify the causes of inefficiency, and the process was improved using TRIZ principles. These changes produced a 42.90% improvement in productivity, a 20% dependence reduction on outsourcing and an increase of 10.5% added inventory to the shortage demand level. The approach presented is provided for a particular manufacturer of cold room doors, but the methods and techniques used are generally applicable to other manufacturing companies to support systematic innovation. Combining DT simulation, lean techniques and TRIZ principles, this study presents a strong approach to addressing the productivity challenges in manufacturing. The incorporation of these methods has brought considerable operational efficiency and has minimised dependency on external outsourcing. Full article
Show Figures

Figure 1

57 pages, 42873 KiB  
Article
The Mazenod–Sue–Dianne IOCG District of the Great Bear Magmatic Zone Northwest Territories, Canada
by A. Hamid Mumin and Mark Hamilton
Minerals 2025, 15(7), 726; https://doi.org/10.3390/min15070726 - 11 Jul 2025
Viewed by 192
Abstract
The Mazenod Lake region of the southern Great Bear Magmatic Zone (GBMZ) of the Northwest Territories, Canada, comprises the north-central portion of the Faber volcano-plutonic belt. Widespread and abundant surface exposure of several coalescing hydrothermal systems enables this paper to document, without ambiguity, [...] Read more.
The Mazenod Lake region of the southern Great Bear Magmatic Zone (GBMZ) of the Northwest Territories, Canada, comprises the north-central portion of the Faber volcano-plutonic belt. Widespread and abundant surface exposure of several coalescing hydrothermal systems enables this paper to document, without ambiguity, the relationships between geology, structure, alteration, and mineralization in this well exposed iron-oxide–copper–gold (IOCG) mineral system. Mazenod geology comprises rhyodacite to basaltic-andesite ignimbrite sheets with interlayered volcaniclastic sedimentary rocks dominated by fine-grained laminated tuff sequences. Much of the intermediate to mafic nature of volcanic rocks is masked by low-intensity but pervasive metasomatism. The region is affected by a series of coalescing magmatic–hydrothermal systems that host the Sue–Dianne magnetite–hematite IOCG deposit and several related showings including magnetite, skarn, and iron oxide apatite (IOA) styles of alteration ± mineralization. The mid to upper levels of these systems are exposed at surface, with underlying batholith, pluton and stocks exposed along the periphery, as well as locally within volcanic rocks associated with more intense alteration and mineralization. Widespread alteration includes potassic and sodic metasomatism, and silicification with structurally controlled giant quartz complexes. Localized tourmaline, skarn, magnetite–actinolite, and iron-oxide alteration occur within structural breccias, and where most intense formed the Sue–Dianne Cu-Ag-Au diatreme-like breccia deposit. Magmatism, volcanism, hydrothermal alteration, and mineralization formed during a negative tectonic inversion within the Wopmay Orogen. This generated a series of oblique offset rifted basins with continental style arc magmatism and extensional structures unique to GBMZ rifting. All significant hydrothermal centers in the Mazenod region occur along and at the intersections of crustal faults either unique to or put under tension during the GBMZ inversion. Full article
Show Figures

Figure 1

17 pages, 3651 KiB  
Article
Moss Biochar Facilitates Root Colonization of Halotolerant Halomonas salifodinae for Promoting Plant Growth Under Saline–Alkali Stress
by Wenyue Wang, Yunlong Liu, Zirun Zhao, Rou Liu, Fang Wang, Zhuo Zhang and Qilin Yu
Soil Syst. 2025, 9(3), 73; https://doi.org/10.3390/soilsystems9030073 - 11 Jul 2025
Viewed by 202
Abstract
The utilization of the widely distributed saline–alkali lands by planting forage grasses is a hot topic. However, the promotion of plant growth remains a great challenge during the exploration of this stressful soil. While halotolerant bacteria are beneficial for plants against saline–alkali stress, [...] Read more.
The utilization of the widely distributed saline–alkali lands by planting forage grasses is a hot topic. However, the promotion of plant growth remains a great challenge during the exploration of this stressful soil. While halotolerant bacteria are beneficial for plants against saline–alkali stress, their stable colonization on plant roots should be further strengthened. In this study, we investigated the effect of moss biochar on the root colonization of the exogenous halotolerant Halomonas salifodinae isolated from saline lake sediments. During the incubation with the bacteria, the biochar strongly bound the bacterium and induced biofilm formation on the biochar surface. When the biochar and the bacterium were added into the culturing soil of the forage grass Medicago sativa, the biochar remarkably assisted the root binding and biofilm formation of this bacterium on the plant roots. Under the biochar–bacterium combined treatment, the numbers of total bacteria, halotolerant bacteria, and nitrogen-fixing bacteria increased from 105.5 CFU/g soil to 107.2 CFU/g soil, from 104.5 CFU/g soil to 106.1 CFU/g soil, and from 104.7 CFU/g soil to 106.3 CFU/g soil, respectively. After 30 days of culturing, the biochar and the bacterium in combination increased the plant height from 10.3 cm to 36 cm, and enhanced the accumulation of chlorophyll a, reducing sugars, soluble proteins, and superoxide dismutase in the leaves. Moreover, the combined treatment increased the activity of soil enzymes, including peroxidase, alkaline phosphatase, and urease. Meanwhile, the levels of various cations in the rhizosphere soil were reduced by the combined treatment, e.g., Na+, Cu2+, Fe2+, Mg2+, Mn2+, etc., indicating an improvement in the soil quality. This study developed the biochar–halotolerant bacterium joint strategy to improve the yield of forage grasses in saline–alkali soil. Full article
(This article belongs to the Special Issue Microbial Community Structure and Function in Soils)
Show Figures

Figure 1

27 pages, 53601 KiB  
Article
Depositional Evolution and Controlling Factors of the Lower–Middle Jurassic in the Kuqa Depression, Tarim Basin, Northwest China
by Ming Ma, Changsong Lin, Yongfu Liu, Hao Li, Wenfang Yuan, Jingyan Liu, Chaoqun Shi, Manli Zhang and Fan Xu
Appl. Sci. 2025, 15(14), 7783; https://doi.org/10.3390/app15147783 - 11 Jul 2025
Viewed by 276
Abstract
The Lower–Middle Jurassic of the Kuqa Depression consists of terrestrial clastic deposits containing coal seams and thick lacustrine mudstones, and is of great significance for oil and gas exploration. Based on the comprehensive analysis of core, well-logging, outcrop, and seismic data, the sequence [...] Read more.
The Lower–Middle Jurassic of the Kuqa Depression consists of terrestrial clastic deposits containing coal seams and thick lacustrine mudstones, and is of great significance for oil and gas exploration. Based on the comprehensive analysis of core, well-logging, outcrop, and seismic data, the sequence stratigraphy, depositional systems, and the controlling factors of the basin filling in the depression are systematically documented. Four primary depositional systems, including braided river delta, meandering river delta, lacustrine, and swamp deposits, are identified within the Ahe, Yangxia, and Kezilenuer Formations of the Lower–Middle Jurassic. The basin fills can be classified into two second-order and nine third-order sequences (SQ1–SQ9) confined by regional or local unconformities and their correlative conformities. This study shows that the sedimentary evolution has undergone the following three stages: Stage I (SQ1–SQ2) primarily developed braided river, braided river delta, and shallow lacustrine deposits; Stage II (SQ3–SQ5) primarily developed meandering river, meandering river delta, and extensive deep and semi-deep lacustrine deposits; Stage III (SQ6–SQ9) primarily developed swamp (SQ6–SQ7), meandering river delta, and shore–shallow lacustrine deposits (SQ8–SQ9). The uplift of the Tianshan Orogenic Belt in the Early Jurassic (Stage I) may have facilitated the development of braided fluvial–deltaic deposits. The subsequential expansion of the sedimentary area and the weakened sediment supply can be attributed to the planation of the source area and widespread basin subsidence, with the transition of the depositional environments from braided river delta deposits to meandering river delta and swamp deposits. The regional expansion or rise of the lake during Stage II was likely triggered by the hot and humid climate conditions, possibly associated with the Early Jurassic Toarcian Oceanic Anoxic Event. The thick swamp deposits formed during Stage III may be controlled by the interplay of rational accommodation, warm and humid climatic conditions, and limited sediment supply. Milankovitch cycles identified in Stage III further reveal that coal accumulation was primarily modulated by long-period eccentricity forcing. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

20 pages, 26018 KiB  
Article
An Accuracy Assessment of the ESTARFM Data-Fusion Model in Monitoring Lake Dynamics
by Can Peng, Yuanyuan Liu, Liwen Chen, Yanfeng Wu, Jingxuan Sun, Yingna Sun, Guangxin Zhang, Yuxuan Zhang, Yangguang Wang, Min Du and Peng Qi
Water 2025, 17(14), 2057; https://doi.org/10.3390/w17142057 - 9 Jul 2025
Viewed by 315
Abstract
High-spatiotemporal-resolution remote sensing data are of great significance for surface monitoring. However, existing remote sensing data cannot simultaneously meet the demands for high temporal and spatial resolution. Spatiotemporal fusion algorithms are effective solutions to this problem. Among these, the ESTARFM (Enhanced Spatiotemporal Adaptive [...] Read more.
High-spatiotemporal-resolution remote sensing data are of great significance for surface monitoring. However, existing remote sensing data cannot simultaneously meet the demands for high temporal and spatial resolution. Spatiotemporal fusion algorithms are effective solutions to this problem. Among these, the ESTARFM (Enhanced Spatiotemporal Adaptive Reflection Fusion Model) algorithm has been widely used for the fusion of multi-source remote sensing data to generate high spatiotemporal resolution remote sensing data, owing to its robustness. However, most existing studies have been limited to applying ESTARFM for the fusion of single-surface-element data and have paid less attention to the effects of multi-band remote sensing data fusion and its accuracy analysis. For this reason, this study selects Chagan Lake as the study area and conducts a detailed evaluation of the performance of the ESTARFM in fusing six bands—visible, near-infrared, infrared, and far-infrared—using metrics such as the correlation coefficient and Root Mean Square Error (RMSE). The results show that (1) the ESTARFM fusion image is highly consistent with the clear-sky Landsat image, with the coefficients of determination (R2) for all six bands exceeding 0.8; (2) the Normalized Difference Vegetation Index (NDVI) (R2 = 0.87, RMSE = 0.023) and the Normalized Difference Water Index (NDWI) (R2 = 0.93, RMSE = 0.022), derived from the ESTARFM fusion data, are closely aligned with the real values; (3) the evaluation and analysis of different bands for various land-use types reveal that R2 generally exhibits a favorable trend. This study extends the application of the ESTARFM to inland water monitoring and can be applied to scenarios similar to Chagan Lake, facilitating the acquisition of high-frequency water-quality information. Full article
(This article belongs to the Special Issue Drought Evaluation Under Climate Change Condition)
Show Figures

Figure 1

15 pages, 1974 KiB  
Article
Comparing Year-Class Strength Indices from Longitudinal Analysis of Catch-at-Age Data with Those from Catch-Curve Regression: Application to Lake Huron Lake Trout
by Ji X. He and Charles P. Madenjian
Fishes 2025, 10(7), 332; https://doi.org/10.3390/fishes10070332 - 7 Jul 2025
Viewed by 361
Abstract
Fish year-class strength (YCS) has been estimated via longitudinal analysis of catch-at-age data and via catch-curve regression, but no study has compared the two approaches. The objective of this study was to compare YCS estimates between the two approaches with application to the [...] Read more.
Fish year-class strength (YCS) has been estimated via longitudinal analysis of catch-at-age data and via catch-curve regression, but no study has compared the two approaches. The objective of this study was to compare YCS estimates between the two approaches with application to the lake trout (Salvelinus namaycush) population in the main basin of Lake Huron, one of the Laurentian Great Lakes of North America. YCSs were reconstructed for both hatchery-stocked and wild lake trout. Akaike information criterion (AIC) and Bayesian information criterion (BIC) were used to compare 14 linear mixed-effects models for longitudinal analysis of catch-at-age data, and three linear mixed-effects models for catch-curve regression. From the best models based on AIC or BIC comparisons, YCS estimates with year-class as a fixed effect were consistent with those estimated with year-class as a random effect. Estimated YCS patterns and trends were the same or similar between the longitudinal analysis and the catch-curve regression, indicating that both approaches provide robust estimates of YCS. Potential bias in using the approach of catch-curve regression could be caused by abrupt changes in adult mortality. It is also critical to recognize multiple recruitment origins for using the approach of longitudinal analysis of catch-at-age data. Full article
(This article belongs to the Section Biology and Ecology)
Show Figures

Figure 1

20 pages, 4718 KiB  
Article
Wind Energy Development on Lake Huron: An Offshore Foundation Design Perspective
by Clare Burnley and Shunde Yin
Processes 2025, 13(7), 2118; https://doi.org/10.3390/pr13072118 - 3 Jul 2025
Viewed by 354
Abstract
The popularity of offshore wind farming is accelerating, and researchers are exploring the possibility of implementing offshore wind turbines across the Great Lakes. Offshore wind turbines operate using the same principles as regular wind turbines, but require complex foundation design to withstand high [...] Read more.
The popularity of offshore wind farming is accelerating, and researchers are exploring the possibility of implementing offshore wind turbines across the Great Lakes. Offshore wind turbines operate using the same principles as regular wind turbines, but require complex foundation design to withstand high shear forces from waves. Extensive site characterization is necessary to effectively design detailed offshore wind turbine structures. High cost and time commitments, along with policy and societal considerations, have limited present research on offshore wind feasibility in the Great Lakes. This study focuses on wave impacts, assessing popular offshore wind farms and identifying monopile foundations as the optimal design for a hypothetical offshore wind farm in the lime bedrock of Lake Huron. RSPile is used to assess the stability of the proposed foundation design against deflection, bending, and rotation under average wave forces and extreme storm events. Ultimately, preliminary analysis recommends an 8 m diameter pipe embedded 30 m into the seabed to satisfy industry standards for offshore wind turbine foundation design. Full article
Show Figures

Figure 1

16 pages, 1769 KiB  
Article
Isolation and Characterization of a Crude Oil-Tolerant Obligate Halophilic Bacterium from the Great Salt Lake of the United States of America
by Jonathan Oakes, Johurimam Noah Kuddus, Easton Downs, Clark Oakey, Kristina Davis, Laith Mohammad, Kiara Whitely, Carl E. Hjelmen and Ruhul Kuddus
Microorganisms 2025, 13(7), 1568; https://doi.org/10.3390/microorganisms13071568 - 3 Jul 2025
Viewed by 403
Abstract
Most large-scale crude oil spills occur in marine environments. We screened easily propagable/maintainable halophiles to develop agents for the bioremediation of marine spills. A bacterial strain isolated from a polluted region of the Great Salt Lake was characterized and tested for its ability [...] Read more.
Most large-scale crude oil spills occur in marine environments. We screened easily propagable/maintainable halophiles to develop agents for the bioremediation of marine spills. A bacterial strain isolated from a polluted region of the Great Salt Lake was characterized and tested for its ability to degrade crude oil. The strain (Salinivibrio costicola) is motile, catalase- and lipase-positive, a facultative anaerobe, and an obligate halophile. Its growth optimum and tolerance ranges are: NaCl (5%, 1.25–10%), pH (8, 6–10), and temperature (22 °C, 4–45 °C). Its genome (3,166,267 bp) consists of two circular chromosomes and a plasmid, containing 3197 genes, including some genes potentially relevant to hydrocarbon metabolism. The strain forms a biofilm but is considered nonpathogenic and is sensitive to some common antibiotics. Lytic bacteriophages infecting the strain are rare in the water samples we tested. The strain survived on desiccated agar media at room temperature for a year, grew optimally in complex media containing 0.1–1% crude oil, but failed to reduce total recoverable petroleum hydrocarbons from crude oil. Thus, a recalcitrant halophile may endure crude oil without mineralizing. Due to some of their advantageous attributes, such strains can be considered for genetic manipulation to develop improved agents for bioremediation. Full article
(This article belongs to the Special Issue Marine Microbes, Biocontamination and Bioremediation)
Show Figures

Figure 1

18 pages, 6585 KiB  
Article
Research on the Risk of a Multi-Source Hydrological Drought Encounter in the Yangtze River Basin Based on Spatial and Temporal Correlation
by Jinbei Li and Hao Wang
Water 2025, 17(13), 1986; https://doi.org/10.3390/w17131986 - 1 Jul 2025
Viewed by 279
Abstract
For a long time, drought disasters have brought about a wide range of negative impacts on human socio-economics. Especially in large basins with many tributaries, once hydrological drought occurs synchronously in several tributaries, the hydrological drought condition in the mainstream will be aggravated, [...] Read more.
For a long time, drought disasters have brought about a wide range of negative impacts on human socio-economics. Especially in large basins with many tributaries, once hydrological drought occurs synchronously in several tributaries, the hydrological drought condition in the mainstream will be aggravated, which will lead to more serious losses. However, there is still a lack of research on the probabilistic risk of simultaneous hydrologic droughts in various areas of large watersheds. In this study, the Standardized Runoff Index was used to characterize hydrological drought, and the Standardized Runoff Index (SRI) sequence characteristics of each region were analyzed. Subsequently, a multiregional hazard encounter probability distribution model with an R-vine structure was constructed with the help of the vine copula function to study the risk pattern of simultaneous hydrological drought in multiple tributaries under environmental changes. The model results showed that the probability of the four basins gradually decreased from 7.5% to 0.16% when the SRI changed from ≤−0.5 to ≤−2.0, indicating that the likelihood of the joint distribution of the compound disaster decreases with increase in the drought extremes. Meanwhile, the probability of hydrological drought in the three major basins showed significant spatial differences, and the risk ranking was Dongting Lake Basin > Poyang Lake Basin > Han River Basin. The model constructed in this study reveals the disaster risk law, provides theoretical support for the measurement of hydrological drought risk in multiple regions at the same time, and is of great significance for the prediction of compound drought disaster risk. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

19 pages, 3316 KiB  
Article
Ecological Risk and Human Health Assessment of Heavy Metals in Sediments of Datong Lake
by Gao Li, Rui Chen, Zhen Li, Xin Wu, Kui Xiang, Chiheng Wang and Yi Peng
Toxics 2025, 13(7), 560; https://doi.org/10.3390/toxics13070560 - 30 Jun 2025
Cited by 1 | Viewed by 391
Abstract
Heavy metal pollution of lake sediments is one of the prominent ecological and environmental problems worldwide, and it is of great significance to conduct research on heavy metal pollution in lake sediments to protect the ecological environment, safeguard human health, and promote sustainable [...] Read more.
Heavy metal pollution of lake sediments is one of the prominent ecological and environmental problems worldwide, and it is of great significance to conduct research on heavy metal pollution in lake sediments to protect the ecological environment, safeguard human health, and promote sustainable development. As an integral part of Dongting Lake, Datong Lake holds a crucial ecological position. More than 10 years ago, due to a series of factors, including excessive fertilizer application and fishing, the water quality of Datong Lake declined, resulting in varying degrees of contamination by Cd, Mn, and other heavy metals in the sediments. After 2017, Datong Lake began to establish a mechanism for protecting and managing the lake, and its ecological and environmental problems have been significantly improved. To clarify the current situation of heavy metal contamination in the sediments of Datong Lake, 15 sediment samples were collected from the lake, and the contents of soil heavy metals Cd, As, Pb, Cr, Cu, Mn, Ni, and Zn were determined. A Monte Carlo simulation was introduced to carry out the ecological and human health risk evaluation of the sediments in the study area to overcome the problem of low reliability of the results of ecological and human health risk evaluation due to the randomness and incompleteness of the environmental data as well as the differences in the human body parameters. The results and conclusions show that (1) the average values of Cd, Pb, Cr, Cu, Mn, Ni, and Zn contents in the sediments of Datong Lake are higher than the background values of soil elements in the sediments of Dongting Lake, and the average values of As contents of heavy metals are lower than the background values of the soil, and the heavy metal contamination in the sediments in the study area is dominated by slight contamination, and the possibility of point-source contamination is slight. (2) The results of both the Geo-accumulation index and Enrichment factor evaluation showed that the degree of heavy metal contamination of sediments was Ni > Cu > Cr > Mn > Cd > Pb > Zn > As. (3) The average value of the single ecological risk index of heavy metal elements, in descending order, was as follows: Cd > As > Pb > Cu > Ni > Cr > Zn > Mn; all the heavy metal elements were at the level of light pollution, and the average value of the comprehensive ecological risk index was 32.83, which is a slight ecological risk level. (4) Both non-carcinogenic and carcinogenic risks for all populations in the study area remain low following heavy metal exposure via ingestion and dermal pathways. Ecological and health risk assessments identified As and Cd as exhibiting significantly higher sensitivity than other heavy metals. Consequently, continuous monitoring and source-tracking of these elements are recommended to safeguard long-term ecological integrity and public health in the region. Full article
(This article belongs to the Section Metals and Radioactive Substances)
Show Figures

Graphical abstract

19 pages, 3874 KiB  
Article
The Formation Age and Geological Setting of the Huoqiu Group in the Southern Margin of North China Craton: Implication for BIF-Type Iron Prospecting Potentiality
by Lizhi Xue, Rongzhen Tang, Xinkai Chen, Jiashuo Cao and Yanjing Chen
Minerals 2025, 15(7), 695; https://doi.org/10.3390/min15070695 - 29 Jun 2025
Viewed by 316
Abstract
The Huoqiu Group is located in the southern margin of the North China Craton and is considered an Archean geologic body. Its supracrustal rocks are divided into the Huayuan, Wuji, and Zhouji formations in ascending order. The Wuji and Zhouji formations contain large [...] Read more.
The Huoqiu Group is located in the southern margin of the North China Craton and is considered an Archean geologic body. Its supracrustal rocks are divided into the Huayuan, Wuji, and Zhouji formations in ascending order. The Wuji and Zhouji formations contain large BIF-type iron deposits. The BIFs show geological and geochemical features of Paleoproterozoic Lake Superior-type rather than Archean Algoma-type. The study of the formation ages and evolutionary history of the Huoqiu Terrane will provide significant guidance for the mineralization and exploration of the Huoqiu iron deposits. In this paper, we collected all available isotopic ages and Hf isotopic compositions obtained from the Huoqiu Terrane and reassessed their accuracy and geological meanings. We conclude that the Wuji and Zhouji formations were not older than 2343 Ma. Therefore, the BIFs hosted in the Wuji and Zhouji formations must be of Paleoproterozoic age. The magmatic zircons from the TTG gneisses and granite yield U-Pb ages of Neoarchean Era, indicating that the Wuji and Zhouji formations of the Huoqiu Group were deposited on an Archean granitic basement that mainly comprises the trondhjemite-tonalite-granodiorite (TTG) gneisses and granites of the “Huayuan Formation”. The Early Precambrian crystalline basement in the Huoqiu area can be divided into the Huayuan Gneiss Complex and the Huoqiu Group, comprising the Wuji and Zhouji formations. The tectonic scenario of granitic complexes overlain by supracrustal rocks in the Huoqiu Terrane has been recognized in the Songshan, Zhongtiao, Xiaoshan, and Lushan Early Precambrian terranes in the southern margin of the North China Craton. As indicated by the zircon U-Pb ages and εHf(t) data, the crustal growth of the Huoqiu Terrane occurred mainly at ~2.9 Ga and ~2.7 Ga. Based on the sedimentary age, environment, and rhythm, the BIFs in the Huoqiu region are considered to be of Lake Superior type and of great potential for Fe ore exploration. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

Back to TopTop