Holocene Climate Shifts Driving Black Soil Formation in NE China: Palynology and AMS14C Dating Insights
Abstract
1. Introduction
2. Overview of the Study Area
3. Material and Methods
3.1. Sampling
3.2. Radiocarbon Analyses
3.3. Pollen Analyses
4. Results and Analyses
4.1. Lithostratigraphy and 14C Chronology
4.2. Division of Pollen Assemblage Bands and Their Characteristics
5. Discussion
5.1. Investigation of the Formation Age of Black Soil in the Xingkai Lake Plain
5.2. Holocene Paleovegetation and Paleoclimate Evolution in the Xingkai Lake Plain
5.2.1. Pollen Assemblage of the HLD1601 Profile: Reflections on Paleovegetation and Paleoclimate Evolution
5.2.2. Paleovegetation and Paleoclimate Evolution Reflected by the MDS1601 Pollen Assemblage
5.2.3. Discussion on Holocene Paleovegetation Climate Evolution in Xingkai Lake Plain
5.3. Black Soil Formation in Xingkai Lake Plain
6. Conclusions
- (1)
- A comprehensive comparative analysis of AMS 14C dating results from the two soil profiles indicates that black soil in the Xingkai Lake Plain primarily formed during the Great Warm Period of the middle Holocene, particularly around 4300 yr BP, which marks a significant phase in its development. Terrain and geomorphology are likely key factors influencing the pedogenic rates of these black soil profiles.
- (2)
- The typical black soil profiles in the Xingkai Lake Plain can be categorized into the following three palynological assemblages from bottom to top: the lower section is characterized by Pinus-Laevgatomonoleti-Amaranthaceae and Artemisia; the middle section features Quercus-Juglans-Polygonum and Cyperaceae; while the upper section includes Pinus-Quercus-Betula. This stratification suggests that climate has transitioned through three stages (cold-dry, warm-wet, and cold-dry) since the onset of the Holocene.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, M.Y.; Wang, M.Z.; Wang, D.M.; Wang, S.K.; Xu, W.X. Organic Matter Retrieval in Black Soil Based on Oblique Extremum Signatures. Remote Sens. 2023, 15, 10. [Google Scholar] [CrossRef]
- Fei, Y.; Hao, L.; Keyang, G. Onset time and accretionary formation of Mollisols in Northeast China. Sci. Bull. 2023, 68, 1999–2002. [Google Scholar] [CrossRef]
- Liu, H.; Li, R.H.; Li, S.R.; Hou, H.X.; Qin, T.; Gao, Y.; Zhou, Y.Z.; Li, M.J. Paleoclimate background and genetic mechanism of different soil structures in typical black soil areas of Songliao Plain. Geol. Bull. China 2024, 43, 766–778. [Google Scholar]
- Qiu, Z.; Shi, Y.; Yang, F. Steppe or forest? Multiple methods reveal organic matter sources of Chernozems and Phaeozems region in Northeast China. Catena 2025, 252, 108837. [Google Scholar] [CrossRef]
- Song, Y.H.; Liu, K.; Dai, H.M.; Xu, J.; Zhao, J.; Liang, S.; Zhang, Z.H. Palynological assemblages, eras and their implications for paleoclimate in typical black soil profiles in eastern Songnen Plain. Geo. Bull. China 2022, 41, 1528–1538. [Google Scholar]
- Xia, Y.M. Preliminary Study On Vegetaional Deve-Lopment And Climatic Changes In The Sanjiang Plain In The Last 12000 Years. Sci. Geogr. Sin. 1998, 3, 240–249. [Google Scholar]
- Li, X.Q.; Zhao, H.L.; Yan, M.H.; Wang, S.Z. Holocene fire evolution and its relationship with vegetation and climate in Sanjiang Plain, Northeast China. Sci. Geo. Sin. 2005, 2, 177–182. [Google Scholar]
- Zhang, S.Q. Late Holocene pollen records and sedimentary environment in the North shore plain of Xingkai Lake, China. Changchun, China. Chin. Geophys. Soc. 2005, 2. [Google Scholar]
- Orgeira, M.; Pereyra, F.; Vásquez, C.; Castañeda, E.; Compagnucci, R. Rock magnetism in modern soils, Buenos Aires Province, Argentina. J. South Am. Earth Sci. 2008, 26, 217–224. [Google Scholar] [CrossRef]
- Jacobs, P.; Mason, J. Impact of Holocene dust aggradation on A horizon characteristics and carbon storage in loess-derived Mollisols of the Great Plains, USA. Geoderma 2005, 125, 95–106. [Google Scholar] [CrossRef]
- Chendev, Y.G.; Ivanov, I.V.; Pesochina, L.S. Trends of the natural evolution of chernozems on the East European Plain. Eurasian Soil Sci. 2010, 43, 728–736. [Google Scholar] [CrossRef]
- Rodrigo, A.; Neel, C.; Mary, B.; Recous, S. Modelling temperature and moisture effects on C-N transformations in soils: Comparison of nine models. Ecol. Modell. 1997, 102, 325–339. [Google Scholar] [CrossRef]
- Gerasimova, M.I. Chinese soil taxonomy: Between the American and the international classification systems. Eurasian Soil Sci. 2010, 43, 945–949. [Google Scholar] [CrossRef]
- Li, X.Q.; Zhao, C.; Zhou, X.Y. Vegetation pattern of characteristic periods in Northeast China since the last glacial maximum. Sci. China Earth Sci. 2019, 49, 1213–1230. [Google Scholar]
- Wang, C.L. Paleovegetation and Paleoenvironment Reconstruction of Sanjiang Plain Wetland During the Holocene. Ph.D. Thesis, University of Chinese Academy of Sciences, Beijing, China, 2015. [Google Scholar]
- Shan, W.Q.; Fang, S.; Yin, J. Population dynamics and its relationship with functional traits in different succession stages of tempe rate mixed coniferous broad-leaved forest in Northeast China. Chin. J. Appl. Ecol. 2024, 35, 2501–2510. [Google Scholar]
- Liu, Y.W.; Zhang, J.Q.; Wang, Y.J.; Shen, X.J.; Lv, X.G.; Jiang, M. Distribution and Change of Normalized Difference Vegetation Index of Marshes Wetland in the Sanjiang Plain. Wetl. Sci. 2022, 20, 728–732. [Google Scholar]
- Li, Y.; Gu, H.Y.; Chen, Y.M. Effects of vegetative fine roots on soil erosion resistance in a typical black soil area in China. J. Northeast For. Univ. (Chin. Ed.) 2020, 48, 81–85. [Google Scholar]
- Wang, P.; Zhang, P.X.; Yang, Z.J.; Shi, Y.C.; Song, C.; Guo, J. Climate change since the last Glacial period recorded in the loess section of Jingbian. Mar. Geol. Quat. Geol. 2019, 39, 162–170. [Google Scholar]
- Grimm EC TGView, version 2.0.2; Illinois State Museum, Research and Collections Center: Springfield, IL, USA, 2004.
- Blaauw, M.; Christen, A.J. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Anal. 2011, 6, 457–474. [Google Scholar] [CrossRef]
- Wang, H.; Stumpf, J.A.; Kumar, P. Radiocarbon and Stable Carbon Isotopes of Labile and Inert Organic Carbon in the Critical Zone Observatory in Illinois, USA. Radiocarbon 2018, 60, 989–999. [Google Scholar] [CrossRef]
- Cui, J.Y.; Guo, L.C.; Chen, Y.L.; Wang, H.; Yang, S.L.; Xiong, S.F. Spatial pattern of ~(14)C age-depth relationship in Holocene black soil in Songnen Plain. Quat. Sci. 2021, 41, 1332–1341. [Google Scholar]
- Whalen, J.K.; Sampedro, L. Soil Eeology and Management; CABI: Cambridge, UK, 2010. [Google Scholar]
- Li, G.Y.; Bi, R.T.; Zhu, H.F.; Chen, Z. Influence of reasonable sample points based on soil-terrain relationship on spatial prediction of soil organic matter. Chin. J. Soil Sci. 2021, 52, 515–526. [Google Scholar]
- Xing, C.P.; Shen, C.D.; Sun, Y.M. Preliminary study on the 14C age of soil organic matter in subtropical forests of Dinghu Mountain. Geochemistry 1998, 5, 493–499. [Google Scholar]
- Zhang, H.W.; Lv, X.X.; Sun, Y.Q. Climate change since Holocene recorded in Mishan black soil profile of Heilongjiang Province. Geo. Res. 2025, 34, 11–20. [Google Scholar]
- Barr, I.D.; Roberson, S.; Flood, R. Younger Dryas glaciers and climate in the Mourne Mountains, Northern Ireland. J. Quat. Sci. 2017, 32, 104–115. [Google Scholar] [CrossRef]
- Zhao, J.D.; Shi, Y.F.; Wang, J. Recent progress in the comparative study of Quaternary glacier evolution sequence and MIS in China. Acta Geogr. Sin. 2011, 66, 867–884. [Google Scholar]
- Pang, Y.Z.; Yang, M.S.; Zhang, H.C.; Tang, L.Y. Vegetation changes and influencing factors recorded by palynology in Poyang Lake in the past 2160 years. Quat. Sci. 2023, 43, 1225–1240. [Google Scholar]
- Yu, C.X.; Luo, Y.L.; Sun, X.J. High resolution palynological records of paleoclimate evolution from 13.1 to 4.5cal.kaB.P., Hani Lake, Liuhe, Jilin Province. Quat. Sci. 2008, 5, 929–938. [Google Scholar]
- Yao, T.D.; Shi, Y.F.; Qin, D.H.; Jiao, K.Q.; Yang, Z.H.; Tian, L.D.; Thompson, L.G.; Mosley-Thompson, E. Climate change records since the last interglacial in the Guliya ice core. Sci. China Ser. D Earth Sci. 1997, 5, 447–452. [Google Scholar]
- Truax, J.O.; Riesselman, R.C.; Wilson, S.G.; Stevens, C.L.; Parker, R.L.; Lee, J.; McKay, R.M.; Rosenheim, B.E.; Ginnane, C.E.; Turnbull, J.C.; et al. Holocene paleoceanographic variability in Robertson Bay, Ross Sea, Antarctica: A marine record of ocean, ice sheet, and climate connectivity. Quat. Sci. Rev. 2024, 332, 108635. [Google Scholar] [CrossRef]
- Zhang, M.L.; Tu, L.L.; Lin, Y.S.; Qin, J.M.; Wang, H.; Feng, Y.M.; Yang, Y.; Zhu, X.Y. Stalagmite records of Mid-late Holocene cooling events in Southwest China. Carsol. Sin. 2004, 4, 27–33. [Google Scholar]
- Jiang QF’ Liu, X.Q.; Shen, J. Grain size characteristics and paleoclimatic environmental significance of sediments in Wulun Ancient Lake. Acta Sedimentol. Sin. 2006, 6, 877–882. [Google Scholar]
- Li, B. Study on Seismic Geological Characteristics and Danger Zone Classification in Daqing and Its Surrounding Areas. Master’s Thesis, Jilin University, Changchun, China, 2014. [Google Scholar]
- Zhu, Y.; Shen, J.; Lei, G.L.; Wang, Y. Lake environment evolution in Xingkai Lake during the last 200 ka revealed by Hugang light luminescence dating. Chin. Sci. Bull. 2011, 56, 2017–2025. [Google Scholar]
- Zhang, Y.L.; Yang, Y.X. Palynological assemblages and vegetation and climate evolution in Tongjiang area, Heilongjiang Province since the Middle Holocene. Sci. Geogr. Sin. 2002, 4, 426–429. [Google Scholar]
- Xing, W.; Bao, K.S.; Han, D.X.; Wang, G.P. Development process of marsh wetland in Northeast China since Holocene and its response to climate change. J. Lake Sci. 2019, 31, 1391–1402. [Google Scholar]
- Leng, C.C.; Zhao, C.; Cui, Q.Y.; Zhang, C.; Sun, X.S.; Yan, T.L.; Zhao, Y. Holocene paleoclimate change revealed by N-alkanes records in Tianchi sediments, Alshan, Greater Khingan Mountains. Quat. Sci. 2021, 41, 976–985. [Google Scholar]
- Zhao, C.; Li, X.Q.; Zhou, X.Y.; Zhao, K.L.; Yang, Q. Holocene vegetation succession and climate response in Xingan Mountains, Northern China. Sci. China Earth Sci. 2016, 46, 870–880. [Google Scholar]
- Wang, L.P.; Zhu, Y.H.; Li, N.; Xu, S.H.; Tian, Y.C.; Liu, N.F.; Wang, W.L. Formation of permafrost and its influence on gas hydrate accumulation in Muli area. Coal Geol. Explor. 2022, 52, 121–130. [Google Scholar]
- Li, Y.; Wang, N.A.; Li, Z.L. Reworking effects in the Holocene Zhuye Lake sediments: A case study by pollen concentrates AMS 14C dating. Sci. China Earth Sci. 2012, 42, 1429–1440. [Google Scholar] [CrossRef]
Depth/cm Surface Layer | Stratification Situation Condition | Detailed Description |
---|---|---|
0~27 | A | Grayish black loam, with granular structure, dry, moderately compact, and numerous root systems visible. |
27~88 | AB | Black clay, with granular structure, slightly humid, moderately compact, and a few roots visible. |
88~180 | C | Yellowish brown clay, with massive structure, moist, compact, and no root systems were observed. |
Depth/cm Surface Layer | Stratification Situation Condition | Detailed Description |
---|---|---|
0~45 | A | Black loam, with granular structure, slightly moist, compact, and numerous root systems visible. |
45~83 | AB | Grayish black–taupe clay, with granular structure, slightly moist, slightly compact, and no root systems were observed. |
83~142 | C | Yellowish brown clay, featuring a massive structure, moist, compact, and with no root systems observable. |
Sample No. | Depth/m | Dating Materials | Age */yr BP | Calibrated Age #/cal. yr BP |
---|---|---|---|---|
HLD1601-14C1 | 0.30 | Organic carbon | 2140 ± 30 | 2154 ± 149 |
HLD1601-14C2 | 0.88 | Organic carbon | 3850 ± 30 | 4281 ± 126 |
HLD1601-14C3 | 1.50 | Organic carbon | 7785 ± 45 | 8543 ± 99 |
HLD1601-14C4 | 1.80 | Organic carbon | 9230 ± 60 | 10,402 ± 130 |
MSD1601-14C1 | 0.45 | Organic carbon | 3780 ± 30 | 4127 ± 118 |
MSD1601-14C2 | 0.60 | Organic carbon | 4675 ± 30 | 5447 ± 126 |
MSD1601-14C3 | 0.83 | Organic carbon | 8150 ± 50 | 9139 ± 147 |
MSD1601-14C4 | 0.96 | Organic carbon | 8305 ± 50 | 9290 ± 154 |
MSD1601-14C5 | 1.42 | Organic carbon | 12,130 ± 80 | 13,969 ± 214 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Song, H.; Lv, X.; Pang, W.; Pang, W.; Li, X.; Li, Y.; Shao, J. Holocene Climate Shifts Driving Black Soil Formation in NE China: Palynology and AMS14C Dating Insights. Quaternary 2025, 8, 41. https://doi.org/10.3390/quat8030041
Zhang H, Song H, Lv X, Pang W, Pang W, Li X, Li Y, Shao J. Holocene Climate Shifts Driving Black Soil Formation in NE China: Palynology and AMS14C Dating Insights. Quaternary. 2025; 8(3):41. https://doi.org/10.3390/quat8030041
Chicago/Turabian StyleZhang, Hongwen, Haiwei Song, Xiangxi Lv, Wenlong Pang, Wenjun Pang, Xin Li, Yingxue Li, and Jiliang Shao. 2025. "Holocene Climate Shifts Driving Black Soil Formation in NE China: Palynology and AMS14C Dating Insights" Quaternary 8, no. 3: 41. https://doi.org/10.3390/quat8030041
APA StyleZhang, H., Song, H., Lv, X., Pang, W., Pang, W., Li, X., Li, Y., & Shao, J. (2025). Holocene Climate Shifts Driving Black Soil Formation in NE China: Palynology and AMS14C Dating Insights. Quaternary, 8(3), 41. https://doi.org/10.3390/quat8030041