Comparing Year-Class Strength Indices from Longitudinal Analysis of Catch-at-Age Data with Those from Catch-Curve Regression: Application to Lake Huron Lake Trout
Abstract
1. Introduction
2. Materials and Methods
2.1. Study System
2.2. Model Comparison and Selection
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
YCS | Year-class strength |
AIC | Akaike information criterion |
BIC | Bayesian information criterion |
CCR | Catch curve regression |
CPUE | Catch per unit of effort. |
References
- Shepherd, J.G.; Cushing, D.H. Regulation in fish populations: Myth or mirage? Phil. Trans. R. Soc. Lond. B 1990, 330, 151–164. [Google Scholar]
- Rothschild, B.J. “Fish stocks and recruitment”: The past thirty years. ICES J. Mar. Sci. 2000, 57, 191–201. [Google Scholar] [CrossRef]
- Subbey, S.; Devine, J.A.; Schaarschmidt, U.; Nash, R.D.M. Modelling and forecasting stock–recruitment: Current and future perspectives. ICES J. Mar. Sci. 2014, 71, 2307–2322. [Google Scholar] [CrossRef]
- Rosenberg, A.A.; Kirkwood, G.P.; Cook, R.M.; Myers, R.A. Combining information from commercial catches and research surveys to estimate recruitment: A comparison of methods. ICES J. Mar. Sci. 1992, 49, 379–387. [Google Scholar] [CrossRef]
- Shepherd, J.G. Prediction of year-class strength by calibration regression analysis of multiple recruit index series. ICES J. Mar. Sci. 1997, 54, 741–752. [Google Scholar] [CrossRef]
- Rose, G.A.; Kulka, D.W. Hyper aggregation of fish and fisheries: How catch-per-unit-effort increased as the northern cod (Gadus morhua) declined. Can. J. Fish. Aquat. Sci. 1999, 56, 118–127. [Google Scholar] [CrossRef]
- Harley, S.J.; Myers, R.A.; Dunn, A. Is catch-per-unit-effort proportional to abundance? Can. J. Fish. Aquat. Sci. 2001, 58, 1760–1772. [Google Scholar] [CrossRef]
- Wilberg, M.J.; Bence, J.R. Performance of time-varying catchability estimators in statistical catch-at-age analysis. Can. J. Fish. Aquat. Sci. 2006, 63, 2275–2285. [Google Scholar] [CrossRef]
- He, J.X.; Stewart, D.J. Age and size at first reproduction of fishes: Predictive models based only on growth trajectories. Ecology 2001, 82, 784–791. [Google Scholar] [CrossRef]
- He, J.X.; Stewart, D.J. A stage-explicit expression of the von Bertalanffy growth model for understanding age at first reproduction of Great Lakes fishes. Can. J. Fish. Aquat. Sci. 2002, 59, 250–261. [Google Scholar] [CrossRef]
- He, J.X.; Bence, J.R.; Madenjian, C.P.; Pothoven, S.A.; Dobiesz, N.E.; Fielder, D.G.; Johnson, J.E.; Ebener, M.P.; Cottrill, A.R.; Mohr, L.C.; et al. Coupling age-structured stock assessment and fish bioenergetics models: A system of time-varying models for quantifying piscivory patterns during the rapid trophic shift in the main basin of Lake Huron. Can. J. Fish. Aquat. Sci. 2015, 72, 7–23. [Google Scholar] [CrossRef]
- He, J.X.; Bence, J.R.; Madenjian, C.P.; Claramunt, R. Dynamics of lake trout production in the main basin of Lake Huron. ICES J. Mar. Sci. 2020, 73, 975–987. [Google Scholar] [CrossRef]
- Smith, P.E. Year-class strength and survival of 0-group Clupeoids. Can. J. Fish. Aquat. Sci. 1985, 42, 69–82. [Google Scholar] [CrossRef]
- Thanassekos, S.; Latour, R.J.; Fabrizio, M.C. An individual-based approach to year-class strength estimation. ICES J. Mar. Sci. 2016, 73, 2252–2266. [Google Scholar] [CrossRef]
- Myers, R.A. Recruitment: Understanding density-dependence in fish populations. In Handbook of Fish Biology and Fisheries; Hart, P.J.B., Reynolds, J.D., Eds.; Blackwell Publishing: Oxford, UK, 2002; Volume 1, pp. 123–148. [Google Scholar]
- Maceina, M.J.; Pereira, D.L. Recruitment. In Analysis and Interpretation of Freshwater Fisheries Data; Guy, C., Brown, M.L., Eds.; American Fisheries Society: Bethesda, MD, USA, 2007; pp. 121–185. [Google Scholar]
- Carlander, K.D.; Payne, P.M. Year-class abundance, population, and production of walleye (Stizostedion vitreum vitreum) in Clear Lake, Iowa, 1948–1974, with varied fry stocking rates. J. Fish. Res. Board Can. 1977, 34, 1792–1799. [Google Scholar] [CrossRef]
- Parsons, B.G.; Pereira, D.L. Relationship between walleye stocking and year-class strength in three Minnesota lakes. N. Am. J. Fish. Manag. 2001, 21, 801–808. [Google Scholar] [CrossRef]
- Honsey, A.E.; Zachary, S.; Feiner, Z.S.; Hansen, G.J.A. Drivers of walleye recruitment in Minnesota’s large lakes. Can. J. Fish. Aquat. Sci. 2020, 77, 1921–1933. [Google Scholar] [CrossRef]
- He, J.X.; Honsey, A.E.; Staples, D.F.; Bence, J.R.; Claramunt, T. Longitudinal analyses of catch-at-age data for reconstructing year-class strength, with an application to lake trout (Salvelinus namaycush) in the main basin of Lake Huron. Can. J. Fish. Aquat. Sci. 2023, 80, 183–194. [Google Scholar] [CrossRef]
- Warren, L.D.; Honsey, A.E.; Bunnell, D.B.; Collingsworth, P.D.; Hondorp, D.W.; Madenjian, C.P.; Warner, D.M.; Weidel, B.C.; Höök, T.O. Synchrony of alewife, Alosa pseudoharengus, year-class strength in the Great Lakes region. Can. J. Fish. Aquat. Sci. 2025, 81, 1456–1467. [Google Scholar] [CrossRef]
- Brown, T.A.; Rudstam, L.G.; Sethi, S.A.; Ripple, P.; Smith, J.B.; Treska, T.J.; Hessell, C.; Olsen, E.; He, J.X.; Jonas, J.L.; et al. Reconstructing half a century of coregonine recruitment dynamics across the Laurentian Great Lakes. ICES J. Mar. Sci. 2025, 82, fsae160. [Google Scholar] [CrossRef]
- He, J.X.; Ebener, M.P.; Clark, R.D., Jr.; Bence, J.R.; Madenjian, C.P.; McDonnell, K.N.; Bronte, C.R. Estimating catch curve mortality based on relative return rates of coded wire tagged lake trout in U.S. waters of Lake Huron. Can. J. Fish. Aquat. Sci. 2022, 79, 601–610. [Google Scholar] [CrossRef]
- He, J.X.; Madenjian, C.P.; Wills, T.C. A generalized application of the catch-curve regression with comparisons of adult mortality and year-class strength between hatchery-stocked and wild-reared lake trout in US waters of Lake Huron. Can. J. Fish. Aquat. Sci. 2023, 80, 1714–1722. [Google Scholar] [CrossRef]
- He, J.X. Adult mortality and year-class strength of lake trout before and after alewife collapse in the main basin of Lake Huron. J. Great Lakes Res. 2024, 50, 102397. [Google Scholar] [CrossRef]
- He, J.X.; Briggs, A.S.; Wills, T.C. Year-class strength and fully-selected mortality rates of Lake Whitefish in Michigan waters of southern Lake Huron. N. Am. J. Fish. Manag. 2024. [Google Scholar] [CrossRef]
- Maunder, M.N.; Punt, A.E. A review of integrated analysis in fisheries stock assessment. Fish. Res. 2013, 142, 61–74. [Google Scholar] [CrossRef]
- Methot, R.D., Jr.; Wetzel, C.R. Stock synthesis: A biological and statistical framework for fish stock assessment and fishery management. Fish. Res. 2013, 142, 86–99. [Google Scholar] [CrossRef]
- Nielsen, A.; Berg, C.W. Estimation of time-varying selectivity in stock assessments using state-space models. Fish. Res. 2014, 158, 96–101. [Google Scholar] [CrossRef]
- Aeberhard, W.H.; Flemming, J.M.; Nielsen, A. Review of state-space models for fisheries science. Annu. Rev. Stat. Appl. 2018, 5, 215–235. [Google Scholar] [CrossRef]
- Cheng, M.L.H.; Thorson, J.T.; Ianelli, J.N.; Cunningham, C.J. Unlocking the triad of age, year, and cohort effects for stock assessment: Demonstration of a computationally efficient and reproducible framework using weight-at-age. Fish. Res. 2023, 266, 106755. [Google Scholar] [CrossRef]
- Mohn, R. The retrospective problem in sequential population analysis: An investigation using cod fishery and simulated data. ICES J. Mar. Sci. 1999, 56, 473–488. [Google Scholar] [CrossRef]
- Hile, R. Trends in the lake trout fishery of Lake Huron through 1946. Trans. Am. Fish. Soc. 1949, 76, 121–147. [Google Scholar] [CrossRef]
- Walters, C.J.; Steer, G.; Spangler, G. Responses of lake trout (Salvelinus namaycush) to harvesting, stocking, and lamprey reduction. Can. J. Fish. Aquat. Sci. 1980, 37, 2133–2145. [Google Scholar] [CrossRef]
- Smith, S.H. Species succession and fishery exploitation in the Great Lakes. J. Fish. Res. Board Can. 1968, 25, 667–693. [Google Scholar] [CrossRef]
- Muir, A.M.; Krueger, C.C.; Hansen, M.J. Re-establishing lake trout in the Laurentian Great Lakes: Past, present, and future. In Great Lakes Fisheries Policy and Management: A Binational Perspective, 2nd ed.; Taylor, W.W., Lynch, A.J., Leonard, N.J., Eds.; Michigan State University Press: East Lansing, MI, USA, 2012; pp. 533–588. [Google Scholar]
- He, J.X. Growth stability after the collapse of alewives in Lake Huron and direct size-at-age comparisons between stocked and wild lake trout. J. Great Lakes Res. 2024, 50, 102315. [Google Scholar] [CrossRef]
- Sitar, S.P.; Bence, J.R.; Johnson, J.E.; Ebener, M.P.; Taylor, W.W. Lake trout mortality and abundance in southern Lake Huron. N. Am. J. Fish. Manag. 1999, 19, 881–900. [Google Scholar] [CrossRef]
- Johnson, J.E.; He, J.X.; Woldt, A.P.; Ebener, M.P.; Mohr, L.C. Lessons in rehabilitation stocking and management of lake trout in Lake Huron. Am. Fish. Soc. Symp. 2004, 44, 161–175. [Google Scholar]
- Walters, C.; Kitchell, J.F. Cultivation/depensation effects on juvenile survival and recruitment: Implications for the theory of fishing. Can. J. Fish. Aquat. Sci. 2001, 58, 39–50. [Google Scholar] [CrossRef]
- Madenjian, C.P.; O’Gorman, R.; Bunnell, D.B.; Argyle, R.L.; Roseman, E.F.; Warner, D.M.; Stockwell, J.D.; Stapanian, M.A. Adverse effects of alewives on Laurentian Great Lakes fish communities. N. Am. J. Fish. Manag. 2008, 28, 263–282. [Google Scholar] [CrossRef]
- Fitzsimons, J.D.; Brown, S.; Brown, L.; Honeyfield, D.; He, J.; Johnson, J.E. 2010. Increase in lake trout reproduction in Lake Huron following the collapse of alewife: Relief from thiamine deficiency or larval predation? Aquat. Ecosyst. Health Manag. 2010, 13, 73–81. [Google Scholar] [CrossRef]
- Adams, J.V.; Bergstedt, R.A.; Christie, G.C.; Cuddy, D.W.; Fodale, M.F.; Heinrich, J.W.; Jones, M.L.; McDonald, R.B.; Mullett, K.M.; Young, R.J. Assessing assessment: Can the expected effects of the St. Marys River sea lamprey control strategy be detected? J. Great Lakes Res. 2003, 29, 717–727. [Google Scholar] [CrossRef]
- Nowicki, S.M.; Criger, L.A.; Hrodey, P.J.; Sullivan, W.P.; Neave, F.B.; He, J.X.; Gorenflo, T.K. A case history of sea lamprey (Petromyzon marinus) abundance and control in Lake Huron: 2000–2019. J. Great Lakes Res. 2021, 47, 455–478. [Google Scholar] [CrossRef]
- United States v. Michigan. Consent Decree. 2000; Case No. 2:73 CV 26. [Google Scholar]
- Riley, S.C.; Roseman, E.F.; Nichols, S.J.; O’Brien, T.P.; Kiley, C.S.; Schaeffer, J.S. Deepwater demersal fish community collapse in Lake Huron. Trans. Am. Fish. Soc. 2008, 137, 1879–1890. [Google Scholar] [CrossRef]
- Riley, S.C.; He, J.X.; Johnson, J.E.; O’Brien, T.P.; Schaeffer, J.S. Evidence of widespread natural reproduction by lake trout Salvelinus namaycush in the Michigan Waters of Lake Huron. J. Great Lakes Res. 2007, 33, 917–921. [Google Scholar] [CrossRef]
- He, J.X.; Ebener, M.P.; Riley, S.C.; Cottrill, A.; Kowalski, A.; Koproski, S.; Mohr, L.; Johnson, J.E. Lake Trout Status in the Main Basin of Lake Huron, 1973–2010. N. Am. J. Fish. Manag. 2012, 32, 402–412. [Google Scholar] [CrossRef]
- Johnson, J.E.; He, J.X.; Fielder, D.G. Rehabilitation stocking of walleyes and lake trout: Restoration of reproducing stocks in Michigan waters of Lake Huron. N. Am. J. Fish. Aquac. 2015, 77, 396–408. [Google Scholar] [CrossRef]
- Wellenkamp, W.; He, J.X.; Vercnocke, D. Using Maxillae to Estimate Ages of Lake Trout. N. Am. J. Fish. Manag. 2015, 35, 296–301. [Google Scholar] [CrossRef]
- Murphy, E.W.; Smith, M.L.; He, J.X.; Wellenkamp, W.; Barr, E.; Downey, P.C.; Miller, K.M.; Meyer, K.A. Revised fish aging techniques improve fish contaminant trend analyses in the face of changing Great Lakes food webs. J. Great Lakes Res. 2018, 44, 725–734. [Google Scholar] [CrossRef]
- Akaike, H. Information theory and an extension of the maximum likelihood principle. In Proceedings of the Second International Symposium on Information Theory; Petrov, B.N., Csáki, F., Eds.; Akadémiai Kiadó: Budapest, Hungary, 1973; pp. 267–281. [Google Scholar]
- Schwarz, G. 1978. Estimating the dimension of a model. Ann. Stat. 1978, 6, 461–464. [Google Scholar] [CrossRef]
- Burnham, K.P.; Anderson, D.R. Model Selection and Multi-Model Inference: A Practical Information-Theoretic Approach, 2nd ed.; Springer: New York, NY, USA, 2002. [Google Scholar]
- Aho, K.; Derryberry, D.; Peterson, T. Model selection for ecologists: The worldviews of AIC and BIC. Ecology 2014, 95, 631–636. [Google Scholar] [CrossRef]
- McCulloch, C.M.; Searle, S.R.; Neuhaus, J.M. Generalized, linear, and mixed Models, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Hilborn, R.; Walters, C.J. Quantitative Fisheries Stock Assessment, Choice, Dynamics and Uncertainty; Chapman and Hall: New York, NY, USA, 1992. [Google Scholar]
- Maceina, M.J. Simple application of using residuals from catch-curve regressions to assess year-class strength in fish. Fish. Res. 1997, 32, 115–121. [Google Scholar] [CrossRef]
- Tetzlaff, J.C.; Catalano, M.J.; Allen, M.S.; Pine, W.E. Evaluation of two methods for indexing fish year-class strength: Catch-curve residuals and cohort method. Fish. Res. 2011, 109, 303–310. [Google Scholar] [CrossRef]
- Ricker, W.E. Computation and interpretation of biological statistics of fish populations. Bull. Fish. Res. Board Can. 1975, 191, 382. [Google Scholar]
- Dunn, A.; Francis, R.I.C.C.; Doonan, I.J. Comparison of the Chapman–Robson and regression estimators of Z from catch-curve data when non-sampling stochastic error is present. Fish. Res. 2002, 59, 149–159. [Google Scholar] [CrossRef]
- Smith, M.W.; Then, A.Y.; Wor, C.; Ralph, G.; Pollock, K.H.; Hoenig, J.M. Recommendations for catch-curve analysis. N. Am. J. Fish. Manag. 2012, 32, 956–967. [Google Scholar] [CrossRef]
- Millar, R.B. A better estimator of mortality rate from age frequency data. Can. J. Fish. Aquat. Sci. 2015, 72, 364–375. [Google Scholar] [CrossRef]
- Nelson, G.A. Bias in common catch-curve methods applied to age frequency data from fish surveys. ICES J. Mar. Sci. 2019, 76, 2090–2101. [Google Scholar] [CrossRef]
- Mainguy, J.; Bélanger, M.; Valiquette, E.; Bernatchez, S.; L’Italien, L.; Millar, R.B.; de Andrade Moral, R. Estimating fish mortality rates from catch curves: A plea for the abandonment of Ricker (1975)’s linear regression method. J. Fish Biol. 2024, 104, 4–10. [Google Scholar] [CrossRef]
- Pinheiro, J.; Bates, D.; DebRoy, S.; Sarkar, D.; R Core Team. nlme: Linear and Nonlinear Mixed Effects Models; R Package Version 3.1-162. 2023. Available online: https://CRAN.R-project.org/package=nlme (accessed on 13 May 2025).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023; Available online: https://www.R-project.org/ (accessed on 13 May 2025).
- Eshenroder, R.L.; Payne, N.R.; Johnson, J.E.; Bowen, C.; Ebener, M.P. Lake trout rehabilitation in Lake Huron. J. Great. Lakes Res. 1995, 21, 108–127. [Google Scholar] [CrossRef]
- O’Brien, T.P.; Hondorp, D.W.; Roseman, E.F.; Esselman, P.C.; Brant, C.O.; Farha, S.A.; Phillips, K. Status and Trends of the Lake Huron Prey Fish Community, 1976–2023; Great Lakes Fishery Commission: Ann Arbor, MI, USA, 2024. [Google Scholar]
- Madenjian, C.P.; Rutherford, E.S.; Stow, C.A.; Roseman, E.F.; He, J.X. Trophic shift, not collapse. Environ. Sci. Technol. 2013, 47, 11915–11916. [Google Scholar] [CrossRef]
- He, J.X.; Bence, J.R.; Roseman, E.F.; Fielder, D.G.; Ebener, M.P. Using time-varying asymptotic length and body condition of top piscivores to indicate ecosystem regime shift in the main basin of Lake Huron: A Bayesian hierarchical modeling approach. Can. J. Fish. Aquat. Sci. 2016, 73, 1092–1103. [Google Scholar] [CrossRef]
- Rudstam, L.G.; Watkins, J.M.; Scofield, A.E.; Barbiero, R.P.; Lesht, B.; Burlakova, L.E.; Alexander, Y.; Karatayev, M.K.; Reavie, E.D.; Howell, E.T.; et al. Status of lower trophic levels in Lake Huron in 2018. In The State of Lake Huron in 2018; Riley, S.C., Ebener, M.P., Eds.; GLFC Special Publication 2020-01; Great Lakes Fishery Commission: Ann Arbor, MI, USA, 2020; pp. 14–45. [Google Scholar]
- Trumpickas, J.; Rennie, M.D.; Dunlop, E.S. Seventy years of food-web change in South Bay, Lake Huron. J. Great Lakes Res. 2022, 48, 1248–1257. [Google Scholar] [CrossRef]
Model | Model Description | df | ∆AIC | ∆BIC | −logLik |
---|---|---|---|---|---|
Equation (1) | Yc.HW, (Age, Yr) | 94 | 5.4 | 132.7 | 151.02 |
Equation (2) | Yc.HW, (Age.HW, Yr) | 94 | 0.0 | 127.2 | 148.32 |
Equation (3) | Yc.HW, (Age.HW, Yr.HW) | 94 | 0.0 | 127.2 | 148.32 |
Equation (4) | Age, (Yc.HW, Yr) | 6 | 227.3 | 46.8 | 349.95 |
Equation (5) | Age.HW, (Yc.HW, Yr) | 9 | 170.0 | 0.0 | 318.33 |
Equation (6) | Age.HW, (Yc.HW, Yr.HW) | 9 | 170.0 | 0.0 | 318.33 |
Equation (7) | Yr, (Yc.HW, Age) | 52 | 213.5 | 193.9 | 297.08 |
Equation (8) | Yr.HW, (Yc.HW, Age) | 91 | 97.6 | 214.4 | 200.14 |
Equation (9) | Yr.HW, (Yc.HW, Age.HW) | 91 | 97.6 | 214.4 | 200.14 |
Equation (10) | Yc.HW, Age, (Yr) | 95 | 21.1 | 151.9 | 157.89 |
Equation (11) | Yc.HW, Age, (Age, Yr) | 96 | 4.0 | 138.2 | 148.31 |
Equation (12) | Yc.HW, Age, (Age.HW, Yr) | 96 | 3.1 | 137.3 | 147.85 |
Equation (13) | Yc.HW, Age, (Age, Yr.HW) | 96 | 23.1 | 157.4 | 157.89 |
Equation (14) | Yc.HW, Age, (Age, Yr, Yc.HW) | 97 | 6.0 | 143.7 | 148.31 |
Model | Model Description | df | ∆AIC | ∆BIC | −logLik |
---|---|---|---|---|---|
Equation (17) | Age, (Yc, Yr) | 5 | 77.2 | 9.7 | 155.90 |
Equation (18) | Age, Yc, (Yr) | 28 | 2.0 | 2.0 | 95.31 |
Equation (19) | Age, Yr, (Yc) | 28 | 0.0 | 0.0 | 94.32 |
Model | Model Description | df | ∆AIC | ∆BIC | −logLik |
---|---|---|---|---|---|
Equation (17) | Age, (Yc.HW, Yr.HW) | 5 | 181.0 | 0.0 | 382.94 |
Equation (18) | Age, Yc.HW, (Yr.HW) | 63 | 0.0 | 42.8 | 234.46 |
Equation (19) | Age, Yr.HW, (Yc.HW) | 51 | 113.5 | 110.0 | 303.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, J.X.; Madenjian, C.P. Comparing Year-Class Strength Indices from Longitudinal Analysis of Catch-at-Age Data with Those from Catch-Curve Regression: Application to Lake Huron Lake Trout. Fishes 2025, 10, 332. https://doi.org/10.3390/fishes10070332
He JX, Madenjian CP. Comparing Year-Class Strength Indices from Longitudinal Analysis of Catch-at-Age Data with Those from Catch-Curve Regression: Application to Lake Huron Lake Trout. Fishes. 2025; 10(7):332. https://doi.org/10.3390/fishes10070332
Chicago/Turabian StyleHe, Ji X., and Charles P. Madenjian. 2025. "Comparing Year-Class Strength Indices from Longitudinal Analysis of Catch-at-Age Data with Those from Catch-Curve Regression: Application to Lake Huron Lake Trout" Fishes 10, no. 7: 332. https://doi.org/10.3390/fishes10070332
APA StyleHe, J. X., & Madenjian, C. P. (2025). Comparing Year-Class Strength Indices from Longitudinal Analysis of Catch-at-Age Data with Those from Catch-Curve Regression: Application to Lake Huron Lake Trout. Fishes, 10(7), 332. https://doi.org/10.3390/fishes10070332