The Formation Age and Geological Setting of the Huoqiu Group in the Southern Margin of North China Craton: Implication for BIF-Type Iron Prospecting Potentiality
Abstract
1. Introduction
2. Geological Background
3. Statistical Analysis of Zircon Ages and Hf Isotopic Data
3.1. Statistical Results of the Wuji and Zhouji Formations
3.2. Statistical Results of Magmatic Zircons
3.3. Zircon Hf Isotope Characteristics
4. Discussion
4.1. Existence of >3.60 Ga Crustal Components in the Huoqiu Terrane
4.2. The Formation Age and Disintegration of the Huoqiu Group
4.3. Crustal Growth and Tectonic Evolution of the Huoqiu Terrane
4.4. Genesis and Classification of the Huoqiu BIF
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- James, H.L. Sedimentary facies of iron-formation. Econ. Geol. 1954, 49, 235–293. [Google Scholar] [CrossRef]
- James, H.L. Distribution of banded iron-formation in space and time. In Developments in Precambrian Geology; Trendall, A.F., Morris, R.C., Eds.; Elsevier: Amsterdam, The Netherlands, 1983; pp. 471–490. [Google Scholar] [CrossRef]
- Bekker, A.; Slack, J.F.; Planavsky, N.; Krapez, B.; Hofmann, A.; Konhauser, K.O.; Rouxel, O.J. Iron formation: The sedimentary product of a complex interplay among mantle, tectonic, oceanic, and biospheric processes. Econ. Geol. 2010, 105, 467–508. [Google Scholar] [CrossRef]
- Zhu, X.Q.; Tang, H.S.; Sun, X.H. Genesis of banded iron formations: A series of experimental simulations. Ore Geol. Rev. 2014, 63, 465–469. [Google Scholar] [CrossRef]
- Bekker, A.; Krapež, B.; Slack, J.F.; Planavsky, N.; Hofmann, A.; Konhauser, K.O.; Rouxel, O.J. Iron formation: The sedimentary product of a complex interplay among mantle, tectonic, oceanic, and biospheric processes—A reply. Econ. Geol. 2012, 107, 379–380. [Google Scholar] [CrossRef]
- Hoffman, P.F.; Kaufman, A.J.; Halverson, G.P.; Schrag, D.P. A Neoproterozoic snowball earth. Science 1998, 281, 1342–1346. [Google Scholar] [CrossRef]
- Liu, D.Y.; Nutman, A.P.; Compston, W.; Wu, J.S.; Shen, Q.H. Remnants of ≥3800 ma crust in the chinese part of the sino-korean craton. Geology 1992, 20, 339–342. [Google Scholar] [CrossRef]
- Liu, D.Y.; Wan, Y.S.; Wu, J.S.; Wilde, S.A.; Zhou, H.Y.; Dong, C.Y.; Yin, X.Y. Eoarchean rocks and zircons in the North China Craton. Dev. Precambrian Geol. 2007, 15, 251–273. [Google Scholar] [CrossRef]
- Liu, D.Y.; Wilde, S.A.; Wan, Y.S.; Wu, J.S.; Zhou, H.Y.; Dong, C.Y.; Yin, X.Y. New U-Pb and Hf isotopic data confirm Anshan as the oldest preserved segment of the North China Craton. Am. J. Sci. 2008, 308, 200–231. [Google Scholar] [CrossRef]
- Qi, N.; Zhou, Z.J.; Zou, H.B.; Chen, Y.J. 3.85 Ga continental crust beneath the southern North China Craton: Evidence from zircon xenocrysts in Cretaceous granites. Gondwana Res. 2021, 91, 277–285. [Google Scholar] [CrossRef]
- Song, B.; Nutman, A.P.; Liu, D.Y.; Wu, J.S. 3800 to 2500 Ma crustal evolution in the Anshan area of Liaoning Province, northeastern China. Precambrian Res. 1996, 78, 79–94. [Google Scholar] [CrossRef]
- Wan, Y.S.; Liu, D.Y.; Song, B.; Wu, J.S.; Yang, C.H.; Zhang, Z.Q.; Geng, Y.S. Geochemical and Nd isotopic compositions of 3.8 Ga meta-quartz dioritic and trondhjemitic rocks from the Anshan area and their geological significance. J. Asian Earth Sci. 2005, 24, 563–575. [Google Scholar] [CrossRef]
- Wan, Y.S.; Liu, D.Y.; Nutman, A.; Zhou, H.Y.; Dong, C.Y.; Yin, X.Y.; Ma, M.Z. Multiple 3.8–3.1 Ga tectono-magmatic events in a newly discovered area of ancient rocks (the Shengousi Complex), Anshan, North China Craton. J. Asian Earth Sci. 2012, 54, 18–30. [Google Scholar] [CrossRef]
- Zhai, M.G. Multi-stage crustal growth and cratonization of the North China Craton. Geosci. Front. 2014, 5, 457–469. [Google Scholar] [CrossRef]
- Zhai, M.G.; Santosh, M. The Early Precambrian odyssey of the North China Craton: A synoptic overview. Gondwana Res. 2011, 20, 6–25. [Google Scholar] [CrossRef]
- Zhai, M.G.; Santosh, M. Metallogeny of the North China Craton: Link with secular changes in the evolving Earth. Gondwana Res. 2013, 24, 275–297. [Google Scholar] [CrossRef]
- Wang, A.; Liu, Y. Neoarchean (2.5–2.8 Ga) crustal growth of the North China Craton revealed by zircon Hf isotope: A synthesis. Geosci. Front. 2012, 3, 147–173. [Google Scholar] [CrossRef]
- Zhao, G.C.; Sun, M.; Wilde, S.A.; Li, S.Z. Late Archean to Paleoproterozoic evolution of the North China Craton: Key issues revisited. Precambrian Res. 2005, 136, 177–202. [Google Scholar] [CrossRef]
- Wan, Y.S.; Liu, D.Y.; Dong, C.Y.; Xie, H.Q.; Kröner, A.; Ma, M.Z.; Liu, S.J.; Xie, S.W.; Ren, P. Formation and evolution of archean continental crust of the North China Craton. In Precambrian Geology of China; Zhai, M.G., Ed.; Springer: Berlin/Heidelberg, German, 2015; pp. 59–136. [Google Scholar] [CrossRef]
- Diwu, C.R.; Zhang, C.L.; Sun, Y. Archean continental crust in the southern north China Craton. In Main Tectonic Events and Metallogeny of the North China Craton; Zhai, M.G., Zhao, Y., Zhao, T.P., Eds.; Springer: Singapore, 2016; pp. 29–44. [Google Scholar] [CrossRef]
- Lan, C.Y.; Yang, A.Y.; Wang, C.L.; Zhao, T.P. Geochemistry, U-Pb zircon geochronology and Sm-Nd isotopes of the Xincai banded iron formation in the southern margin of the North China Craton: Implications on Neoarchean seawater compositions and solute sources. Precambrian Res. 2019, 326, 240–257. [Google Scholar] [CrossRef]
- No. 313 Geological Team. A final report of the Huoqiu iron ore field. Anhui Bur. Geol. Miner. Resour. 1995, 2, 1–120. (In Chinese) [Google Scholar]
- Yang, X.Y.; Liu, L.; Lee, I.; Wang, B.H.; Du, Z.B.; Wang, Q.C.; Wang, Y.X.; Sun, W.D. A review on the Huoqiu banded iron formation (BIF), southeast margin of the North China Craton: Genesis of iron deposits and implications for exploration. Ore Geol. Rev. 2014, 63, 418–443. [Google Scholar] [CrossRef]
- Du, Z.B.; Yang, X.Y. The study of metallogenesis of the sedimentary metamorphic iron deposit in the Huoqiu region, west Anhui. Geotecton. Metallog. Sin. 1994, 18, 235–236. [Google Scholar]
- Huang, H. The Mineralizing Age, Forming Environment and Genesis of Hnoqin BIF Ironstone in Southern Margin of the North China Craton. Ph.D. Thesis, Chengdu University of Technology, Chengdu, China, 2014. (In Chinese). [Google Scholar]
- Wang, X.; Ma, C.Q.; Deng, J.L. Zircon U-Pb ages of metamorphic volcanic interlayer in the BIF type iron ore at the southeastern margin of the North China Craton and their constraints on the formation time of iron ore. Chin. J. Geol. 2021, 56, 951–971. (In Chinese) [Google Scholar] [CrossRef]
- Hou, K.J. Formation Mechanism of Different Types of Banded Iron Formations of China: Constraints from Iron, Silicon, Oxygen and Sulfur Isotopes. Ph.D. Thesis, China University of Geosciences Beijing, Beijing, China, 2012. (In Chinese). [Google Scholar]
- Liu, L.; Yang, X.Y. Temporal, environmental and tectonic significance of the Huoqiu BIF, southeastern North China Craton: Geochemical and geochronological constraints. Precambrian Res. 2015, 261, 217–233. [Google Scholar] [CrossRef]
- Sang, B.L.; Xing, F.M.; Chen, Y.Z. Geological Characteristics and Exploration Directions of Precambrian Metamorphic Iron Deposits, Anhui Province; The Institute of Geological Survey of Anhui Province: Hefei, China, 1981. (In Chinese) [Google Scholar]
- Liu, L.; Yang, X.Y.; Santosh, M.; Zhao, G.C.; Aulbach, S. U-Pb age and Hf isotopes of detrital zircons from the Southeastern North China Craton: Meso-to Neoarchean episodic crustal growth in a shifting tectonic regime. Gondwana Res. 2016, 35, 1–14. [Google Scholar] [CrossRef]
- Hou, K.J.; Ma, X.D.; Li, Y.H.; Liu, F.; Han, D. Chronology, geochemical, Si and Fe isotopic constraints on the origin of Huoqiu banded iron formation (BIF), southeastern margin of the North China Craton. Precambrian Res. 2017, 298, 351–364. [Google Scholar] [CrossRef]
- Wan, Y.S.; Dong, C.Y.; Wang, W.; Xie, H.Q.; Liu, D.Y. Archean basement and a Paleoproterozoic collision orogen in the Huoqiu area at the southeastern margin of North China Craton: Evidence from sensitive high resolution ion micro-probe U-Pb zircon geochronology. Acta. Geol. Sin-Engl. 2010, 84, 91–104. [Google Scholar] [CrossRef]
- Wang, Q.Y.; Zheng, J.P.; Pan, Y.M.; Dong, Y.J.; Liao, F.X.; Zhang, Y.; Zhang, L.; Zhao, G.; Tu, Z.B. Archean crustal evolution in the southeastern North China Craton: New data from the Huoqiu Complex. Precambrian Res. 2014, 255, 294–315. [Google Scholar] [CrossRef]
- Lu, J.S.; Zhai, M.G.; Kong, X.; Long, X.P.; Feng, Q. Clockwise P-T-t path for Paleoproterozoic metamorphism in the Huoqiu metamorphic complex of the southeastern North China craton. Lithos 2021, 386–387, 106014. [Google Scholar] [CrossRef]
- Pickard, A.L. SHRIMP U–Pb zircon ages of tuffaceous mudrocks in the Brockman Iron Formation of the Hamersley Range, Western Australia. Aust. J. Earth Sci. 2002, 49, 491–507. [Google Scholar] [CrossRef]
- Wilson, J.F.; Nesbitt, R.W.; Fanning, C.M. Zircon geochronology of Archaean felsic sequences in the Zimbabwe craton: A revision of greenstone stratigraphy and a model for crustal growth. Geol. Soc. Spec. Publ. 1995, 95, 109–126. [Google Scholar] [CrossRef]
- Davis, D.W. U–Pb geochronology of Archean metasedimentary rocks in the Pontiac and Abitibi subprovinces, Quebec, constraints on timing, provenance and regional tectonics. Precambrian Res. 2002, 115, 97–117. [Google Scholar] [CrossRef]
- Tera, F.; Wasserburg, G.J. U-Th-Pb systematics in three Apollo 14 basalts and the problem of initial Pb in lunar rocks. Earth Planet. Sci. Lett. 1972, 14, 281–304. [Google Scholar] [CrossRef]
- Schoene, B. U-Th-Pb geochronology. In Treatise on Geochemistry, 2nd ed.; Holland, H.D., Turekian, K.K., Eds.; Elsevier: Oxford, UK, 2014; pp. 341–378. [Google Scholar]
- Puetz, S.J.; Spencer, C.J.; Ganade, C.E. Analyses from a validated global U-Pb detrital zircon database: Enhanced methods for filtering discordant U-Pb zircon analyses and optimizing crystallization age estimates. Earth-Sci. Rev. 2021, 220, 103745. [Google Scholar] [CrossRef]
- Pereira, M.F.; Gama, C. Revisiting the intermediate sediment repository concept applied to the provenance of Zircon. Minerals 2021, 11, 233. [Google Scholar] [CrossRef]
- Albarède, F.; Scherer, E.E.; Blichert-Toft, J.; Rosing, M.; Simionovici, A.; Bizzarro, M. γ-ray irradiation in the early Solar System and the conundrum of the 176Lu decay constant. Geochim. Cosmochim. Acta 2006, 70, 1261–1270. [Google Scholar] [CrossRef]
- Blichert-Toft, J.; Albarède, F. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth Planet. Sci. Lett. 1997, 148, 243–258. [Google Scholar] [CrossRef]
- Vervoort, J.D.; Blichert-Toft, J. Evolution of the depleted mantle: Hf isotope evidence from juvenile rocks through time. Geochim. Cosmochim. Acta 1999, 63, 533–556. [Google Scholar] [CrossRef]
- Rudnick, R.; Gao, S. Composition of the continental crust. In Treatise on Geochemistry, 3rd ed.; Holland, H.D., Turekian, K.K., Eds.; Elsevier-Pergamon: Oxford, UK, 2003; pp. 1–64. [Google Scholar] [CrossRef]
- Liu, L.; Yang, X.Y.; Santosh, M.; Aulbach, S. Neoarchean to Paleoproterozoic continental growth in the southeastern margin of the North China Craton: Geochemical, zircon U-Pb and Hf isotope evidence from the Huoqiu complex. Gondwana Res. 2015, 28, 1002–1018. [Google Scholar] [CrossRef]
- Nie, F.; Zhang, Z.B.; Shi, Y.H.; Wang, J.; Tang, P.; Ren, G.X. Comparison study of typical rocks separated from Feidong Group and Huoqiu Group in the Tan-Lu Fault zone (Anhui segment). Acta Petrol. Sin. 2016, 32, 1087–1100. (In Chinese) [Google Scholar]
- Sun, G.Z.; Liu, S.W.; Cawood, P.A.; Tang, M.; van Hunen, J.; Gao, L.; Hu, Y.L.; Hu, F.Y. Thermal state and evolving geodynamic regimes of the Meso-to Neoarchean North China Craton. Nat. Commun. 2021, 12, 1–11. [Google Scholar] [CrossRef]
- Yang, D.B.; Xu, W.L.; Xu, Y.G.; Wang, Q.H.; Pei, F.P.; Wang, F. U–Pb ages and Hf isotope data from detrital zircons in the Neoproterozoic sandstones of northern Jiangsu and southern Liaoning Provinces, China: Implications for the Late Precambrian evolution of the southeastern North China Craton. Precambrian Res. 2012, 216, 162–176. [Google Scholar] [CrossRef]
- Wan, Y.S.; Dong, C.Y.; Wang, S.J.; Kröner, A.; Xie, H.Q.; Ma, M.Z.; Liu, D.Y. Middle Neoarchean magmatism in western Shandong, North China Craton: SHRIMP zircon dating and LA-ICP-MS Hf isotope analysis. Precambrian Res. 2014, 255, 865–884. [Google Scholar] [CrossRef]
- Wan, Y.S.; Liu, D.Y.; Xie, H.Q.; Kröner, A.; Ren, P.; Liu, S.J.; Ma, M.Z. Formation ages and environments of Early Precambrian banded iron formation in the North China Craton. In Main Tectonic Events and Metallogeny of the North China Craton; Zhai, M.G., Zhao, Y., Zhao, T.P., Eds.; Springer: Singapore, 2016; pp. 65–83. [Google Scholar] [CrossRef]
- Diwu, C.R.; Sun, Y.; Gao, J.F.; Fan, L.G. Early Precambrian tectonothermal events of the North China Craton: Constraints from in situ detrital zircon U-Pb, Hf and O isotopic compositions in Tietonggou Formation. Chin. Sci. Bull. 2013, 58, 3760–3770. [Google Scholar] [CrossRef]
- Wang, H.L.; Chen, L.; Sun, Y.; Liu, X.M.; Xu, X.Y.; Chen, J.L.; Zhang, H.; Diwu, C.R. ~4.1Ga xenocrystal zircon from Ordovician volcanic rocks in western part of North Qinling Orogenic Belt. Chin. Sci. Bull. 2007, 52, 1685–1693. (In Chinese) [Google Scholar] [CrossRef]
- Diwu, C.R.; Sun, Y.; Wilde, S.A.; Wang, H.L.; Dong, Z.C.; Zhang, H.; Wang, Q. New evidence for ~4.45 Ga terrestrial crust from zircon xenocrysts in Ordovician ignimbrite in the North Qinling Orogenic Belt, China. Gondwana Res. 2013, 23, 1484–1490. [Google Scholar] [CrossRef]
- Zheng, J.P.; Griffin, W.L.; O’Reilly, S.Y.; Lu, F.X.; Wang, C.Y.; Zhang, M.; Wang, F.Z.; Li, H.M. 3.6 Ga lower crust in central China: New evidence on the assembly of the North China Craton. Geology 2004, 32, 229–232. [Google Scholar] [CrossRef]
- Diwu, C.R.; Wang, T.Y.; Yan, J.H. New evidence for Neoarchean (2.7 Ga) crustal growth in the North China Craton. Precambrian Res. 2020, 350, 1–13. [Google Scholar] [CrossRef]
- Chen, Y.J.; Fu, S.G.; Hu, S.X.; Chen, Z.M.; Zhou, S.Z.; Lin, Q.Y.; Fu, G.H. The Shipaihe Movement and the disassembly of ‘DengFeng Group’. J. Stratigr. 1989, 13, 81–87. (In Chinese) [Google Scholar]
- Sun, D.Z.; Li, H.M.; Lin, Y.X.; Zhou, H.F.; Zhao, F.Q.; Tang, M. Precambrian geochronology, chronotectonic framework and model of chronocrustal structure of the Zhongtiao Mountains. Acta. Geol. Sin-Engl. 1991, 65, 216–231. [Google Scholar] [CrossRef]
- Chen, Y.J.; Zhao, Y.C. Geochemical characteristics and evolution of REE in the Early Precambrian sediments: Evidences from the southern margin of the North China craton. Episodes 1997, 20, 109–116. [Google Scholar] [CrossRef]
- Griffin, W.L.; Belousova, E.; Begg, G.; O’Reilly, S. Growth of Continental Crust from the Archean to Now. In International Discussion Meeting on Continental Geology and Tectonics. Ph.D. Thesis, Northwest University, Xi’an, China, 6–12 September 2009. [Google Scholar]
- Belousova, E.A.; Kostitsyn, Y.A.; Griffin, W.L.; Begg, G.C.; O’reilly, S.Y.; Pearson, N.J. The growth of the continental crust: Constraints from zircon Hf-isotope data. Lithos 2010, 119, 457–466. [Google Scholar] [CrossRef]
- Arndt, N.T.; Goldstein, S.L. Use and abuse of crust-formation ages. Geology 1987, 15, 893–895. [Google Scholar] [CrossRef]
- Ortega-Obregón, C.; Solari, L.; Gómez-Tuena, A.; Elías-Herrera, M.; Ortega-Gutiérrez, F.; Macías-Romo, C. Permian-Carboniferous arc magmatism in southern Mexico: U-Pb dating, trace element and Hf isotopic evidence on zircons of earliest subduction beneath the western margin of Gondwana. Int. J. Earth Sci. 2014, 103, 1287–1300. [Google Scholar] [CrossRef]
- Liu, Y.G.; Lü, X.B.; Wu, C.M.; Hu, X.G.; Duan, Z.P.; Deng, G.; Wang, H.; Zhu, X.; Zeng, H.D.; Wang, P.; et al. The migration of Tarim plume magma toward the northeast in Early Permian and its significance for the exploration of PGE-Cu-Ni magmatic sulfide deposits in Xinjiang, NW China: As suggested by Sr-Nd-Hf isotopes, sedimentology and geophysical data. Ore Geol. Rev. 2016, 72, 538–545. [Google Scholar] [CrossRef]
- Wan, Y.S.; Dong, C.Y.; Ren, P.; Bai, W.Q.; Xie, H.Q.; Liu, S.J.; Xie, S.W.; Liu, D.Y. Spatial and temporal distribution, compositional characteristics and formation and evolution of Archean TTG rocks in the North China Craton: A synthesis. Acta Petrol. Sin. 2017, 33, 1405–1419. (In Chinese) [Google Scholar]
- Condie, K.C. Episodic continental growth models: After thoughts and extensions. Tectonophysics 2000, 322, 153–162. [Google Scholar] [CrossRef]
- Condie, K.C.; Belousova, E.A.; Griffin, W.L.; Sircombe, K.N. Granitoid events in space and time: Constraints from igneous and detrital zircon age spectra. Gondwana Res. 2009, 15, 228–242. [Google Scholar] [CrossRef]
- Guan, H.; Sun, M.; Wilde, S.A.; Zhou, X.H.; Zhai, M.G. SHRIMP U-Pb zircon geochronology of the Fuping Complex: Implications for formation and assembly of the North China Craton. Precambrian Res. 2002, 113, 1–18. [Google Scholar] [CrossRef]
- Faure, M.; Trap, P.; Lin, W.; Monié, P.; Bruguier, O. Polyorogenic evolution of the Paleoproterozoic Trans-North China Belt—New insights from the Lüliangshan-Hengshan-Wutaishan and Fuping massifs. Episodes J. Int. Geosci. 2007, 30, 95–106. [Google Scholar] [CrossRef]
- Tang, J.; Zheng, Y.F.; Wu, Y.B.; Gong, B.; Liu, X.M. Geochronology and geochemistry of metamorphic rocks in the Jiaobei terrane: Constraints on its tectonic affinity in the Sulu orogen. Precambrian Res. 2007, 152, 48–82. [Google Scholar] [CrossRef]
- Jahn, B.M.; Liu, D.Y.; Wan, Y.S.; Song, B.; Wu, J.S. Archean crustal evolution of the Jiaodong Peninsula, China, as revealed by zircon SHRIMP geochronology, elemental and Nd-isotope geochemistry. Am. J. Sci. 2008, 308, 232–269. [Google Scholar] [CrossRef]
- Wan, Y.S.; Liu, D.Y.; Wang, W.; Song, T.R.; Kröner, A.; Dong, C.Y.; Yin, X.Y. Provenance of Meso-to Neoproterozoic cover sediments at the Ming Tombs, Beijing, North China Craton: An integrated study of U-Pb dating and Hf isotopic measurement of detrital zircons and whole-rock geochemistry. Gondwana Res. 2011, 20, 219–242. [Google Scholar] [CrossRef]
- Dong, X.J.; Xu, Z.Y.; Liu, Z.H.; Sha, Q. Zircon U-Pb geochronology of Archean high-grade metamorphic rocks from Xi Ulanbulang area, central Inner Mongolia. Sci. China Earth Sci. 2012, 55, 204–212. [Google Scholar] [CrossRef]
- Han, B.F.; Xu, Z.; Ren, R.; Li, L.L.; Yang, J.H.; Yang, Y.H. Crustal growth and intracrustal recycling in the middle segment of the Trans-North China Orogen, North China Craton: A case study of the Fuping Complex. Geol. Mag. 2012, 149, 729–742. [Google Scholar] [CrossRef]
- Yang, C.H.; Du, L.L.; Ren, L.D.; Song, H.X.; Wan, Y.S.; Xie, H.Q.; Geng, Y.S. Delineation of the ca. 2.7 Ga TTG gneisses in the Zanhuang Complex, North China Craton and its geological implications. J. Asian Earth Sci. 2013, 72, 178–189. [Google Scholar] [CrossRef]
- Xie, S.W.; Xie, H.Q.; Wang, S.J.; Kröner, A.; Liu, S.J.; Zhou, H.Y.; Ma, M.Z.; Dong, C.Y.; Liu, D.Y.; Wan, Y.S. Ca. 2.9 Ga granitoid magmatism in eastern Shandong, North China Craton: Zircon dating, Hf-in-zircon isotopic analysis and whole-rock geochemistry. Precambrian Res. 2014, 255, 538–562. [Google Scholar] [CrossRef]
- Zhou, Y.Y.; Zhao, T.P.; Zhai, M.G.; Gao, J.F.; Sun, Q.Y. Petrogenesis of the Archean tonalite-trondhjemite-granodiorite (TTG) and granites in the Lushan area, southern margin of the North China Craton: Implications for crustal accretion and transformation. Precambrian Res. 2014, 255, 514–537. [Google Scholar] [CrossRef]
- Guo, B.R.; Liu, S.W.; Zhang, J.; Yan, M. Zircon U-Pb-Hf isotope systematics and geochemistry of Helong granite-greenstone belt in Southern Jilin Province, China: Implications for Neoarchean crustal evolution of the northeastern margin of North China Craton. Precambrian Res. 2015, 271, 254–277. [Google Scholar] [CrossRef]
- Wu, M.L.; Lin, S.F.; Wan, Y.S.; Gao, J.F.; Stern, R.A. Episodic Archean crustal accretion in the North China Craton: Insights from integrated zircon U-Pb-Hf-O isotopes of the Southern Jilin Complex, northeast China. Precambrian Res. 2021, 358, 106–150. [Google Scholar] [CrossRef]
- Bao, H.; Liu, S.W.; Wan, Y.S.; Wang, M.J.; Sun, G.Z.; Gao, L.; Wang, W.; Guo, R.R.; Fu, J.H. Neoarchean granitoids and tectonic regime of lateral growth in northeastern North China Craton. Gondwana Res. 2022, 107, 176–200. [Google Scholar] [CrossRef]
- Chen, Y.J.; Pirajno, F.; Li, N.; Deng, X.H.; Yang, Y.F. Geology and Geochemistry of Molybdenum Deposits in the Qinling Orogen, P R China; Springer: Singapore, 2022; pp. 1–842. [Google Scholar] [CrossRef]
- Zhao, G.C.; Wilde, S.A.; Cawood, P.A.; Sun, M. Archean blocks and their boundaries in the North China Craton: Lithological, geochemical, structural and P-T path constraints and tectonic evolution. Precambrian Res. 2001, 107, 45–73. [Google Scholar] [CrossRef]
- Huston, D.L.; Logan, G.A. Barite, BIFs and bugs: Evidence for the evolution of the Earth’s early hydrosphere. Earth Planet. Sci. Lett. 2004, 220, 41–55. [Google Scholar] [CrossRef]
- Liu, L.; Yang, X.Y. Geochemical characteristics of the Huoqiu BIF ore deposit in Anhui Province and their metallogenic significance: Taking the Bantaizi and Zhouyoufang deposits as examples. Acta Petrol. Sin. 2013, 29, 2551–2566. [Google Scholar]
- Hou, K.J.; Ma, X.D.; Li, Y.H.; Liu, F.; Han, D. Genesis of Huoqiu banded iron formation (BIF), southeastern North China Craton, constraints from geochemical and Hf-OS isotopic characteristics. J. Geochem. Explor. 2019, 197, 60–69. [Google Scholar] [CrossRef]
- Huang, H.; Zhang, L.C.; Liu, X.F.; Li, H.Z.; Liu, L. Geological and geochemical characteristics of the Lee Laozhuang iron mine in Huoqiu iron deposit: Implications for sedimentary environment. Acta Petrol. Sin. 2013, 29, 2593–2605. (In Chinese) [Google Scholar]
- Tang, H.S.; Chen, Y.J.; Santosh, M.; Zhong, H.; Yang, T. REE geochemistry of carbonates from the Guanmenshan Formation, Liaohe Group, NE Sino-Korean Craton: Implications for seawater compositional change during the Great Oxidation Event. Precambrian Res. 2013, 227, 316–336. [Google Scholar] [CrossRef]
- Huang, H.; Zhang, L.C. Genesis of the Lilaozhuang Iron-Magnesite deposit in the Huoqiu Area of Anhui Province: Indicative significance of Carbon and Oxygen isotopes. Bull. Mineral., Petrol. Geochem. 2020, 39, 1312–1324. (In Chinese) [Google Scholar] [CrossRef]
- Wang, C.L.; Zhai, M.G.; Robbins, L.J.; Peng, Z.D.; Zhang, X.; Zhang, L.C. Late Archean shelf-to-basin iron shuttle contributes to the formation of the world-class Dataigou banded iron formation. Econ. Geol. 2024, 119, 725–736. [Google Scholar] [CrossRef]
- Tang, H.S.; Chen, Y.J. Global glaciations and atmospheric change at ca. 2.3 Ga. Geosci. Front. 2013, 4, 583–596. [Google Scholar] [CrossRef]
- Chen, Y.J.; Tang, H.S. The Great Oxidation Event and Its Records in North China Craton. In Main Tectonic Events and Metallogeny of the North China Craton; Zhai, M.G., Zhao, Y., Zhao, T.P., Eds.; Springer: Singapore, 2016; pp. 218–304. [Google Scholar] [CrossRef]
Sample | Formation | Lithology | Zircon Type | Num | Method | Min Age (Ma) | Max Age (Ma) | Weight-Mean Age (Ma) | Upper Intercept Age (Ma) | Reference |
---|---|---|---|---|---|---|---|---|---|---|
Para-metamorphic rocks | ||||||||||
ZYF1 | Zhouji | BIF ore | Detrital | 6 | LA-MC-ICPMS | 2735 ± 13 | 2984 ± 13 | 2769 ± 16 | [28] | |
ZYF9 | Zhouji | BIF ore | Detrital | 5 | LA-MC-ICPMS | 2752 ± 9 | 2779 ± 9 | 2756 ± 18 | [28] | |
Detrital | 3 | LA-MC-ICPMS | 2930 ± 11 | 2965 ± 9 | 2961 ± 23 | [28] | ||||
ZY11-3-9 | Zhouji | Biotite gneiss | Detrital | 5 | LA-ICPMS | 2989 ± 6 | 3137 ± 3 | 3015 ± 34 | [31] | |
Detrital | 10 | LA-ICPMS | 2747 ± 4 | 2822 ± 2 | 2760 ± 12 | [31] | ||||
Detrital | 4 | LA-ICPMS | 2500 ± 7 | 2561 ± 4 | 2546 ± 12 | [31] | ||||
Metamorphic | 1 | LA-ICPMS | 1898 ± 9 | 1885 ± 17 | [31] | |||||
ZK26-3 | Zhouji | Actinolite gneiss | Detrital | 27 | LA-ICPMS | 2735 ± 18 | 2867 ± 17 | 2765 ± 14 | 2772 ± 9 | [33] |
Detrital | 1 | LA-ICPMS | 2939 ± 21 | [33] | ||||||
BT3.406 | Zhouji | Biotite paragneiss | Detrital | 24 | LA-MC-ICPMS | 2690 ± 11 | 3058 ± 10 | [30] | ||
CL | Wuji | Granulitite | Detrital | 16 | Cameca U-Pb | 2687 ± 6 | 2991 ± 9 | 2770 ± 16 | [25] | |
ZK221.1 | Wuji | BIF ore | Detrital | 14 | LA-MC-ICPMS | 2716 ± 12 | 2783 ± 13 | 2750 ± 14 | [28] | |
Detrital | 4 | LA-MC-ICPMS | 2982 ± 11 | 3169 ± 13 | [28] | |||||
HQ0710 | Wuji | two-mica feldspar quartzite | Detrital | 10 | SHRIMP | 2964 ± 17 | 3026 ± 10 | 3011 ± 14 | [32] | |
Detrital | 6 | SHRIMP | 2693 ± 9 | 2779 ± 14 | 2765 ± 15 | [32] | ||||
HQ0711 | Wuji | Biotite-hornblende-garnet gneiss | Detrital | 9 | SHRIMP | 2950 ± 18 | 3017 ± 9 | 2982 ± 18 | [32] | |
Detrital | 6 | SHRIMP | 2706 ± 16 | 2764 ± 13 | 2739 ± 18 | [32] | ||||
HQ0719 | Wuji | Garnet-hornblende-biotite gneiss | Detrital | 5 | SHRIMP | 2977 ± 12 | 3026 ± 9 | 3002 ± 24 | [32] | |
Detrital | 8 | SHRIMP | 2706 ± 19 | 2782 ± 12 | 2765 ± 10 | [32] | ||||
ZK26-1 | Garnet-biotite gneiss | Detrital | 2 | LA-ICPMS | 2862 ± 26 | 2903 ± 39 | 2875 ± 44 | [33] | ||
Detrital | 6 | LA-ICPMS | 2720 ± 42 | 2810 ± 28 | 2765 ± 24 | [33] | ||||
Detrital | 24 | LA-ICPMS | 2939 ± 31 | 3055 ± 30 | 3019 ± 12 | 3023 ± 12 | [33] | |||
LY105.461 | Wuji | biotite gneiss | Detrital | 25 | LA-MC-ICPMS | 2343 ± 10 | 3997 ± 8 | [30] | ||
ZZ221.8 | Wuji | Biotite-quartz gneiss | Detrital | 26 | LA-MC-ICPMS | 2553 ± 12 | 2948 ± 18 | [30] | ||
WS070-1 | Wuji | Biotite gneiss | Detrital | 0 | LA-ICPMS | 3190 ± 99 | [47] | |||
Detrital | 13 | LA-ICPMS | 2536 ± 75 | 2879 ± 33 | 2736 ± 53 | 2784 ± 45 | [47] | |||
Ortho-metamorphic rocks | ||||||||||
ZJ | Zhouji | Plagioclase amphibolite | Magmatic | 2 | Cameca | 2698 ± 10 | 2740 ± 9 | 2728 ± 45 | [25] | |
ZK2512-2 | Zhouji | Hornblende gneiss | Magmatic | 43 | LA-ICPMS | 2684 ± 34 | 2867 ± 32 | 2750 ± 15 | [26] | |
ZK2918-1 | Zhouji | Biotite gneiss | Magmatic | 73 | LA-ICPMS | 2680 ± 27 | 2850 ± 30 | 2740 ± 7 | [26] | |
Inherited | 3 | LA-ICPMS | 2916 ± 46 | 3181 ± 40 | [26] | |||||
313ZX84-3 | Wuji | Magnetite amphibolite | Magmatic | 8 | LA-ICPMS | 2895 ± 119 | 3065 ± 122 | 2946 ± 41 | [23] | |
ZX84-3 | Wuji | Magnetite amphibolite | Magmatic | 11 | LA-ICPMS | 2947 ± 12 | 3039 ± 13 | 3012 ± 21 | [46] | |
ZK122-1 | Wuji | Amphibolite | Magmatic | 18 | LA-MC-ICPMS | 2762 ± 11 | 3023 ± 16 | 2966 ± 32 | [46] | |
WS069-1 | Wuji | Magnetite garnet-bearing amphibolite | Magmatic | 12 | LA-ICPMS | 2621 ± 33 | 2828 ± 32 | 2797 ± 64 | [46] | |
Inherited | 2 | LA-ICPMS | 2955 ± 39 | 3021 ± 40 | [47] | |||||
Intrusive rocks | ||||||||||
313ZX44-9 | Zhouji | Granite | Magmatic | 14 | LA-ICPMS | 1820 ± 130 | [23] | |||
313ZX44-11 | Zhouji | Migmatitic granite | Magmatic | 22 | LA-ICPMS | 1897 ± 95 | [23] | |||
ZX44-9 | Zhouji | Granite | Magmatic | 23 | LA-MC-ICPMS | 1823 ± 41 | [46] | |||
ZX44-11 | Zhouji | Migmatitic granite | Magmatic | 32 | LA-MC-ICPMS | 1916 ± 42 | [46] | |||
TTG gneisses | ||||||||||
HQ0708 | Gneissic tonalite | Magmatic | 17 | SHRIMP | 2754 ± 13 | [32] | ||||
Metamorphic | 5 | SHRIMP | 1842 ± 17 | [32] | ||||||
HQ0704 | Gneissic tonalite | Magmatic | 11 | SHRIMP | 2564 ± 25 | [32] | ||||
Inherited | 2 | SHRIMP | 2697 ± 22 | [32] | ||||||
FJZK01-171 | Augen potassic granite | Magmatic | 23 | LA-ICPMS | 2699 ± 23 | 2708 ± 50 | [33] | |||
Inherited | 7 | LA-ICPMS | 3262 ± 35 | [33] | ||||||
NZZK01-324 | Migmatized syenogranite | Magmatic | 30 | LA-ICPMS | 2709 ± 21 | [33] | ||||
ZK3-511 | TTG gneiss | Magmatic | 30 | LA-MC-ICPMS | 2765 ± 11 | [46] | ||||
ZK34-40 | TTG gneiss | Magmatic | 10 | LA-MC-ICPMS | 2752 ± 24 | [46] | ||||
Metamorphic | 8 | LA-MC-ICPMS | 2444 ± 29 | [46] | ||||||
ZK122-2 | TTG gneiss | Magmatic | 9 | LA-MC-ICPMS | 2711 ± 25 | [46] | ||||
Inherited | 7 | LA-MC-ICPMS | 2905 ± 23 | [46] | ||||||
ZK122-3 | TTG gneiss | Magmatic | 32 | LA-ICPMS | 2914 ± 14 | [46] | ||||
18ABH01-1 | Granodioritic gneiss | Magmatic | 25 | LA-ICPMS | 2911 ± 11 | [48] | ||||
18AHB02-1 | Granodioritic gneiss | Magmatic | 26 | LA-ICPMS | 2929 ± 6 | [48] | ||||
18AHB02-3 | Trondhjemitic gneiss | Magmatic | 25 | LA-ICPMS | 2931 ± 5 | [48] |
Sample | Content (ppm) | Th/U | Isotopic Ratios | Isotopic Ages (Ma) | Concordance (%) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Spot | Pb | U | 206Pb/238U | 1σ | 207Pb/235U | 1σ | 207Pb/206Pb | 1σ | 206Pb/238U | 1σ | 207Pb/235U | 1σ | 207Pb /206Pb | 1σ | 1σ | |
LY105.461 | ||||||||||||||||
15 | 96 | 165 | 0.82 | 0.4700 | 0.0032 | 9.9331 | 0.0801 | 0.1533 | 0.0009 | 2483 | 17 | 2429 | 20 | 2383 | 10 | 104 |
17 | 71 | 125 | 0.53 | 0.4834 | 0.0039 | 9.9811 | 0.0869 | 0.1498 | 0.0009 | 2542 | 20 | 2433 | 21 | 2343 | 10 | 108 |
22 | 64 | 104 | 0.57 | 0.4861 | 0.0036 | 10.1009 | 0.1233 | 0.1507 | 0.0012 | 2554 | 19 | 2444 | 30 | 2354 | 14 | 108 |
31 | 31 | 62 | 0.27 | 0.4198 | 0.0029 | 8.9011 | 0.0631 | 0.1538 | 0.0010 | 2260 | 16 | 2328 | 17 | 2388 | 11 | 95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, L.; Tang, R.; Chen, X.; Cao, J.; Chen, Y. The Formation Age and Geological Setting of the Huoqiu Group in the Southern Margin of North China Craton: Implication for BIF-Type Iron Prospecting Potentiality. Minerals 2025, 15, 695. https://doi.org/10.3390/min15070695
Xue L, Tang R, Chen X, Cao J, Chen Y. The Formation Age and Geological Setting of the Huoqiu Group in the Southern Margin of North China Craton: Implication for BIF-Type Iron Prospecting Potentiality. Minerals. 2025; 15(7):695. https://doi.org/10.3390/min15070695
Chicago/Turabian StyleXue, Lizhi, Rongzhen Tang, Xinkai Chen, Jiashuo Cao, and Yanjing Chen. 2025. "The Formation Age and Geological Setting of the Huoqiu Group in the Southern Margin of North China Craton: Implication for BIF-Type Iron Prospecting Potentiality" Minerals 15, no. 7: 695. https://doi.org/10.3390/min15070695
APA StyleXue, L., Tang, R., Chen, X., Cao, J., & Chen, Y. (2025). The Formation Age and Geological Setting of the Huoqiu Group in the Southern Margin of North China Craton: Implication for BIF-Type Iron Prospecting Potentiality. Minerals, 15(7), 695. https://doi.org/10.3390/min15070695