Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (294)

Search Parameters:
Keywords = Glycyrrhiza

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 5809 KiB  
Article
Multistrain Microbial Inoculant Enhances Yield and Medicinal Quality of Glycyrrhiza uralensis in Arid Saline–Alkali Soil and Modulate Root Nutrients and Microbial Diversity
by Jun Zhang, Xin Li, Peiyao Pei, Peiya Wang, Qi Guo, Hui Yang and Xian Xue
Agronomy 2025, 15(8), 1879; https://doi.org/10.3390/agronomy15081879 - 3 Aug 2025
Viewed by 181
Abstract
Glycyrrhiza uralensis (G. uralensis), a leguminous plant, is an important medicinal and economic plant in saline–alkaline soils of arid regions in China. Its main bioactive components include liquiritin, glycyrrhizic acid, and flavonoids, which play significant roles in maintaining human health and [...] Read more.
Glycyrrhiza uralensis (G. uralensis), a leguminous plant, is an important medicinal and economic plant in saline–alkaline soils of arid regions in China. Its main bioactive components include liquiritin, glycyrrhizic acid, and flavonoids, which play significant roles in maintaining human health and preventing and adjuvantly treating related diseases. However, the cultivation of G. uralensis is easily restricted by adverse soil conditions in these regions, characterized by high salinity, high alkalinity, and nutrient deficiency. This study investigated the impacts of four multistrain microbial inoculants (Pa, Pb, Pc, Pd) on the growth performance and bioactive compound accumulation of G. uralensis in moderately saline–sodic soil. The aim was to screen the most beneficial inoculant from these strains, which were isolated from the rhizosphere of plants in moderately saline–alkaline soils of the Hexi Corridor and possess native advantages with excellent adaptability to arid environments. The results showed that inoculant Pc, comprising Pseudomonas silesiensis, Arthrobacter sp. GCG3, and Rhizobium sp. DG1, exhibited superior performance: it induced a 0.86-unit reduction in lateral root number relative to the control, while promoting significant increases in single-plant dry weight (101.70%), single-plant liquiritin (177.93%), single-plant glycyrrhizic acid (106.10%), and single-plant total flavonoids (107.64%). Application of the composite microbial inoculant Pc induced no significant changes in the pH and soluble salt content of G. uralensis rhizospheric soils. However, it promoted root utilization of soil organic matter and nitrate, while significantly increasing the contents of available potassium and available phosphorus in the rhizosphere. High-throughput sequencing revealed that Pc reorganized the rhizospheric microbial communities of G. uralensis, inducing pronounced shifts in the relative abundances of rhizospheric bacteria and fungi, leading to significant enrichment of target bacterial genera (Arthrobacter, Pseudomonas, Rhizobium), concomitant suppression of pathogenic fungi, and proliferation of beneficial fungi (Mortierella, Cladosporium). Correlation analyses showed that these microbial shifts were linked to improved plant nutrition and secondary metabolite biosynthesis. This study highlights Pc as a sustainable strategy to enhance G. uralensis yield and medicinal quality in saline–alkali ecosystems by mediating microbe–plant–nutrient interactions. Full article
(This article belongs to the Section Farming Sustainability)
Show Figures

Figure 1

20 pages, 8662 KiB  
Article
Analysis of Composition, Structure, and Driving Factors of Root-Associated Endophytic Bacterial Communities of the Chinese Medicinal Herb Glycyrrhiza
by Zhilin Zhang, Aifang Ma, Tao Zhang, Li Zhuang and Hanli Dang
Biology 2025, 14(7), 856; https://doi.org/10.3390/biology14070856 - 15 Jul 2025
Viewed by 342
Abstract
The role of endophytic bacteria in the interaction between medicinal plants and microorganisms, secondary metabolite accumulation, plant nutrient changes, as well as their interactions with microbial communities, needs to be investigated in medicinal plants. In this study, 16S rRNA genes of endophytic bacterial [...] Read more.
The role of endophytic bacteria in the interaction between medicinal plants and microorganisms, secondary metabolite accumulation, plant nutrient changes, as well as their interactions with microbial communities, needs to be investigated in medicinal plants. In this study, 16S rRNA genes of endophytic bacterial communities in the root systems of three medicinal licorice species at different root depths (0–20, 20–40, and 40–60 cm) were sequenced using high-throughput sequencing technology, and their relationships with plant and soil factors were investigated. Our study indicated that the influence of Glycyrrhiza species on the structure of endophytic bacterial communities is significantly greater than that of root depth, and there are significant differences in the structure of endophytic bacterial communities at different sampling sites. At the phylum level, Proteobacteria and Actinobacteria are the dominant phylum. Functional gene prediction shows that functional genes related to metabolism dominate the endogenous bacterial community. Plant factors and soil physicochemical properties are important environmental drivers affecting the distribution of endophytic bacterial communities. This study will give new information on plant–soil–endophyte interactions and open up new possibilities for medicinal licorice development and use. Full article
(This article belongs to the Section Microbiology)
Show Figures

Figure 1

27 pages, 1730 KiB  
Review
Harnessing Liquiritigenin: A Flavonoid-Based Approach for the Prevention and Treatment of Cancer
by Anjana Sajeev, Babu Santha Aswani, Mohammed S. Alqahtani, Mohamed Abbas, Gautam Sethi and Ajaikumar B. Kunnumakkara
Cancers 2025, 17(14), 2328; https://doi.org/10.3390/cancers17142328 - 13 Jul 2025
Viewed by 390
Abstract
Background/Objectives: The integration of natural compounds in cancer research marked a crucial shift in the modern medical landscape, through a growing acknowledgment of their potential as efficient, less toxic, and cost-effective alternatives to contemporary chemotherapeutics. Liquiritigenin (LIQ) is a compound obtained from different [...] Read more.
Background/Objectives: The integration of natural compounds in cancer research marked a crucial shift in the modern medical landscape, through a growing acknowledgment of their potential as efficient, less toxic, and cost-effective alternatives to contemporary chemotherapeutics. Liquiritigenin (LIQ) is a compound obtained from different plants, the most important being the Glycyrrhiza species, commonly known as licorice. Methods: This review compiles findings from previously published preclinical studies and experimental research articles focusing on LIQ’s pharmacological effects, with particular attention to its anticancer potential. The relevant literature was identified using established scientific databases and selected based on relevance to cancer biology and LIQ-associated signaling pathways. Results: LIQ demonstrates anti-oxidant, anti-inflammatory, and anti-proliferative effects. It exerts its potential anticancer activities by inducing apoptosis, preventing cell proliferation, and modulating various signaling pathways such as nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), phosphoinositide 3 kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR), mitogen-activated protein kinase (MAPK), and so on. Conclusions: LIQ represents a promising natural agent for cancer therapy, with evidence supporting its multifunctional role in targeting tumor growth and survival mechanisms. By providing a detailed analysis of LIQ, this review aims to highlight its therapeutic efficacy across various cancer types and emphasize its importance as a promising compound in cancer research. In addition, this review seeks to bridge the gap between traditional medicine and modern pharmacology and paves the way for LIQ’s clinical application in cancer therapy. Full article
(This article belongs to the Special Issue Recent Updates and Future Perspectives of Anti-Cancer Agents)
Show Figures

Figure 1

16 pages, 2599 KiB  
Article
Synergistic Effects of Rhizophagus irregularis and Trichoderma harzianum Co-Inoculation on Enhancing Drought Tolerance and Secondary Metabolite Production in Licorice (Glycyrrhiza uralensis)
by Kangxu Zhang, Mengyao Sun, Haiyan Feng, Xia Wei, Wei Xie, Wei Fu, Lanping Guo, Xin Zhang, Zhipeng Hao and Baodong Chen
J. Fungi 2025, 11(7), 488; https://doi.org/10.3390/jof11070488 - 27 Jun 2025
Viewed by 373
Abstract
Drought stress significantly hinders the cultivation of medicinal plants such as licorice (Glycyrrhiza uralensis), valued for its bioactive compounds, glycyrrhizin, and liquiritin. This study aims to investigate how co-inoculation with arbuscular mycorrhizal fungus Rhizophagus irregularis and Trichoderma harzianum can enhance licorice [...] Read more.
Drought stress significantly hinders the cultivation of medicinal plants such as licorice (Glycyrrhiza uralensis), valued for its bioactive compounds, glycyrrhizin, and liquiritin. This study aims to investigate how co-inoculation with arbuscular mycorrhizal fungus Rhizophagus irregularis and Trichoderma harzianum can enhance licorice drought tolerance and secondary metabolite production, providing insights for sustainable agriculture in arid regions. The results demonstrate that inoculation with R. irregularis significantly improved biomass, drought stress tolerance, and increased glycyrrhizin and liquiritin concentrations by 29.9% and 3.3-fold, respectively, particularly under drought conditions. Co-inoculation with T. harzianum further boosted glycyrrhizin yield by 93.7%, indicating a synergistic relationship between the two microbes. The expression of key biosynthetic genes, including squalene synthase (SQS1) for glycyrrhizin and chalcone synthase (CHS) for liquiritin, was significantly upregulated, enhancing water use efficiency and the biosynthesis of secondary metabolites. Nutrient analysis showed improved phosphorus uptake, alongside reduced root carbon and nitrogen concentrations, leading to greater nutrient utilization efficiency. These findings suggest that co-inoculating R. irregularis and T. harzianum is a promising approach to improving licorice growth and medicinal quality under drought stress, with broad applications for sustainable crop management. Full article
(This article belongs to the Special Issue New Insights into Arbuscular Mycorrhizal Fungi)
Show Figures

Figure 1

17 pages, 35398 KiB  
Article
Hwanhon Decoction Ameliorates Cognitive Impairment and Suppresses Neuroinflammation in a Chronic Cerebral Hypoperfusion Mouse Model: Involvement of Key Genes Identified by Network Pharmacology
by Sieun Kang, Chiyeon Lim, Sehyun Lim, Kyoung-Min Kim and Suin Cho
Genes 2025, 16(7), 746; https://doi.org/10.3390/genes16070746 - 26 Jun 2025
Viewed by 524
Abstract
Background: With an aging population, dementia prevalence is increasing in Korea. Vascular dementia (VaD), often caused by cerebrovascular disease (CVD), is more common in Korea compared to Western countries. Hwanhon decoction, a traditional medicine containing Ephedrae Herba, Armeniacae Semen, and Glycyrrhizae Radix et [...] Read more.
Background: With an aging population, dementia prevalence is increasing in Korea. Vascular dementia (VaD), often caused by cerebrovascular disease (CVD), is more common in Korea compared to Western countries. Hwanhon decoction, a traditional medicine containing Ephedrae Herba, Armeniacae Semen, and Glycyrrhizae Radix et Rhizoma, is traditionally used for CVD-related loss of consciousness. This study aimed to assess the cognitive improvement and anti-inflammatory effects of Hwanhon decoction extract (HHex) in a mouse model of VaD caused by chronic cerebral hypoperfusion (CCH). Methods: Key pharmacologically active ingredients of Hwanhon decoction were identified using network pharmacology analysis. VaD was induced in C57Bl/6 male mice through bilateral common carotid artery stenosis (BCAS). Mice were divided into sham surgery, BCAS control, low-dose HHex (L-HHex), and high-dose HHex (H-HHex) groups (n = 5/group). After CCH induction, L-HHex or H-HHex was administered thrice weekly for six weeks. Cognitive function, inflammatory markers, and RNA sequencing data were analyzed. Results: HHex administration reduced cognitive impairment and mitigated CCH-induced astrocyte activation. Inflammatory responses mediated by reactive astrocytes were suppressed, and network pharmacology predicted central proteins influencing HHex’s activity. Conclusions: HHex alleviated cognitive dysfunction and reduced inflammation in a VaD mouse model, suggesting its potential as a therapeutic agent for vascular dementia associated with impaired cerebral blood flow. Full article
(This article belongs to the Special Issue Genetics and Treatment in Neurodegenerative Diseases)
Show Figures

Figure 1

12 pages, 1113 KiB  
Systematic Review
Efficacy of Glycyrrhiza glabra in the Treatment of Recurrent Aphthous Stomatitis: A Systematic Review of Randomized Controlled Trials
by Annisa Sabrina Iskandar, Ghinaya Shaliha Nursaida Nisa, Hanifa Queen, Satutya Wicaksono, Meircurius Dwi Condro Surboyo and Diah Savitri Ernawati
J. Oman Med. Assoc. 2025, 2(1), 8; https://doi.org/10.3390/joma2010008 - 9 Jun 2025
Viewed by 793
Abstract
Glycyrrhiza glabra (licorice) has been used as an herbal medicine for a long time due to its anti-inflammatory, antioxidant, and antimicrobial properties. Additionally, multiple reports have demonstrated its ability to promote wound healing. Several randomized controlled or clinical trials (RCTs) have demonstrated its [...] Read more.
Glycyrrhiza glabra (licorice) has been used as an herbal medicine for a long time due to its anti-inflammatory, antioxidant, and antimicrobial properties. Additionally, multiple reports have demonstrated its ability to promote wound healing. Several randomized controlled or clinical trials (RCTs) have demonstrated its potentially therapeutic effects in oral mucosal diseases, especially in recurrent aphthous stomatitis (RAS). This systematic review aims to summarize the evidence for Glycyrrhiza glabra in treating RAS. A systematic search was performed across five databases: PubMed (Medline), ScienceDirect, Scopus document, Cochrane Central Register of Controlled Trials (CENTRAL), and the Cochrane Library Database of Systematic Reviews. This study was reported following the PRISMA guidelines. RCT study using Glycyrrhiza glabra for treating RAS was included in this study with several reported outcomes like changes in ulcer diameter, pain, and healing periods. Seven RCTs were included, which used Glycyrrhiza glabra in the form of patches, pastes, mucoadhesive tablets, and mouthwashes for treating RAS. Glycyrrhiza glabra treatment in various regimens showed significant improvements in pain, ulcer diameter, and healing time in patients with RAS. This review suggests the potential of Glycyrrhiza glabra as an alternative treatment option for RAS. Full article
Show Figures

Graphical abstract

21 pages, 2306 KiB  
Article
ZnO NPs: A Nanomaterial-Based Fertilizer That Significantly Enhanced Salt Tolerance of Glycyrrhiza uralensis Fisch and Improved the Yield and Quality of Its Root
by Ning Wu and Miao Ma
Plants 2025, 14(12), 1763; https://doi.org/10.3390/plants14121763 - 9 Jun 2025
Viewed by 621
Abstract
Glycyrrhiza uralensis Fisch. is an important economic plant. With its wild populations on the brink of extinction and the area of salinized soil increasing sharply, farmers have gradually used saline soil to carry out artificial cultivation of the licorice. However, the salt stress [...] Read more.
Glycyrrhiza uralensis Fisch. is an important economic plant. With its wild populations on the brink of extinction and the area of salinized soil increasing sharply, farmers have gradually used saline soil to carry out artificial cultivation of the licorice. However, the salt stress has led to a significant decrease in the yield and quality of its medicinal organ (root), seriously restricting the sustainable development of the licorice industry. Therefore, we investigated zinc oxide nanoparticles (ZnO NPs) as a nano-fertilizer to enhance root biomass and bioactive compound accumulation under salinity. Our results indicate that under 160 mM NaCl stress, the application of 30 mg/kg ZnO NPs increased the root biomass of the licorice and the contents of glycyrrhizic acid, glycyrrhizin, and total flavonoids in the roots by 182%, 158%, 87%, and 201%, respectively. And the ZnO treatment made the enzyme activities of SOD, CAT, and POD exhibit increase, and made the levels of superoxide anions, electrolyte leakage, soluble sugar, and proline reduce. These results demonstrate that ZnO NPs not only enhance salt tolerance but also redirect metabolic resources toward medicinal compound biosynthesis. Our findings provide a mechanistic basis for utilizing nanotechnology to sustainably cultivate the licorice in marginal saline environments, bridging agricultural productivity and pharmacological value. Full article
Show Figures

Graphical abstract

28 pages, 7191 KiB  
Article
Selenium Alleviates Cadmium Toxicity by Regulating Carbon Metabolism, AsA-GSH Cycle, and Cadmium Transport in Glycyrrhiza uralensis Fisch. Seedlings
by Xuerong Zheng, Jiafen Luo, Xin Li, Chaoyue Zhang, Guigui Wan, Caixia Xia and Jiahui Lu
Plants 2025, 14(12), 1736; https://doi.org/10.3390/plants14121736 - 6 Jun 2025
Viewed by 697
Abstract
Cadmium (Cd) accumulation in plants hinders their growth and development while posing significant risks to human health through food chain transmission. Glycyrrhiza uralensis Fisch. (G. uralensis) is a medicinal plant valued for its roots and plays a crucial role in harmonizing [...] Read more.
Cadmium (Cd) accumulation in plants hinders their growth and development while posing significant risks to human health through food chain transmission. Glycyrrhiza uralensis Fisch. (G. uralensis) is a medicinal plant valued for its roots and plays a crucial role in harmonizing various herbs in traditional Chinese medicine prescriptions. However, widespread Cd contamination in soil limits safe cultivation and application. Selenium (Se), a beneficial element in plants, can regulate plant growth by enhancing carbon metabolism and reducing heavy metal uptake. This study aimed to elucidate the protective mechanisms of Se application in licorice plants exposed to 20 μM Cd. Experiments with 1 and 5 μM of Se revealed that 1 μM of Se provided the best protective effects. This concentration reduced the Cd2+ content in the roots of G. uralensis, while significantly increasing plant biomass, root length, SPAD value, and contents of K+, Ca2+, and S2−. Additionally, the treatment reduced the malondialdehyde (MDA) content by 30.71% and 58.91% at 12 h and 30 d, respectively. The transcriptome analysis results suggest that Se mitigated Cd toxicity by enhancing carbon metabolism, regulating the AsA-GSH cycle, reducing Cd absorption, promoting Cd transport and compartmentalization, and modulating Cd resistance-associated transcription factors. These findings clarify the mechanisms by which Se alleviates Cd toxicity in G. uralensis and offer a promising strategy for the safe cultivation and quality control of medicinal herbs in Cd-contaminated soils. Full article
Show Figures

Figure 1

22 pages, 3780 KiB  
Article
Sinhyotaklisan as a Potential Therapeutic for Psoriasis: Network Pharmacology and Experimental Validation
by Jung-Yun Ahn, Dong-Woo Lim, Jin-Hee Kim, Sung-Yun Park, Sun-Dong Park and Ju-Hee Lee
Int. J. Mol. Sci. 2025, 26(11), 5082; https://doi.org/10.3390/ijms26115082 - 25 May 2025
Viewed by 667
Abstract
Sinhyotaklisan (SHTLS) is a traditional herbal prescription composed of Lonicerae Flos, Angelicae Gigantis Radix, Astragali Radix, and Glycyrrhizae Radix et Rhizoma, commonly used to treat skin disorders. This study aimed to investigate the therapeutic effects and underlying mechanisms of [...] Read more.
Sinhyotaklisan (SHTLS) is a traditional herbal prescription composed of Lonicerae Flos, Angelicae Gigantis Radix, Astragali Radix, and Glycyrrhizae Radix et Rhizoma, commonly used to treat skin disorders. This study aimed to investigate the therapeutic effects and underlying mechanisms of SHTLS in psoriasis through the network pharmacology analysis and experimental validation in vitro and in vivo. Bioactive compounds and molecular targets were identified using the Traditional Chinese Medicine Systems Pharmacology database, and key protein–protein interaction networks were analyzed via STRING and Cytoscape. In vitro, HaCaT cells were pretreated with SHTLS and stimulated with TNF-α, followed by assessments using proliferation assays, scratch assays, quantitative real-time PCR, and Western blotting. In vivo, the anti-psoriatic effects of SHTLS were evaluated in an imiquimod-induced psoriatic mouse model. A total of 36 key targets were significantly enriched in TNF-α, MAPK, HIF-1α, and IL-17 signaling pathways. SHTLS suppressed TNF-α-induced expression of VEGF and HIF-1α, while upregulating p53, thereby inhibiting keratinocyte hyperproliferation and angiogenesis. It also reduced IL-6 and IL-8 levels and blocked activation of the NF-κB and MAPK pathways. Histological analysis confirmed that SHTLS alleviated psoriatic lesions in vivo. These findings suggest that SHTLS may be a promising therapeutic candidate for psoriasis by targeting hyperproliferation, angiogenesis, and inflammation. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

19 pages, 10081 KiB  
Article
Transcriptome and Metabolomics Analysis Reveal the Effects of Red and Blue Light on the Physiology and Primary Medicinal Components (Liquiritin and Glycyrrhizic Acid) of Glycyrrhiza uralensis Seedlings
by Yuan Jiang, Zhengru Zhang, Shurui Zhang, Xinying Chen, Baoshan Li, Siyu Ma, Yanjun Wang and Zhirong Sun
Int. J. Mol. Sci. 2025, 26(10), 4641; https://doi.org/10.3390/ijms26104641 - 13 May 2025
Viewed by 564
Abstract
Glycyrrhiza uralensis Fisch. is considered one of the most economically important medicinal plants worldwide. However, the quality of cultivated G. uralensis has not been adequate to meet the market demand. As one of the most important factors for plant growth, light influences the [...] Read more.
Glycyrrhiza uralensis Fisch. is considered one of the most economically important medicinal plants worldwide. However, the quality of cultivated G. uralensis has not been adequate to meet the market demand. As one of the most important factors for plant growth, light influences the production and accumulation of metabolites in plants. However, the effect of light on the development and accumulation of components of G. uralensis is unclear. In this study, we found that red light and 4R1B (red/blue = 4:1) could promote the growth of licorice, such as the plant height, diameter of the reed head, and biomass accumulation, while blue light inhibited indicators of reed head diameter, biomass accumulation, etc. The impact of the light system is reflected in blue light significantly suppressing the photosynthetic rate and stomatal conductance, while red light and mixed light had the opposite effects. The red group had the lowest superoxide dismutase (SOD) activity and malondialdehyde (MDA) content, which suggested the production and scavenging of O2 was balanced in red light. Additionally, the red group had the highest content of soluble sugars and soluble proteins. We combined metabolomic and transcriptomic analysis and found that the gene expression in the treatment groups was up-regulated in the liquiritin synthesis pathway, and the liquiritin content of the 4R1B group and R group was significantly increased by 275% and 191% that of the CK group. Moreover, 4R1B significantly promoted the accumulation of glycyrrhizic acid (94% higher than in the CK group) and the expression of genes in the glycyrrhizic acid synthesis pathway. In addition, the light treatments affected seven phytohormone pathways (abscisic acid, brassinosteroid, salicylic acid, auxin, gibberellin, cytokinin, and jasmonic acid) in G. uralensis, which was related to cell elongation, stem elongation, stress resistance, and other aspects. In general, we analyzed the response mechanism of G. uralensis to red and blue light at the physiological, medicinal component, and molecular levels. The results will provide a new perspective for studying the regulatory effect of light quality on the growth and medicinal components of G. uralensis. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

13 pages, 589 KiB  
Article
Deciphering the Anti-Listerial Activity and Phytochemical Composition of Licorice Root Extract Using LC-MS/MS in Combination with In Vitro and Computational Evaluations
by Christodoulos Michael, Atalanti Christou, Ana Maria Gómez-Caravaca, Vlasios Goulas, Catherine E. D. Rees and George Botsaris
Appl. Sci. 2025, 15(10), 5276; https://doi.org/10.3390/app15105276 - 9 May 2025
Viewed by 570
Abstract
Licorice roots are a rich source of bioactive compounds with multiple biological activities. The objective of this study was to evaluate the inhibitory effects of licorice root extract against a range of Listeria strains. In addition, the correlation of its phytochemical composition with [...] Read more.
Licorice roots are a rich source of bioactive compounds with multiple biological activities. The objective of this study was to evaluate the inhibitory effects of licorice root extract against a range of Listeria strains. In addition, the correlation of its phytochemical composition with antimicrobial properties was also investigated. Thus, the bacteriostatic and bactericidal effects of licorice root extract on seven Listeria monocytogenes strains, L. grayi, L. seeligeri, and L. ivanovii were determined. The minimum inhibitory and bactericidal concentrations ranged from 31.3 to 62.5 µg mL−1 and from 62.5 to 250 µg mL−1, respectively. The phytochemical composition of the extract was also analyzed using advanced LC-DAD- qTOF-MS; it is composed of fifty-one compounds belonging to different subgroups of flavonoids and triterpenoids. Subsequently, the anti-Listeria potency of the most abundant phytochemicals was determined using the AntiBac-Pred web tool. In silico calculation showed that liquiritin-apioside and licorice glycoside C1/C2 were strong growth inhibitors of L. monocytogenes, as their potency was comparable to well-known antibiotic substances. Overall, the present study demonstrates the potent antimicrobial effect of licorice root extract and reveals its active phytochemicals. Full article
Show Figures

Figure 1

38 pages, 8412 KiB  
Review
The Use of Plants That Seal Blood Vessels in Preparations Applied Topically to the Skin: A Review
by Barbara Hanna Roman, Anna Muzykiewicz-Szymańska, Katarzyna Florkowska, Magdalena Tkacz, Bartłomiej Wilk, Łukasz Kucharski, Agata Madalińska and Anna Nowak
Molecules 2025, 30(9), 1973; https://doi.org/10.3390/molecules30091973 - 29 Apr 2025
Cited by 1 | Viewed by 1679
Abstract
Plants provide valuable compounds that positively influence the health of blood vessels, including those in the skin. Numerous plants exhibit anti-inflammatory, antioxidant, and vasodilating effects, which enhance blood circulation and may promote skin regeneration and suppleness. Botanical species like Camellia sinensis, Chrysanthellum [...] Read more.
Plants provide valuable compounds that positively influence the health of blood vessels, including those in the skin. Numerous plants exhibit anti-inflammatory, antioxidant, and vasodilating effects, which enhance blood circulation and may promote skin regeneration and suppleness. Botanical species like Camellia sinensis, Chrysanthellum indicum, Helichrysum italicum, Glycyrrhiza glabra, Ginkgo biloba, or Artemisia lavandulaefolia may positively influence the health of cutaneous blood vessels in the skin. The beneficial impact in this context is attributed to various secondary metabolites inherent to these plants, including phenolic acids, flavonoids, vitamins, or saponins, which can subsequently enhance microcirculation, diminish swelling, inhibit telangiectasia, occlude blood vessels, and enhance skin appearance. In addition, the high antioxidant activity of plants is also key here, which helps protect vessels from damage caused by oxidative stress. This article provides an overview of specific plants that may positively influence skin blood vessels, along with a discussion of particular active compounds within these plants that exhibit such effects. These herbs not only improve vascular health but also promote a more youthful appearance. By examining their distinct qualities, we can enhance our comprehension of their synergistic effects on skin vitality and resilience. Full article
(This article belongs to the Special Issue Multifunctional Natural Ingredients in Skin Protection and Care)
Show Figures

Graphical abstract

15 pages, 2625 KiB  
Article
Effects of Probiotic-Fermented Chinese Herb on Immune Response and Growth Performance in Common Carp (Cyprinus carpio)
by Wenzheng Zou, Xuanxuan Huang, Fang Han and Zhongqin Li
Fishes 2025, 10(5), 196; https://doi.org/10.3390/fishes10050196 - 26 Apr 2025
Viewed by 619
Abstract
This study investigated the effects of fermented Chinese herb (FCH) on the growth indices, leukocyte activity, and biochemical indices of carp (Cyprinus carpio). Astragalus membranaceus (AM), Pericarpium Citri Reticulatae (PCR), and Glycyrrhizae Radix et Rhizoma (GRR) as feed additives enhance immune [...] Read more.
This study investigated the effects of fermented Chinese herb (FCH) on the growth indices, leukocyte activity, and biochemical indices of carp (Cyprinus carpio). Astragalus membranaceus (AM), Pericarpium Citri Reticulatae (PCR), and Glycyrrhizae Radix et Rhizoma (GRR) as feed additives enhance immune function, promote growth, and exert anti-inflammatory effects, respectively. Therefore, this study investigated the effects of co-fermented blends of these three herbs on growth performance and related parameters in common carp. By adding 2%, 5%, and 10% of the FCH to co-incubate with carp leukocytes, the results show that all three experimental treatments could enhance the respiratory burst activity and phagocytic activity of carp leukocytes. After 28 days of feeding with basal feed supplemented with 2%, 5%, and 10% (w/v) of the FCH, the weight gain rate and specific growth rate of carp were significantly higher than those of the control treatment without additives (ANOVA, p < 0.05), with the 5% treatment showing the highest. The activities of intestinal digestive enzymes were significantly increased (ANOVA, p < 0.05). On the 21st day, the activities of amylase (AMS), lipase (LPS), and chymotrypsin were increased compared to the control treatment. The 5% and 10% treatments showed significantly higher intestinal digestive enzyme activities compared to the 2% treatment. The serum superoxide dismutase (SOD) levels in both the control and experimental treatments initially increased and then decreased, with all three experimental treatments having higher levels than the control treatment. The activities of liver glutamic-oxaloacetic transaminase (GOT) and glutamic-pyruvic transaminase (GPT) in the experimental treatments showed no significant changes compared to the control treatment (ANOVA, p > 0.05). However, the serum GPT activity in the 5% treatment was significantly lower than that of the control treatment (ANOVA, p < 0.05), while no significant differences were observed in the other treatments. The results indicate that adding 2~10% of FCH to carp feed can improve intestinal digestion, enhance phagocytic activity and the body’s antioxidant defense capabilities, and effectively promote the growth of carp. It can significantly improve farming efficiency and economic benefits, reduce dependence on chemical drugs, and lower environmental pollution, showing good application prospects in production. Full article
(This article belongs to the Special Issue Intestinal Health of Aquatic Organisms)
Show Figures

Figure 1

18 pages, 10646 KiB  
Article
Overexpression of the Glycyrrhiza uralensis Phenylalanine Ammonia-Lyase Gene GuPAL1 Promotes Flavonoid Accumulation in Arabidopsis thaliana
by Xifeng Chen, Chao Jiang, Mengqian Long, Xiangxiang Hu, Shouhao Xu, Haotong Huo, Ruixin Shi, Qing Xu, Shuangquan Xie, Zihan Li, Haitao Shen, Fei Wang, Guanghui Xiao, Quanliang Xie, Shandang Shi and Hongbin Li
Int. J. Mol. Sci. 2025, 26(9), 4073; https://doi.org/10.3390/ijms26094073 - 25 Apr 2025
Cited by 1 | Viewed by 531
Abstract
Phenylalanine ammonia-lyase (PAL) serves as a pivotal regulatory enzyme at the initial branching point of the phenylpropanoid pathway, exerting a profound influence on downstream reactions essential for flavonoid biosynthesis. Glycyrrhiza species are important medicinal plants and provide plenty of roots as raw materials [...] Read more.
Phenylalanine ammonia-lyase (PAL) serves as a pivotal regulatory enzyme at the initial branching point of the phenylpropanoid pathway, exerting a profound influence on downstream reactions essential for flavonoid biosynthesis. Glycyrrhiza species are important medicinal plants and provide plenty of roots as raw materials for further utilization, with the components of glycyrrhizic acid and flavonoids as two major active ingredients. However, functional studies of the PAL genes in the medicinal Glycyrrhiza species remain limited. In this study, we identified seven PAL family genes from each of the three medicinal Glycyrrhiza species, Glycyrrhiza uralensis Fisch., G. inflata Bat., and G. glabra L., and comprehensively analyzed their phylogenetic relationships, gene structures, motif distributions, and promoter cis-elements. Gene expression profiling revealed that PAL1 is highly expressed in roots and significantly induced by drought and salt stresses. We further selected G. uralensis GuPAL1 for functional investigation in Arabidopsis. GuPAL1-overexpression lines (GuPAL1-OE) demonstrated significant enhancements in plant growth, flavonoid accumulation, and hormone levels in Arabidopsis thaliana. Conversely, the Atpal1 mutant plants displayed marked reductions in these traits, while the transgenic lines of GuPAL1-OE in the Atpal1 mutant (Atpal1/GuPAL1) recovered to the normal phenotypes similar to wild type (WT). Transcriptomic analysis of the GuPAL1-OE plants compared to WT demonstrated that several key genes in the phenylpropanoid and flavonoid metabolic pathways (4CL, CCoAOMT, CAD, POD, F3H, FLS) were significantly enriched, suggesting that GuPAL1 may promote plant growth and flavonoid biosynthesis by regulating diverse cellular functions, metabolic pathways, and associated gene expressions. These findings highlight the functional importance of GuPAL1 in flavonoid biosynthesis, and provide valuable insights into the molecular mechanisms underlying the medicinal properties of Glycyrrhiza species. Full article
Show Figures

Figure 1

12 pages, 560 KiB  
Article
Development and Validation of an HPLC–PDA Method for Quality Control of Jwagwieum, an Herbal Medicine Prescription: Simultaneous Analysis of Nine Marker Compounds
by Chang-Seob Seo, Jeeyoun Jung and Sarah Shin
Pharmaceuticals 2025, 18(4), 481; https://doi.org/10.3390/ph18040481 - 27 Mar 2025
Viewed by 718
Abstract
Background/Objectives: Jwagwieum (or Joa-Gui Em; JGE) consists of six herbal medicines, Rehmannia glutinosa (Gaertn.) DC., Dioscorea japonica Thunb., Lycium chinense Mill., Cornus officinalis Siebold & Zucc., Poria cocos Wolf, and Glycyrrhiza uralensis Fisch., and has been widely used to treat kidney-yin deficiency [...] Read more.
Background/Objectives: Jwagwieum (or Joa-Gui Em; JGE) consists of six herbal medicines, Rehmannia glutinosa (Gaertn.) DC., Dioscorea japonica Thunb., Lycium chinense Mill., Cornus officinalis Siebold & Zucc., Poria cocos Wolf, and Glycyrrhiza uralensis Fisch., and has been widely used to treat kidney-yin deficiency syndrome. In the present study, a high-performance liquid chromatography with photodiode array detector (HPLC–PDA) method for the simultaneous quantification of the nine components, i.e., gallic acid, 5-(hydroxymethyl)furfural, morroniside, loganin, liquiritin apioside, liquiritin, ononin, glycyrrhizin, and allantoin, was developed. Methods: The developed HPLC–PDA assay for quality control of JGE was validated with respect to linearity, limit of detection (LOD), limit of quantification (LOQ), recovery, and precision. Results: In the regression equation of the calibration curve, the coefficient of determination was ≥0.9980, and LOD and LOQ were 0.003–0.071 μg/mL and 0.010–0.216 μg/mL, respectively. Recovery and precision (relative standard deviation) were 96.36–106.95% and <1.20%, respectively. In this analytical method, nine compounds were detected at concentrations of 0.15–3.69 mg/lyophilized gram. Conclusions: The developed and validated analytical method could be used to obtain basic data for the quality control of JGE and related herbal prescriptions. Full article
(This article belongs to the Special Issue Natural Pharmaceutical Component Analysis)
Show Figures

Figure 1

Back to TopTop